
HAL Id: hal-00634205
https://hal.science/hal-00634205v1

Preprint submitted on 20 Oct 2011 (v1), last revised 30 Sep 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Macroscopic properties and dynamical large deviations
of the boundary driven Kawasaki process with long

range interaction
Mustapha Mourragui, Enza Orlandi

To cite this version:
Mustapha Mourragui, Enza Orlandi. Macroscopic properties and dynamical large deviations of the
boundary driven Kawasaki process with long range interaction. 2011. �hal-00634205v1�

https://hal.science/hal-00634205v1
https://hal.archives-ouvertes.fr


MACROSCOPIC PROPERTIES AND DYNAMICAL LARGE

DEVIATIONS OF THE BOUNDARY DRIVEN KAWASAKI

PROCESS WITH LONG RANGE INTERACTION

MUSTAPHA MOURRAGUI AND ENZA ORLANDI

Abstract. We consider a boundary driven exclusion process associated to
particles evolving under Kawasaki (conservative) dynamics and long range in-
teraction in a regime in which at equilibrium phase separation might occur. We
show that the empirical density under the diffusive scaling solves a non linear
integro differential evolution equation with Dirichlet boundary conditions and
we prove the associated dynamical large deviations principle. Further, tuning
suitable the intensity of the interaction, in the uniqueness phase regime, we
show that under the stationary measure the empirical density solves a non
local, stationary, transport equation.

1. Introduction

In the last years there has been several papers devoted in understanding macro-
scopic properties of non equilibrium and non reversible systems. Typical examples
are systems in contact with two thermostats at different temperature or with two
reservoirs at different densities. A mathematical model of open systems is provided
by stochastic models of interacting particles systems performing a local reversible
dynamics (for example a reversible hopping dynamics) in a domain and some ex-
ternal mechanism of creation and annihilation of particles on the boundary of the
domain, modeling the reservoirs, which makes the full process non reversible. The
stationary non equilibrium states are characterized by a flow of mass trough the
system and long range correlations are present. We refer to [3] and [6] for two re-
views on this topic. We study a model with such features but in a regime in which
at equilibrium phase separation might occur.

We consider particles models which are dynamic version of lattices gas with long-
range Kac potentials, i.e. the interaction energy between two particles, say one at
x and the other at y (x and y are both in Z

d), is given by JN (x, y) = N−dJ( x
N , y

N )
where J is a smooth symmetric probability kernel with compact support and N is
a positive integer which is sent to ∞. The equilibrium states for these models have
been investigated thoroughly [13], [19] and [23], and have provided great mathemat-
ical insight into the static aspects of phase transition phenomena. The dynamical
version of these lattice gases, in a periodic setting, i.e. with no reservoirs, has been
analyzed in [9], [10], [11] and [1]. In this paper we start studying the dynamics of
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these systems in a non reversible setting, i.e with reservoirs, to understand their
qualitative behavior in the range of the parameter when at equilibrium there is
phase segregation. Let us describe informally the dynamics. We consider a one
dimensional lattice gas with particles reservoirs at the endpoints. The restriction
on the dimension is done only for simplicity. In no argument this is essential. Given
an integer N > 1 and boundary densities 0 < ρ− ≤ ρ+ < 1 at any given time each
site of the interval {−N, . . .N} is either occupied by one particle either empty. The
interaction energy among particles is given by a modified version of the Kac po-
tential JN and it is tuned by a positive parameter β. The modification of the Kac
potential, see (2.2), takes into account that the particles are confined in a bounded
domain. We do not make any assumption on its sign. In the bulk each particle
jumps at random times to the right or to the left nearest neighborhood, if the cho-
sen site is empty, at a rate which depends on the particle configuration trough the
Kac potential, weighted by a parameter β ≥ 0. When β = 0 we have the simple
exclusion process. The jump times for the bulk dynamics are chosen according to
a probability distribution which is reversible with respect to the equilibrium Gibbs
measure associated to the chosen Kac potential, parametrized by β and the chemi-
cal potential. At the boundary sites ±N particles are created and removed for the
local density to be ρ±: at rate ρ± a particles is created at ±N if the site is empty
and at rate 1− ρ± the particle at ±N is removed if the site is occupied.

