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Abstract

In this paper, we consider wavelet thresholding rules within a bayesian framework.
The prior imposed on the wavelet coefficients is based upon a Pareto distribution.
We introduce weak Besov spaces that enable us to measure the sparsity of each
estimated signal. At first, we establish a relationship between the parameters of
the prior and the parameters of the weak Besov space in which the realizations built
from the prior lie. Subsequently, we exhibit a thresholding rule which threshold at
each resolution level depends on the prior parameters. It is compared to estimators
provided by two well known thresholding procedures: VisuShrink and SureShrink.

Key Words: adaptive estimation, bayesian model, Pareto distribution, sparsity,
wavelet thresholding, weak Besov spaces.
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1 Introduction

1.1 Motivation

Let us suppose we are given noisy data of an unknown function f to be
estimated:
i iid :

gi :f(ﬁ)-l_o-sia € ~ (0’ 1)7 t=1,...,n. (11)
We would like to build an efficient procedure that provides a data adaptive
estimator of the signal f without having to assume any specific form about
this signal. By expanding f on a wavelet basis which atoms are localized
in both time and frequency, we expect a parsimonious representation of f:
Only a small number of the wavelet coefficients are non negligible in which
the main part of the information about f is contained. In the following,
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2 V. Rivoirard

we consider such sparse functions we estimate by using thresholding rules
particularly appropriate to this framework. One goal of this paper is to
discuss the choice of the threshold. Many authors have investigated this
problem: Donoho and Johnstone (1994) proposed the VisuShrink proce-
dure consisting in choosing the universal threshold \* = o4/2log(n) for
each level. The choice of the threshold for Donoho and Johnstone (1995) is
based on the minimization of Stein’s unbiased estimate of risk for threshold
estimates. Nason (1995) exploited the cross validation approach to choose
the threshold. Let us also mention the methods based on the multiple
hypotheses testing approach. See for instance Abramovich and Benjamini
(1995) or Abramovich, Benjamini, Donoho and Johnstone (2000) who ob-
tained thresholding rules by adapting the false discovery rate method de-
veloped by Benjamini and Hochberg (1995). Abramovich, Sapatinas and
Silverman (1998) and Vidakovic (1998) considered thresholding within a
bayesian framework. We adopt this approach and we place a prior model
on the wavelet coefficients. But before this, we assume that the function f
belongs to a weak Besov space.

The first motivation for the use of weak Besov spaces (denoted W*(r,p)
in the following) to obtain thresholding rules is provided by their defini-
tion: To decide whether f belongs to W*(r,p), we introduce at each level
j the number of its wavelet coefficients greater than a threshold A\, denoted
N¢(j,A). We require a power-law bound C(f) x A7 on the sum over j of
the Nf(j, A) penalized by a weight depending on r (see Definition 2.1). We
note that if p < r, W*(r,p) is very close to Bspp (s = % - %), a member
of the class of the strong Besov spaces B; p 4 often considered by the statis-
ticians. We have the natural inclusion B, , C W*(r,p).

Furthermore, weak Besov spaces appeared in statistics to evaluate the per-
formance of classical estimation procedures. Cohen, DeVore, Kerkyachar-
ian and Picard (2000) and Kerkyacharian and Picard (2000) wondered what
is the maximal space over which a procedure attains a prescribed rate of
convergence. Kerkyacharian and Picard (2000) roughly proved that if a pro-
cedure verifies an oracle inequality then its maxiset contains a weak Besov
space. Wavelet thresholding is an example of such a procedure. In section
2.2, Proposition 2.1 gives a concrete example of the nature of maxisets as-
sociated with wavelet thresholding rules. This result provides the natural
relationship between weak Besov spaces and wavelet thresholding rules.
Finally, we note that W*(r,p) appears as a generalization of the weak
I, space (denoted wl, in the following), often considered in approxima-



Bayesian thresholding with priors based on Pareto distributions 3

tion theory (see Johnstone (1994), Donoho (1996), Donoho and Johnstone
(1996), or Cohen, DeVore and Hochmuth (2000)). Abramovich, Benjamini,
Donoho and Johnstone (2000) used weak [, spaces to define more precisely
the notion of sparsity we mentioned previously. For them, sparsity means
that there is a relatively small proportion of relatively large coefficients and
they introduce a weak [, constraint to control this proportion. So, as we
shall see in section 2.2, weak Besov spaces may appear as natural spaces to
capture signals in function of their regularity properties and their sparsity.
We shall discuss the roles of the parameters  and p in this framework.
But another way to capture the sparsity of a signal is throughout the use
of a bayesian model. Most of the authors consider bayesian models based
upon gaussian distributions: For instance, both Clyde, Parmigiani and Vi-
dakovic (1998) and Abramovich, Sapatinas and Silverman (1998) consider
a mixture of a normal component and a point mass at zero for the wavelet
coefficients. Chipman, Kolaczyk and McCulloch (1997) impose a mixture
of two gaussian distributions with different variances for negligible and non
negligible wavelet coefficients. Huang and Cressie (2000) assume the un-
derlying signal to be composed of a piecewise-smooth deterministic part
plus a zero-mean gaussian part.

As for us, rather than adopting the gaussian point of view, we consider
priors based upon Pareto distributions. The reasons of this choice are the
following: Rivoirard (2001) investigated the problem of estimation over
weak Besov balls, by using the Bayes method. This approach enables us
to exhibit a least favorable prior 7#7P>C for the wavelet coefficients Bjk of a
function f lying in the weak Besov ball W*(r, p)(C). It takes the following
form: The B;;’s are independent and the distribution of each (;; is built
from the distribution of &;X i, where X;; is a Pareto(p) variable and &;
is a level-dependent dilation parameter (see section 2.3). The realizations
built from 7" can be viewed as the worst functions to be estimated and
lying in W*(r, p)(C). What is more, 7™PC is typical of the ball W*(r, p)(C):
For instance, we can prove that it cannot be a least favorable prior for the
problem of estimation over B;;,(C) (s = 55 — 1), the strong Besov ball
naturally associated with W*(r, p)(C).

