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Sengupta et al. [Phys. Rev. E 61, 1072 (2000)] presented an elegant and simple finite-size scaling method
for the calculation of elastic constants and their corresponding correlation lengths, which is suitable for many
finite discrete systems considered through simulations or experiments. We take into account a mathematical
finite-size effect that was neglected by the authors in order to propose a more accurate method. Consequences

on the authors’ results are also discussed.
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I. INTRODUCTION

Considering nonlocal elasticity effects is a central point in
the study of disordered systems such as granular matter or
foams, where small scales are easily observable, as pointed
out in numerous recent papers [ 1-4]. But at small scale, even
a well-ordered solid cannot be simply described in the stan-
dard continuous framework, where strain is simply propor-
tional to stress at each point. Nonlocal effects must also be
taken into account, that are due in particular to nonlocal in-
teractions between the basic components of the solid, while
derivation of standard continuous elasticity laws requires the
hypothesis of surface contact forces between elementary vol-
umes. Coherently, the associated length scale £ is generally
of the same order as the distance between these components
[5-7]. However, quantitative methods allowing the determi-
nation of the correlation length & are seldom proposed in the
literature.

In their paper entitled “Elastic Constants from micro-
scopic fluctuations,” Sengupta et al. presented a versatile
method to determine the elastic constants of a solid in the
thermodynamic limit from the measurements of the fluctua-
tions of the local strain tensor in a solid of finite size, when
due to finiteness the strain can only be measured at small
scale, where £ is not negligible [8]. More precisely, they
consider the fluctuations of the strain averaged over sub-
boxes of varying sizes and compare it to a theoretical func-
tion in order to get the elastic constants and their associated
correlation lengths. To calculate this function, they introduce
a strain gradient in the elastic free energy in order to take
into account non-local effects. In their derivation, they ne-
glected some mathematical finite-size effects that slightly
modify the determination of the elastic constants but greatly
modify the estimation of correlation lengths.

II. MODIFICATION OF THE THEORETICAL
CORRELATION FUNCTION

In chapter II, the authors consider a very general two-
dimensional (2D) system of size L X L described by a scalar
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order parameter ¢(r) and calculate the fluctuations of its
averages over sub-blocks of size L, X L,. The function that is
found is used to fit data obtained from simulations in order to
find the susceptibility and the correlation length associated to
this parameter. In case this parameter ¢ is a component of
the strain tensor, the susceptibility is a function of the elastic
constants.

For simplicity, we consider in the following B=(kzT)™!
=1. For an infinite system, the correlation function G(r)
=(¢(r)p(0)) is given by its Fourier transform (Eq. 2 of Ref.

[8D).

G(g)=x (1)

1
1+(q8*

where y is the susceptibility and £ the correlation length.
This implies
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which corresponds exactly to Eq. 6 of Ref. [8].
The latter integral can be calculated for instance by Math-
ematica software, and it is found that

1
G(r) = 2—x52Ko(r/§), (4)
a

where K is a Bessel function, which is Eq. 8 of Ref. [8] even
if a factor 4 is missing because of a typo. Note that it is
considered here that the correlation function G(r,r’)
=(p(r)p(r'))=G(r-r’) is invariant by translation, which is
true for simulations with periodic conditions, or far enough
from walls in an experiment.

An error is made in Eq. 4 of Ref. [8] when switching from
double to single integration using this invariance by transla-
tion. The fluctuations of the parameter ¢ averaged over a

sub-block of size L, X L, (cZ:L;2 I qub(r)dr) are considered,

©2010 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.81.013101

COMMENTS

L% = L;zf J G(r —r')drdr’. (5)
Ly <Ly

Then, probably by considering the new variable r=r-r’
the authors write that the latter expression is equal to
J1,G(r)dr. 1t is obviously approximate: when r and r’ are
varying in their 2D boxes of size L,, the variable r—r’
clearly takes much more often small values than large ones
within the box of size 2L,. More precisely, we can consider
each dimension separately, and in one dimension we would
have

Ly Ly Ly X’
f f G(x — x")dxdx’ :f dx'f G(x—x")dx
0o Jo 0 0

L, L,
+f dx’f G(x—x")dx.
0 x'

(6)

In the first integral we consider u=x'—x and in the second
one u=x—x'. Using the parity of G, we get

L, (L
f f G(x—x")dxdx'
o Jo
Ly, x' Ly, Lb—x'
= f dx’f G(u)du + f dx’f G(u)du
0 0 0 0
L Ly L

b b Ly=u
=f G(u)duf dx’ +f G(u)duf dx’
0 u 0 0

Ly
= f 2(Ly — u)G(u)du. (7)

0
As expected, more weight is given to the low u values.

Finally, back to our 2D problem, we get for an infinite
system, instead of Eq. 4 of Ref. [8],

L, (L
L") =4 f f wr, (DG (r)dr, (8)
0 0

where w;, (r)=(1 —Lib)(l - le).