The dynamics described above defines an irreducible, i.e. there is a strictly
positive probability to go from any state to any other, Markov jump process on
a finite state space. By the general theory on Markov process [18], the invariant
measure µstat

N is unique and encodes the long time behavior of the system. Let

P
β,N
µstat
N

be the stationary process i.e. the distribution on the path space induced

by the Markov process with initial condition distributed according to the invariant

measure µstat
N . Since µstat

N is invariant, the measure Pβ,N
µstat
N

is invariant with respect

to time shifts. The measure P
β,N
µstat
N

is invariant under time reversal if and only if

the measure µstat
N is reversible for the process, i.e if the generator of the process

satisfies the detailed balance condition with respect to µstat
N . In the case at hand

µstat
N is stationary and reversible only if β = 0 and ρ+ = ρ− = ρ. In such case

the invariant, reversible measure is the Bernoulli product measure with marginals
ρ. When β > 0 and /or ρ+ 6= ρ− then µstat

N is not reversible. In such case the
corresponding process is denoted non reversible. We consider this last case. One
could choose a different dynamics at the boundary in order to have as invariant
measure, when ρ+ = ρ− = ρ the Gibbs measure with parameter β associated to the
Kac type interaction and with chemical potential conjugate to ρ. But this choice
would only add more technicality in the proofs, without shading any insights.

We scale the lattice space by 1
N and the time by N2 (this is so called diffusive

limit) and study the behavior, as N ↑ ∞, of the empirical density of the particles
evolving according to the dynamics described above. We apply the entropy method,
see [12], adapted to deal with the boundary dynamics, to derive the law of large
numbers for the empirical density. We obtain a (deterministic) evolution law for
the macroscopic density ρ. It is the solution of a boundary value problem for a
quasilinear integro differential parabolic equation, see (2.10). In addition to this
we show, when β is small enough, that the empirical density field obeys a law of
large numbers with respect to the stationary measures (hydrostatic). The result is
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obtained characterizing the support of any limit points of Pβ,N
µstat
N

. This intermediate

result holds for any β ≥ 0. Then we exploit that for β small enough, β < β0 where
β0 = β0(Λ, J), the stationary solution of the boundary problem (2.10) is unique and
is a global attractor for the macroscopic evolution. We need to show that the rate of
decay toward the stationary solution is uniform with respect to any initial datum.
Namely the quasilinear non local parabolic equation does not satisfy a comparison
principle, which is the main tool used in previous papers, see for example [21] and
[8], to conclude the argument. For value larger than β0 we are not able to show
the uniqueness of the stationary solution of the boundary value problem (2.10).
We stress that β0 < βc where βc is the value above which at equilibrium there is
phase segregation; with our choice of parameters and variables βc = 1

4 , see page
1712 of [10]. We then prove the associated dynamical large deviation principle,
i.e we compute the asymptotic probabilities of observing a large deviations in the
dynamics of the empirical density. The large deviations functional is not convex as
function of the density, it is lower semicontinuous and has compact level sets. Since
the large deviations functional is not convex and the underlying dynamics does not
satisfy any comparison principle care need to be taken for proving the lower bound.
Namely, the basic strategy in the proof of the lower bound consists in obtaining
this bound for smooth paths and then applying a density argument. Given a path
ρ with a finite rate functional which we denote by I(ρ) one constructs a sequences
of smooth paths ρn so that ρn → ρ in a suitable topology and I(ρn) → I(ρ) . When
the large deviations functional is convex, this argument is easily implemented. In
our case, because of the lack of convexity we modify the definition of the rate
functional declaring it infinite if a suitable energy estimate does not hold. In this
way the modified rate functional when finite provides the necessary compactness
to close the argument. This argument has been developed by [22] and we adapted
to our model. The modification of the rate functional helps in showing the lower
bound but makes more difficult the upper bound. One needs to show that the
energy estimate holds with probability super exponentially close to one. A similar
arguments was applied in [21] and [4].

In a recent paper, De Masi and alias, [5], constructed, in the phase transition
regime, a stationary solution of a boundary value problem equivalent to (2.10) in
which the density ρ is replaced by the magnetization m = 2ρ − 1. They did not
study the derivation of the boundary value problem from the particles system but
they investigated the qualitative behavior of a constructed stationary solution of
(2.10) as the diameter of the domain goes to infinity.

The paper is organized as following. In Section 2 we state the precise feature
of the model, notations and results. In Section 3 we collect some basic estimates
needed along the paper. In Section 4 we show the hydrodynamic and hydrostatic
limits. Section 5 is splitted in 5 subsections and deals with dynamical large de-
viations. We prove in Section 6 the weak uniqueness of the solution of the PDE
equation and we show that for β small enough the stationary solution is unique, it
is a global attractor in L2 and we show that the rate of the decay is uniform on the
initial datum.

2. Notation and Results

Fix an integer N ≥ 1. Call ΛN = {−N, . . . , N} and ΓN = {−N,+N} the
boundary points. The sites of ΛN are denoted by x, y and z. The configuration
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space is SN ≡ {0, 1}ΛN which we equip with the product topology. Elements of SN ,
called configurations, are denoted η so that η(x) ∈ {0, 1} stands for the number of
particles at site x of the configuration η.