1.2 Outline

In this paper, we assume we are given a prior model directly inspired by
the least favorable priors 7"”C of the weak Besov balls W*(r,p)(C): We
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suppose that the wavelet coefficients 3;; of f are independent, each 3j
has a symmetric distribution and |B;x| ~ min(a; X — o, 1), where Xy
is a Pareto(p) variable, a; and p; are level-dependent parameters precisely
defined in section 3.1. In section 3.2, we establish a relationship between
these parameters and the parameters of the weak Besov space in which the
function f lies (see Theorem 3.1). We present various realizations that give
insight into the meaning of the weak Besov space parameters. In particular,
we note that if f is typical of W*(r,p), then the regularity of f increases
with 7. When p is small, f presents very high peaks with a regular behavior
between them. When p is great, the peaks are less high and between them,
the behavior is less regular.

The rest of the paper is devoted to the construction of thresholding rules.
We consider the model (1.1) and we translate it into the wavelet domain by
using the discrete wavelet transform. We assume that the discrete wavelet
coefficients of f are provided by the prior model defined in section 4.2 and
roughly described previously. To estimate each discrete wavelet coefficient,
we use the soft thresholding rule. To choose the threshold, we take into
account a result proved by Rivoirard (2001). In this paper, a minimax
thresholding rule is exhibited. At large resolution levels j, the threshold

Aj is proportional to ,/—2 log(&g ), where &; is the dilation parameter that

appears in the definition of the least favorable prior ™" associated with

W*(r,p)(C) (see section 2.3). This minimax point of view suggests to use:

Aj =04/ —2log(oz§).

In section 4.2, we give more precise justifications for this choice. We propose
a method to estimate the parameters appearing in the definition of A;. In
section 4.3, we measure the performances of the resulting procedure, called
ParetoThresh, by using the four test signals: 'Blocks’, ’Bumps’, "Heavisine’
and "Doppler’. It is compared to the non bayesian procedures VisuShrink
and SureShrink we have described previously. For this, we use the mean-
squared error. Under this criterion, Table 3 shows that for the estimation
of 'Blocks’, 'Bumps’ and ’Doppler’, ParetoThresh substantially improves
VisuShrink and SureShrink. But this is not true any more for 'Heavisine’.
Taking into account the properties of 'Heavisine’, we explain why, to some
extent, this result could have been expected.
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1.3 Contents

The paper is organized as follows: Section 2 is devoted to weak Besov
spaces. After giving their definition, we recall the results obtained by
Rivoirard (2001) for the problem of estimation over weak Besov balls. In
section 3, we define a bayesian model and we investigate the conditions
for the resulting functions to belong to weak Besov spaces. Section 4 is
devoted to the construction of ParetoThresh, the data adaptive procedure
we propose. Finally, in section 5, we give the proof of Theorem 3.1.

2 Estimation over weak Besov spaces

After an overview of wavelet bases (see section 2.1), we introduce in section
2.2 weak Besov spaces. Finally, in section 2.3, we recall some relevant
statistical aspects of weak Besov spaces. From now on, we note X ~ P(p)
(p > 0) to mean that X is a Pareto(p) variable, i.e. X has the density
g(t) =1 tlet_p_l.

2.1 Wavelet series representation

In this section, we present some relevant aspects for our survey of the
wavelet series representation of a function. For a more complete introduc-
tion to wavelets, we refer the reader to Meyer (1992), Daubechies (1992)
and Hirdle, Kerkyacharian, Picard and Tsybakov (1998). An orthonor-
mal wavelet basis of Lo(R) is generated by translations of a scaling func-
tion ¢ and dilations/translations of a wavelet t: 1 1x(t) = ¢(t — k),
Pir(t) = 254)(29¢t — k). With this notation, the wavelet decomposition
of a function f € Ly(R) is

FO =" Biwwje(t),

§>—1keZ

where the wavelet coefficient 3;; is the scalar product of f with );:

Bk = / () f(t)dt.

Actually, for all m € N, we can build the functions ¢ and ¥ to be of
'regularity m’: ¢ and 1 are of class C™, each of them and their derivatives



6 V. Rivoirard

up to order m have fast decay. Besides, Daubechies (1992) showed that
it is possible in addition to require ¢ and ¥ to be compactly supported.
Recently, the use of wavelets has become very widespread because they
provide unconditional bases to various spaces. For instance, wavelet bases
are unconditional bases for the class of strong Besov spaces Bs p 4 (1 < p,q <
00, 0 < s < 00) (see Meyer (1992)). For a good presentation of strong Besov
spaces that model very different forms of spatial inhomogeneity, we refer
the reader to Peetre (1976) and DeVore and Lorentz (1993). We just recall
that the strong Besov norm of the function f is related to a sequence space
norm on the wavelet coefficients of f: Let us assume that the functions ¢
and 1 are of regularity m. If we define

+oo -
Yot g laf i 1< g < +oo
||16||b(s,p,q) = j=-1

. 1 1
sup 2/¢t275) 1Bj.llp  otherwise,
j2-1

and if max(O,% — 1) < s < 'm, we have:

Cl”f”Bs,p,q S Hﬂ”b(s,p,q) S C2||f||Bs,p,q’

where C] and Cs are constants not depending on f.