Similarly, the constant A; that is introduced by the au-
thors in their Eq. (7) in order to take into account the finite-
ness of the system becomes

4
A= EL w(r)G(r)dr 9)

This finally modifies the central result of the authors,
which is given in Ref. [8] by Eq. (11),

Li<<$2>=x[w(x5§‘) —xzw@ﬂ = filéxn).  (10)

L,
where x=7" and
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FIG. 1. Theoretical curves for xf;(&,x,x) as a function of
x=L,/L for different L. Symbols: using #senoupta (Eq. (12)) with
x=1 and ¢=1. Full lines: fits with the proposed ¢ (Eq. (11)).

Wa)= %azf wy(2)Ko(az)dz, (11)

1

to be compared with the function proposed by the authors in
their equation (10),

2
¢Sengupta(a) = ;azf Ko(az)dz. (12)
1

The consequences of these corrections by the w;(z) term
need to be discussed. In the case of elastic systems, note that
the authors have introduced a quadratic correction to Eq.
(10) (see Eq. 20 in Ref. [8]), but they do not give any indi-
cation about the values of the associated free parameter C, so
we are not able to discuss it. Without this term, we have
f1(€,x,1)=0. In most of their curves, this is rather well veri-
fied, so we can deduce that this correction is small and will
not greatly modify the discrepancies presented in the next
paragraphs.

III. CONSEQUENCES ON THE ESTIMATION OF x AND &

We will now check that the modified function ¢ still al-
lows description of the data presented in Ref. [8] and then
discuss how it influences the determination of the unknown
constants. Since we do not know these data, but since they
are well fitted by the function proposed by Sengupta et al., it
is equivalent to fit the curves obtained with the function
Wsengupta USING our modified function ¢, and it should give a
good estimate of the errors made with their method. To do
this, we consider systems similar to the one considered in
Ref. [8]: Sengupta er al. ran simulations with up to 12 000
particles so that L=+12 000 aq=110 a,, where q, is the
lattice spacing. In the conclusion they indicate that =2
-3 ayp, so L/ ¢=55. Finally, taking é=1 as our length scale,
we consider the curves xf;(€, x,x) as a function of x=L,/L
(this choice of axes was made by the authors in most of their
figures) using the function ¥seneupa» With x=1 and 3=L
=55, and make a fit of them using our function . Results
are shown on Fig. 1.

The curve of their fitting function is well fitted by ours, so
we can deduce our new function would be able to describe
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FIG. 2. Values for y and & found with our function ¢, to be
compared with the values y=1 and é=1 that would be found with
function senguptas for different system sizes L.

the data considered by the authors. However, our procedure
does not yield the same parameters, as shown on Fig. 2.

It appears that in Ref. [8], x was systematically underes-
timated, therefore the elastic constants overestimated, since y
scales as their inverse. However, this underestimation of y
drops below 10% for a large enough (but still rather small)
system (L=15). This is probably why the authors have not
noticed their errors, since in addition their fits were good and
yield good agreement with values calculated with other
methods. In other papers based on Sengupta et al.’s method
[9-13], the results will even not be modified at all, since they
focus only on elastic constants and use the property
lim,_, xf,(¢, x,x)=x, which does not require any knowl-
edge on ¢ and remains true after our modifications
[lim,_o (@) =lim,_ o Psenoupa(@)=1]. However, in some
experiments or simulations, the number of particles can be
rather low, thus L small, and in such case the latter limit less
well defined and our correction should allow to determine
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much more precisely the elastic constants of the infinite
solid.

The accuracy on the determination of the correlation
length ¢ is greatly enhanced by our corrections: using
Wsenguptas OVETEStimation is systematic, already of order 100%
as soon as L=35, and one order of magnitude is lost when
L=50. In particular, in Fig. 4 of Ref. [8], we can expect that
these overestimations for ¢ would increase the discrepancy
with theory. For the elastic systems considered by the au-
thors, the correlation lengths would be finally lower than one
lattice parameter (since they found £=2-3 q). This is in
qualitative agreement with the results of Maranganti and
Sharma, who found that the length scale at which classical
elasticity breaks down in simple solids is lower than the
lattice spacing [6]. These errors in the determination of &
were probably not noticed by the authors because, unlike
elastic constants, values for & were not (and are still not) well
documented is the literature. Moreover, it was not the main
point of this paper. But it was important to propose a correc-
tion for ¢, since their method is also a simple method to
determine &, with direct calculation in real space (no Fourier
transform), even though calculation of the strain tensor is not
that simple in such a discrete system, as noticed by the au-
thors in their conclusion.

Finally, we have modified the method proposed by Sen-
gupta et al. by taking into account mathematical finite-size
effects that cannot be neglected. We found that this modifi-
cation is necessary to determine accurately elastic constants
in small systems and corresponding correlation lengths for
systems of any size. We believe that their versatile method
deserves to be more often tested on several ordered systems,
but also on disordered ones, where discussions on nonlocal
effects are central. In that latter case, a different free energy
might be necessary to take into account the fact that the
nonzero correlation length comes from inhomogeneities but
not necessarily from nonzero interaction distance, as in
granular systems.
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