Often, for practical reasons, the functions considered in the literature are
only defined on a compact set, the interval [0,1] for instance. Cohen,
Daubechies and Vial (1993) have described the necessary corrections to
adapt wavelets to a bounded interval. As for us, in sections 3 and 4, we
focus on periodic functions f with unit period, and we work with periodic
wavelets, we still note ;5. This modification, described by Daubechies
(1992), implies that the wavelet coefficients are restricted to the indices
{j > -1,k € Z;}, where

Z;j={keN: 0<k<2}. (2.1)

2.2 Sparsity and definition of weak Besov spaces

Abramovich, Benjamini, Donoho and Johnstone (2000) introduced the no-
tion of sparsity of an infinite vector § € RY through the following approach:
The vector 0 is said to be sparse if there is a small proportion of relatively
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large entries. Therefore, they order the components of § according to their
size:

01y > 16(2) > -+ > 10](n) >
and they control the number of large entries by using a power-law bound
on this rearrangement:

1
sup n» [0, < oo,
n

where p > 0. This last condition is equivalent to say that 6 belongs to the
weak [, space wip defined by:

wlp = {HE]RN : sup)\pZ]l 052 < oo}

A>0

As pointed out by DeVore (1989), when p < 2, the weak [, space can be
viewed as the collection of all functions on [0, 1] that can be approximated

in L2([0,1]) at rate N~™, m = 11_) _ %

Now, we define weak Besov spaces as a generalization of weak [, spaces.
Let us consider the following function f expanded in a wavelet series,

= > Bitir(t)

Jj=—1 k
We define weak Besov spaces as follows:

Definition 2.1. For all j > —1 and A > 0, we consider Nf(j,A) the num-
ber of the wavelet coeflicients of f at level j greater than A:

N =1 5,05
k

If0 < p,r < 00, we say that the function f (or equivalently 5 = (ﬂjk)j>—1,keij)
belongs to the weak Besov space W*(r, p) if

sup \P Z 21(3 1)Nf (4,A) < oc.

U

To each weak Besov space W*(r,p), we associate the balls:

W (r,p)(C) = { f : supApr YN (j,\) < OF

>0 T
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The weak Besov space W*(r,p) can be viewed as a weighted weak [,
space. The weights penalize the counting of the 3;;’s greater than A for the
large scales according to the sign of r —2. Therefore, the use of weak Besov
spaces may appear as a good device to measure the sparsity of a wavelet
expanded signal. Using Markov’s inequality, it is easy to prove that for

p < r, the strong Besov space 8%7% »p 18 included into W*(r, p).
p DR}

Finally, we recall that Cohen, DeVore, Kerkyacharian and Picard (2000) in-
troduced weak Besov spaces to characterize maxisets for the wavelet thresh-
olding procedure. Among others, they proved the following result:

Proposition 2.1. Let 1 < r < oo and a € (0,1). We suppose that f €
L,([0,1]). Under the white noise model

dY; = f(t)dt + edWy, te€]0,1],
we consider the following thresholding estimator
Je
o .
D 35 > E I
j=—1 k

with

Bir = [ hj(t)dY,
o t. = e4/log(e~1)
e 277 < gllog(et) <277 F!
® Kk is a constant large enough.
We have

E|fF - flIn < K (8 log(e_l))w < [ €BsoNW(r,(1-a)r).

2.3 Minimax risk and least favorable priors

Rivoirard (2001) evaluated the minimax risk over weak Besov balls W*(r, p)(C)
for By, v norms by using a bayesian approach. This enables us to exhibit
least favorable priors (noted LFP) which will inspire the prior model chosen
in section 3.1. Let us recall here the main results we obtain: We restrict
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our attention to functions f supported by the interval [0, 1]. They can be

written:
(o]

FO =" Bitbn(t),

== kei,

where i'j ={keZ: Bik # 0}. Let us note that with compactly supported
wavelets, we have |Z;| < oo. We introduce two zones we shall denote
hereafter respectively as the regular zone and the critical zone:

>p (s’+%>}U{p'Sp},

(o))

We consider the white noise model

R = {p'>p,

N[ N

C= {p’>p,

dY, = f(t)dt + edW;, t € [0,1],

which means that € > 0 is known, f € Ly([0,1]) is unknown and for all
¢ € Ly([0,1]), f[o,l] H(t)dY; = f[o,l] (t) f(t)dt + Ef[o,l] $(t)dW; is observ-
able. Among non parametric situations, this statistical model is one of the
simplest, at least technically. What is more, it arises as an appropriate
large sample limit for more general non parametric models, such as the
regression model (1.1) considered previously. (cf. Brown and Low (1996)).
These are the reasons why this model is often considered in non parametric
situations. We study the asymptotic behavior of the minimax risk

Rszilijf Sup Ef“fg_f“%/ 717
fe few*(rp)(C) e

when ¢ tends to 0. Taking scalar product with 15, the white noise model
is translated into the sequence space. We obtain the following sequence of
independent variables:

ik = Bjk + €2, § > -1k €I,
where Zj; ~ N(0,1). The risk becomes

R.=inf sup  EglB— Bl
TB Bew(rp)(©) e

Under suitable conditions, Theorem 1 of Rivoirard (2001) proves that on
R, the rate of convergence of R, is e”'®, where o = (s — s')/(s + 1) and
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s=5;— 1. On C, the rate of convergence is P ®log(e™1)

To identify LFP, we first reduce to M, ,(C), the natural set of probability
measures associated to W*(r,p)(C) and defined as follows:

pa
2

oo e C P
M,p(C) = m(dp): Y 2GEVE Y 15,5, < (X) , YA>0
j=-—1 kei—j
(2.2)

For the definition of the LFP, Rivoirard (2001) exhibited two sequences
of real numbers (&;);>—1 and (fi;)j>—1 depending on the zone. We do not
recall their exact definitions, which would just add useless technical aspects
here, but we briefly recall their properties:

® (&;)j>—1 is a non increasing sequence of non negative real numbers
verifying the condition

+o0

r C\P
> el = (—) : (2.3)
— €
J=n
where j; is an integer depending on the zone. For instance, on R, 71
is the first integer j such that &; < 1.

e (fi;)j>—1 is an increasing sequence of positive real numbers such that
~ Jo

Ky~ —210g(o7§).

Now, if we set 7. '“ as the distribution of a sequence of independent vari-

ables (Bjk) ;>4 ke, such that

e The distribution of 8;; (denoted F;) is symmetric about 0,

o 18] = 4 E™n(@ Xk, i), where X ~ Plp), i 5 > j
ik 0 otherwise,

then, 77, belonging to M, »(C), is a LFP for the problem of estimation

over W*(r,p)(C). Indeed, if for each prior 7 of M, ,(C), we define its Bayes
risk denoted B(7) by
B(w) = nf B, 5316 - 1],

s'p'p')?



Bayesian thresholding with priors based on Pareto distributions 11

then, up to constants, the supremum of B over M, ,(C) is attained for
727C and the asymptotic values of B(wo? ’C) are the same as the asymptotic
values of R.: There exist three constants K1, Ko, K3 only depending on

r,p,C, s and p', such that

K, B(n"P°) < R, < Ky B(xlP°), (2.4)
and
sup B(n) < K3 B(n"P°). (2.5)
TEMy ,(C)

What is more, asymptotically, the support of 70P°C is ’almost’ included

into W*(r, p)(C). It means that there exists (7¢)e>0 larger than 1, tending
to 1 when ¢ tends to 0, such that

020 (6 € W (r,p)(C)) 1. (2:6)

It is interesting to note that the realizations built from the LFP provide a
good representation of the worst functions of W*(r, p)(C) to be estimated.
Finally, we have the following result: The thresholding rule defined by

fe=Y"" sign(@) (Tl — Aj)+ Wik,

Jj=-1 kEfj

with

0 otherwise

attains the minimax rate of convergence up to constants. We shall inspire
from this minimax rule to build constructive estimators in section 4.2.

3 Construction of functions typical of weak Besov spaces

From now on, following section 2.1, we consider a periodic signal

FO =D Biwwhe(t), (3.1)

j=-1 kEI]‘
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where Z; is given in (2.1). As pointed out by Johnstone (1994), this com-
putational simplification affects only a fixed number of wavelet coefficients
at each level j. We place a prior model on the wavelet coefficients of f
to capture its sparsity. But section 2.2 pointed out that the sparsity of
a signal can be revealed by the weak Besov space W*(r,p) in which the
signal lies. So, through Theorem 3.1, we connect these two approaches of
sparsity by giving a relationship between the parameters of the prior model
and W*(r,p). This enables us to build functions typical of W*(r, p).

3.1 The prior model

To fix a prior model, we exploit the LFP 77”C defined in section 2.3 and
that is naturally connected to the weak Besov ball W*(r, p)(C): We suppose
that the 8j;’s are independent and for j > 0 and k € Z;, the distribution
of each S, is Fjaj HiP where

° Fjaja/ij’p — %(F]—F + Fj_)a
. Fj_ is the reflection of Fj+ about 0,
D Fj‘" is the distribution of min(a; X; — ¢, p15), where X; ~ P(p),

e «; and p; are positive real numbers.

Because of its improper nature, we place no prior on the scaling coeffi-
cient B_19. The distribution F,;7*’*" is a slight modification of F} that

appeared in the definition of 7. . Indeed, to avoid any discontinuity in

the definition of the support of i, we translate the variable o;;P(p) by «;.
This slight modification enables us to capture very small values of 3;;,. We
suppose that the parameter «; has the form

aj = c277 d
where C' and 0 are positive constants. Whereas the parameter fi; verified
the relation /i 70 )2 log(&? ) in the definition of least favorable priors,

here we set

B = \/max (M2, —2log(a§))a
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where M is a positive constant eventually very large. The value of M can
be chosen as the a priori maximal size of the wavelet coefficients of the
function we want to estimate. We note that V A > 0,

a; \P .
——J -
P(|Bjk| > A) = { ()\+aj> if A < pj

0 otherwise.

Therefore, even if the support of 3;; is bounded at each level j, we expect
that this prior model, coming from a heavy-tailed distribution may capture
a great number of large coefficients. Under a good choice of the parameters
¢ and p, we can obtain very inhomogeneous functions. We investigate in
the following section the type of inhomogeneity this prior model enables us
to obtain.

3.2 The main result and simulations

In this section, we assume that the prior model defined in the previous
section is placed on the wavelet coefficients. Through the following theorem,
we show that under a good choice of the parameters of the prior model, we
can generate functions that are typical of the weak Besov space W*(r, p):

Theorem 3.1. We consider the function f given in (3.1). Let 0 < p < oo,
0 < r < 0. Given three positive real numbers 6, C and M, we define for

all§ >0, aj = C279° and p; = \/max (MQ,—2log(oz§)). Let us assume

that the wavelet coefficients B of f are independent and for j > 0 and
k € Z;, Bjr has the distribution Ffj HP - given in section 3.1 . For all fized
value of B_10,

feW*(r,p) a.e. — g < dp

The proof of this theorem is given in section 5.

Note. The condition § < ép is equivalent to say that
o
Z 27 %ag < 00.
j=—1

This can be connected to the condition (2.3) verified by the sequences
(@) >4, used to define the LFP for the weak Besov balls W*(r,p)(C).
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Theorem 3.1 gives us a help to have a good understanding of weak Besov
spaces. Figure 1 presents various typical realizations with different values
for the parameters § and p. Since the values of C and M do not play a role
in the shape of the realizations we get, we set C' = 0.1 and M = 2 for each
realization. We used Daubechies’s least asymmetric wavelet of order 8.

@ (d)

5 5
e
>0 1 >0 1
O] 5]
0.01 T .
0
0
-0.01 0 1 0 1
O] . U
0
0
-0.2 -0.1
0 0.5 1 0 0.5 1

Figure 1: Realizations with various values of 6 and p; 19 = 0; n=4096 plotting
points; (a): p=105,6=1. (b): p=2,6=1. (¢): p=1,6=2. (d): p=0.5,
0=2.(e):p=1,6=1. (f): p=2,6=0.5.

Naturally, we note that when p is fixed, the realizations are more regular
when ¢ is great (compare (b) and (f) or (¢) and (e) or (a) and (d)). The
same conclusion is true when ¢ is fixed and p is great (compare (a), (b)
and (e) or (c) and (d)). In fact, as expected, the realizations are smoother
when the product Jdp is great. It is interesting to wonder what happens
when the product dp is fixed, and when we take different values for ¢ and p.
Comparing (d), (e) and (f) or (b) and (c), we notice that when p is small,
the realizations show very high peaks with a regular behavior between
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the peaks. When p is great, the peaks are less high, and between the
peaks the behavior is less homogenous. To sum up, we can say that when
p decreases, the number of negligible coefficients increases, but the few
remaining coefficients may be very large. Rivoirard (2001) drew the same
conclusions by using a different approach that exploits the LFP associated
with the weak Besov balls W*(r,p)(C). Note that these two approaches
complement one another:

e The first one produces typical functions of weak Besov spaces but we
do not control the radius of the weak Besov ball that contains a func-
tion f provided by our prior model. This radius may be very great,
which may pollute our perception of the regularity of the function f.

e The second one controls the radius of the weak Besov balls, but each
LFP is typical of a set of probability measures. For instance, in
section 2.3, we chose M, ,(C) defined by (2.2). To some extent, this
choice was judicious since we obtained the properties (2.4), (2.5) and
(2.6), but we could have made another choice.

4 Thresholding rules

The rest of this paper is devoted to exhibiting a constructive method to
estimate a noisy function f. We shall exploit the results of the previous
sections. But before this, let us precise our statistician model.

4.1 Model and discrete wavelet transform

Let us consider the standard regression problem:

g = f(2) +oe, & LN(0,1), 1<i<n, (4.1)
n
where n = 2V, N € N. We introduce the discrete wavelet transform (de-

noted DWT) of the vector f0 = (f(%), 1<i<n)T:
d:=Wwi°.

The DWT matrix W is orthogonal. Therefore, we can reconstruct f° by
the relation
f=w'd.
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These transformations performed by Mallat’s fast algorithm require only
O(n) operations (see Mallat (1998)). The DWT provides n discrete wavelet
coefficients dj;, —1 < j < N — 1,k € Z;. They are related to the wavelet
coefficients 3j;, of f by the simple relation

djk = Bjk, X /n. (4.2)
Using the DWT, the regression model (4.1) is reduced to the following one:
yjk:djk+02jka _]-S]SN_L ktea

where
Y= (Yjr)jr = Wy

and
Z = (ij)j,k = We.

Since W is orthogonal, z is a vector of independent A(0, 1) variables. Now,
instead of estimating f, we estimate the d;’s.

We suppose in the following that ¢ is known. Nevertheless, it could robustly
be estimated by the median absolute deviation of the (dy_1k)kezy , di-
vided by 0.6745 (see Donoho and Johnstone (1994)).

4.2 Choice of the threshold

In the following, as explained in Introduction, the discrete wavelet co-
efficients are estimated by using thresholding rules associated to level-
dependent thresholds (;);. Following Donoho and Johnstone (1994), many
procedures are based on the hard and soft thresholding rules respectively
defined by:

7T (y, A) = y1 5,
n°T(y, A) = sign(y) (ly| — ), -

This paper considers soft thresholding although hard thresholding is a pos-
sible alternative. However, the soft thresholding rule is smoother (y —
7°T (y,\) is continuous) and it makes it possible to build minimax esti-
mators over weak Besov spaces, as recalled in section 2.3. The choice of
the threshold is then crucial. If ); is too small (respectively too large)
then the estimator tends to overfit (respectively underfit) the data. Let
us describe two non bayesian procedures that have minimax properties:
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Donoho and Johnstone (1994) proposed their VisuShrink procedure with
Aj = A% := o4/2log(n). If X* often underfits the data, it ’guarantees’ a
noise-free reconstruction since

P(max zje] > X') N2,
Unlike VisuShrink that seems too universal, SureShrink provides level-
dependent thresholds. They are obtained by minimizing Stein’s unbiased
estimate of risk for threshold estimates, provided we have the following
sparsity condition: ‘

293 (e — 1) > g2t

kET;

Otherwise, we choose the threshold \; = o+/2log(27).
Under a Bayes model, a natural approach to build estimators could be to
use the mean of the posterior distribution which is the Bayes rule under
the squared error loss. But the posterior mean does not involve in gen-
eral thresholding rules. That is the reason why Abramovich, Sapatinas
and Silverman (1998) focus on the posterior median within the following
framework: They consider a prior model having the following form:

djk ~ ’)’jN(O,TjQ) + (1 — ’)’j)(S().

The hyperparameters 7']-2 and y; are chosen to ensure that the underlying

function f belongs to a given strong Besov space Bsp 4. Then, djk, the
estimator of dj; obtained by using the median of the posterior distribu-
tion, is zero if yj), falls into an interval of the form [—A;; A7]. Vidakovic
(1998) imposes a symmetric prior on dj; and the marginal model for y;j,
conditioned to d;j is the double exponential with the density given by

1 1 1
F(yjeldje) = 5(2p)2 exp (—(2u)2 Yk — djk|) :
He constructs a procedure that mimics the hard thresholding rule. He
estimates djlc by yjk]l nix<l where Njk = P(djk =0 | yjk)/]p(djk #0 | yjk).
As for us, we place the following prior on the discrete wavelet coefficients:
We suppose that the dj;;’s are independent and for all 7 > 0, k € T,
djp ~ F;lj HioP - where Ffj’” 7P is given in section 3.1. The parameters «;

and p; are given by aj = C279° and y; = \/ma,x (M2, —2log(a§?)), where

d, C'and M are positive constants. To estimate d;;, we propose

&5, = 1" (yir: Ny,
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where A; has the following form

3 = { o\/~2log(a?) if j > i, (4.3)
0 otherwise,

as suggested by (2.7). Indeed, since our prior model is very close to the

LFP over weak Besov balls W*(r,p)(C), using (4.3) to define \; where j;

is the first integer j such that a; < 1 seems judicious. Then, the threshold

Aj can be rewritten as follows:

Aj = a\/max (0, —210g(a§7)). (4.4)

To apply this procedure, it is necessary to specify the values of C and §
that define «; and the value of p. If we know the weak Besov space in which
the function to be estimated lies and if an efficient method is provided to
estimate § or p, by using Theorem 3.1, it is easy to estimate the other
parameter. However, we shall ignore this strategy and the choice of the
value of p will be made in section 4.3. For the estimation of (C,d), we set

- 1
N]()\U) = 2—] Z 1 yj5]>A%>
kEIj

where A" is the universal threshold defined by A* = o4/2log(n), and we
set
&y = ARG (A) P (1 — Ny (A%)p) L,
We estimate C' and § by using the linear regression:
(C,0) = argming 5 Y (log(d;) — log(C) + jélog(2))?, (4.5)
JES

where
S={je{l,...,N-1}: & €(0,+00)}.

But (C,§) are well defined only if card(S) > 2. So, when card(S) > 2, we
set

Aj = a\/max (O, —2plog((§’2—j‘§)). (4.6)
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If card(S) < 1, we set

0 if 6 = +o0,
Aj =4 oy/max(0,—2plog(a;)) forjeS, (4.7
AU if &; = 0.

Before going further, let us give a precise justification for this procedure:
We notice that for all A < p;,

a p
]P’(|djk|>>\): DY .
J

But, using extended Glivenko-Cantelli’s Theorem,

1 j—o0
sup | Y Z 1 g5x — P(ldjk| > A) [— 0 ae.
A>0 P

P
Therefore, for all A > 0, (%) is well approximated by

1
N;(2) = 2 Z 1 ;>
k€EZ;

We choose A = A%, and we estimate N;(A*) by Nj(A“). Using the four test
functions ("Blocks’, 'Bumps’, "Heavisine’, and 'Doppler’), Table 1 compares
for j € {0,...,9} the values of N;(A") and the average over 100 replications
of the values of Nj(A“). It shows that our approximation is acceptable.

So,
p
ay \J U
~ N,
(Oéj—l-/\u) ](A )

aj = €279 ~ & = NUR;()» (1 — N;(A")») .

and

This provides a justification for (4.5). The pair of equations (4.6) and (4.7)
are naturally justified by (4.4).
Now, we set X R

djk = 1°" (Yjrs Aj)s
for all § > 0, k € Z;, and d_1g = y_10- Finally, to estimate the signal, we
use the reconstruction formula and an estimator of f° is provided by:

fo=wrd.
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Level Blocks Bumps Heavisine | Doppler
J N; | N; | N;| N; N; | N; | Nj| N;
=0 1 1 1 | 0.76 1 1 1 ]0.99

j=1 2 2 1 1 2 2 2 2

j=2 4 4 3 3 4 4 3 3

=3 6 |6.02| 4 | 4.67 6 | 544 || 7 | 6.62
j=4 9 1950 || 10 | 9.711 0 1029 | 6 | 6.06
j=5 8 [9.07 | 10 | 11.03 | 0 | 0.06 | 7 | 6.61
j=6 6 | 645 16 |16.16 || 0 | 011 | 7 | 7.15
=T 5 | 487 || 16 | 14.74 ) 0 | 0.02 || 5 | 4.17
j=8 4 1334 7 | 7.80 0 {005 0 |0.39
=9 0 (060 2 | 2.79 0 {013 0 |0.15

Table 1: Comparison of the values of N; = N;(A*) and N]- = Nj()\“) for ’Blocks’,
'‘Bumps’, '"Heavisine’ and ’Doppler’; n=1024; rsnr=3 (o = 7/3).

The performances of this bayesian thresholding procedure denoted from
now on as ParetoThresh, are analyzed in the next section. Table 2 gives
the average over 100 replications of the values of the level-dependent thresh-
old j\j associated with the four test functions.

Donoho and Johnstone (1994) noted that for the coarsest levels the coeffi-
cients should not be shrunk to 0. Huang and Cressie (2000) and Abramovich
and Benjamini (1995) showed that the choice of these levels is essential for
VisuShrink and SureShrink. Let us note that ParetoThresh automatically
provides the levels where the coefficients are not shrunk, and this, with a
data adaptive method.

4.3 Examples and discussion

In this section, we apply our ParetoThresh procedure to one-dimensional
signal processing. We use the four test functions: 'Blocks’, 'Bumps’, 'Heav-
isine’ and ’Doppler’. These functions have been chosen by Donoho and
Johnstone (1994) to represent a large variety of inhomogeneous signals.
More precisely, our procedure deals with the 1024 equally spaced values on
[0, 1] of these signals. In the subsequent applications of ParetoThresh, we
take p = 1 for every function, which provides quite good results. However,
we shall discuss below the effect of varying p. We compare our procedure
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Level j | Blocks | Bumps | Heavisine | Doppler
j=0 0 0 0 0
j=1 0 0 0 0
j=2 0 0 0 0
=3 0 0 0 0
j=4 0 0 6.93 0
j=5 0 0 8.07 0
j=6 0.46 0 8.62 1.22
=7 3.53 2.08 8.68 3.61
j=8 5.00 3.45 8.69 4.92
=9 6.13 4.41 8.69 5.95

Table 2: Values of Xj associated with ’Blocks’, 'Bumps’, "Heavisine’ and ’Doppler’;
n=1024; rsnr=3 (o = 7/3); A* = 8.69.

to VisuShrink and SureShrink, described in section 4.2 for which we do not
threshold the five coarsest levels. Daubechies’s least asymmetric wavelet of
order 8 is used for all the methods. The performance of each procedure is
measured by using the mean-squared error associated to an estimator f :

ws() = 23 (7 - s5))

=1

Table 3 shows the average mean-squared error (denoted AMSE) using 100
replications for VisuShrink, SureShrink and ParetoThresh with different
values for the root signal to noise ratio (RSNR).

Figures 2, 3, 4 and 5 show the reconstructions we obtain for these three
methods when the RSNR is equal to 3.

Table 3 shows that ParetoThresh has generally smaller mean-squared er-
ror over the three test functions ’Blocks’, 'Bumps’, and ’Doppler’, than
SureShrink second and VisuShrink third in the rankings. For 'Heavisine’,
we recall that the estimation of the level-dependent thresholds for Pare-
toThresh is based upon a small number of data passing the threshold A*
(see Table 1). Furthermore, to some extent, by its regularity properties,
"Heavisine’ can not be viewed as belonging to the class of ’the worst func-
tions to be estimated’. Consequently, the prior model we adopt does not
seem to be a good model for this signal. If ParetoThresh behaves well under
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RSNR Signal | VisuShrink | SureShrink | ParetoThresh
(p=1)
Blocks 3.3143 1.7850 1.4406
RSNR=3 | Bumps 5.6100 2.0378 1.8082
Heavisine 0.3136 0.3042 0.3136
Doppler 2.1588 1.0911 0.9508
Blocks 1.8624 0.7645 0.6963
RSNR=5 | Bumps 2.7345 0.8523 0.722)
Heavisine 0.1946 0.1816 0.1843
Doppler 1.0358 0.4378 0.4317
Blocks 0.9745 0.3449 0.3207
RSNR=8 | Bumps 1.3139 0.3032 0.3266
Heavisine 0.1312 0.1028 0.0855
Doppler 0.5374 0.2434 0.2329

Table 3: AMSEs for VisuShrink, SureShrink and ParetoThresh (p = 1) with
various test functions and various values of the RSNR.

the AMSE approach, we note that high-frequency artefacts appear, whereas
VisuShrink provides the best method for removing the noise. SureShrink
lies in between. But these artefacts may partially disappear if we take small
values of p as illustrated by Figure 6. This effect may be expected taking
into account the conclusions we have drawn from the realizations of section
3.2. We remark that except for 'Doppler’ for which the AMSE (RSNR=3)
attains its minimum for p = 0.7, this improvement has a cost: the AMSE
increases. When p is greater than 1, the AMSEs are worse and the artefacts
are more numerous. Finally, let us mention that a possible alternative is
to use the hard thresholding rule with (5\]) j- However, the resulting con-
structions are less regular. Another alternative is to use a Bayes rule. Let
us note that it is easy to implement the hard and soft thresholding rules.
This is not necessarily the case for a Bayes rule since it results from the
minimization of the Bayes risk, even if under a good choice of the loss func-
tion we can exhibit the explicit form of the Bayes rule (for instance, the
posterior mean, or the posterior median ). We can add that neither the
use of the hard thresholding rule with (S\j)j, nor the use of a Bayes rule
(the posterior mean or the posterior median) provides better results as far
as the AMSE is concerned.
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Figure 2: Original test function and various reconstructions using ParetoThresh,
SureShrink and VisuShrink; (a): ’'Blocks’ (b): ParetoThresh (p = 1) (c):
SureShrink (d): VisuShrink

5 Appendix : Proof of Theorem 3.1

Proof of necessity: Let us assume that f € W*(r,p) a.e. For all A €]0, po|,
we consider,

n

1 o
VREN, Ua) == |30 3 P (1,0~ (] > V)|,
" 1j=0 kez;

where

=33 22,

7=0 kZEIj
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Figure 3: Original test function and various reconstructions using ParetoThresh,
SureShrink and VisuShrink; (a): ’Bumps’ (b): ParetoThresh (p = 1) (c):
SureShrink (d): VisuShrink

Since A < po,
n

Un(X) = \/lc_n Z Z 2/(5-1) (]l X5 <A —Ff()\)) ;

7=0 kEIj

where X;-‘k = a; X, — aj, F;‘ is its continuous distribution function and
X ~ P(p). As in Shorack and Wellner (1986) (p 117), we set

F,= cizn: Z 2]'(7‘—2)}7']?*,

™ j=0 keZ;



Bayesian thresholding with priors based on Pareto distributions 25

@ (b)

10 10
5 5
0 0
5 5
-10 -10
15 0.5 1 1 0.5 1
(©) (d)
10 10
5 5
0 0
5 5
-10 -10
15 0.5 1 155 0.5 1

Figure 4: Original test function and various reconstructions using ParetoThresh,
SureShrink and VisuShrink; (a): ’Heavisine’ (b): ParetoThresh (p = 1) (c):
SureShrink (d): VisuShrink

and we consider the weighted empirical process of the T};’s,

1 < o
Zn(\) = SN 296G (14,00 - G(),
\/C_"jzo k€eZ; .

where G; = F} o F, " is the distribution function of Tjk. So Uy,(X) can be

written _
Un(N) = | Za(Fr(N)] -

Now, we suppose that

r—1-—26p <0, (5.1)
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Figure 5: Original test function and various reconstructions using ParetoThresh,
SureShrink and VisuShrink; (a): ’Doppler’ (b): ParetoThresh (p = 1) (c):
SureShrink (d): VisuShrink

and we consider ¢’ a real number smaller than é such that r — 1 —2§"p < 0.
We consider the sequence (A, )nen defined by

@)_

VneN, A, =min(C2 ", :

We have V n € N,

P(AyalUn(A) > 1) = P |zn<Fn<An)>|zAnpcn5)

(
P (un() > a7

IA
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Figure 6: Various reconstructions of ’Blocks’ and ’'Doppler’ using ParetoThresh
with different values of p; RSNR=3; (a): p = 0.5, AMSE=1.6340. (b): p = 0.7,
AMSE=1.5420. (c): p = 2, AMSE=2.4473. (d): p = 0.5, AMSE=0.9646. (e):
p=0.7, AMSE=0.9186. (f): p = 2, AMSE=1.9665.

where w,, is the modulus of continuity of Z,,. So, using Shorack and Wellner
(1986) (p 119),

—4
_1
P(APy/chUn(Ay) > 1) < K ()\n”cn 2) ,
where K is a universal constant. Since r — 1 —26'p < 0,

ZP(Ag\/C_nUn(An) > 1) < oo,

and
sup | AL /e, Up(An)| < o0 ae.,
n
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which means that

sup AP Z Z 21(5 (]l Bkl >xn — P(IBjk| > )\n)) < 00 a.e.

J=0k€EZ;

But, using the definition of W*(r, p),

n
i(r_—1 -1)
sup A7 Z Z 23711 Bigl>an S Sup N Z Z PG 1Bk >A
mj=0keZ; A>0 im0 ke
< 00 a.e.

Therefore,

Sup)\pzzy P(|Bjk| > An) <

J=0keZ;

, P
= sup)\pZQU( i—a) < 00
An + 0y

n
= sup Z 27%a§(1+aj)\;1)_p<oo.

=1+

But for all j > "T‘SI, oA, 1 <1. Consequently, the last inequality implies
that

n
sup Z 27 %ozg < 00,
=+
which means that § < dp.
Using the embedding W*(r,p) C W*(r',p), when 7’ < r, we can omit the
hypothesis (5.1) and assert that if f is in W*(r, p) almost everywhere then
5 < dp.
O

Proof of sufficiency: Here K denotes a constant, eventually depending on
r, p, §, C and that may be different at each line. We suppose that § < dp
and we consider for all A > 0,

o
N=ND D Y6 g

7=0 kEIj
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We are going to prove that

supY) < oo a.e. (5.2)
A>0

First, we note that using the three-series theorem, the condition § < ép

implies Y) < oo a.e. for all A > 0.

Let us begin by studying Y, when A tends to 0. For all n € N, we set
Y™ =Y,,, where \,, = 27". We consider jy(n) the greatest integer j such
that o > Ag.

jo—1
< )\I’Z2J2+2232a
J=Jjo
< K,\ng
< KA

Therefore, Y "E(Y™) < 0o, which implies P(Y™ > 1 i.0.) =0 and

n

supY” < oo a.e.
n

Now, let 0 < A < 1 a fixed real number. There exists an integer n such
that Adp41 <A < A

o= A”ZZW R AT

Jj=0 k€Z;
00
< Ag Z Z 2](2 ] 1Bk >An+1
=0 ke,
- >\n—|—1
< 2PsupY”.
n

Therefore

sup Y, < oo a.e.
0<A<1
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Finally, we study Y\ when A is large. Let n be a fixed integer.

o
E(Y,) =nP Y 272 P(|Bjx] > n).
=0
But »
L) if n < pj,

P(|Bjk| > n) = { <"+"f‘

0 otherwise.

If m, = [M]ﬁ-l,fornZM,

2pdlog(2)
o0 Ry p
— § j % J
E(¥a) = ¥ . 2 (n+aj)

As previously, Z E(Y,) < oo, and
n

supY, < oo a.e.
n

Now, let A > 1 a fixed real number. There exists n € N* such that
n<A<n+1,and

00
Vo= M) P00,
j=0 kEIj
w .
S (n+ 1)pz Z 21(571)] ‘ﬂjkbn
7=0 ]CEIj
1 p
- (2
< 2PsupY,.
n

Therefore,

supY, < oo a.e.
A>1

and (5.2) is true. Theorem 3.1 is proved.
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