We denote Λ = (−1, 1) (Λ̄ = [−1, 1]) the macroscopic open (closed) interval,
Γ = {−1, 1} its boundary and u ∈ [−1, 1] the macroscopic space coordinate.

2.1. The interaction. To define the interaction between particles we introduce
a smooth, symmetric, translational invariant probability kernel of range 1, i.e
J(u, v) = J(0, v − u) for u and v in R,

∫
J(0, u)du = 1. When both u and v

are in Λ the interaction is given by J(u, v). When u ∈ Λ, but the distance from
the boundary of Λ is less than the range of the interaction we need to make a
rule. We impose a reflection rule: i.e u ∈ Λ interacts with v when v ∈ Λ and
when v /∈ Λ interacts with one of the reflected points of v, where reflections are
the ones with respect to the left and right boundary of Λ. For this reason we de-
note it “Neuman” interaction. More precisely we introduce the reflection operator
RΛ : [−2, 2] → [−1, 1] defined as following

RΛ(v) =





v when v ∈ [−1, 1],

2− v when v > 1,

− 2− v, when v < −1,

(2.1)

where 2−v is the image of v under reflections on the right boundary {1} and −2−v
is the image of v under reflections on the left boundary {−1}. We then define for
u and v in Λ

Jneum(u, v) :=
∑

v′∈R−1
Λ (v)

J(u, v′). (2.2)

Explicitly we have Jneum(u, v) = J(u, v) + J(u, 2 − v) + J(u,−2 − v). By the
assumption on J , Jneum(u, v) = Jneum(v, u) and

∫
Jneum(u, v)dv = 1 for all u ∈ Λ.

The pair interaction between x and y in ΛN is given by

JN (x, y) = N−1Jneum(
x

N
,
y

N
).

The total interaction energy among particles is given by the following Hamiltonian

HN (η) = −1

2

∑

x,y∈ΛN

JN (x, y)η(x)η(y) . (2.3)

The choice to define by boundary reflections the interaction (2.2) has the advantage
to keep Jneum a symmetric probability kernel. This choice has been already done
in [5].

2.2. The dynamics. We denote by ηx,y the configuration obtained from η by
interchanging the values at x and y:

(ηx,y)(z) :=





η(y) if z = x

η(x) if z = y

η(z) if z 6= x, y,

and by σxη the configuration obtained from η by flipping the occupation number
at site x:

(σxη)(z) :=

{
1− η(x) if z = x

η(z) if z 6= x.
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We denote for f : SN → R, x, y ∈ ΛN and η ∈ SN ,

(∇x,yf)(η) = f(ηx,y)− f(η).

The microscopic dynamics is specified by a continuous time Markov chain on the
state space SN with infinitesimal generator given by

LN = Lβ,N + L−,N + L+,N , (2.4)

where for function f : SN → R

(Lβ,Nf) (η) =
∑

x∈ΛN,y∈ΛN
|x−y|=1

Cβ
N (x, y; η) [(∇x,yf)(η)] , (2.5)

with rate of exchange occupancies Cβ
N given by

Cβ
N (x, y; η) = exp

{
−β

2
[HN (ηx,y)−HN (η)]

}
, (2.6)

where HN is the Hamiltonian (2.3);

(L−,Nf)(η) = c−
(
η(−N)

)[
f(σ−Nη)− f(η)

]
,

(L+,Nf)(η) = c+
(
η(N)

)[
f(σNη)− f(η)

]
,

where for any ρ± ∈ (0, 1), c± : {0, 1} → R are given by

c±(ζ) := ρ±(1− ζ) + (1− ρ±)ζ .

The generator Lβ,N describes the bulk dynamics which preserves the total number
of particles whereas L±,N , which is a generator of a birth and death process acting
on ΓN , models the particles reservoir at the boundary of ΛN . The rate of the bulk

dynamics {Cβ
N (x, y; η), x ∈ ΛN , y ∈ ΛN}, see (2.6), satisfies the detailed bal-

ance with respect to the Gibbs measure associated to (2.3) with chemical potential
λ ∈ R

µβ,λ
N (η) =

1

Zβ,λ
N

exp{−βHN (η) + λ
∑

x∈ΛN

η(x)} , η ∈ SN , (2.7)

where Zβ,λ
N is the normalization constant. For the bulk rates this means

Cβ
N (x, y; η) = e−β[HN (ηx,y)−HN (η)]Cβ

N (y, x; ηx,y).

For the generator it means that Lβ,N is a self-adjoint w.r.t. the Gibbs measure
(2.7), for any λ ∈ R. The corresponding process is denoted reversible.

For a positive function ρ : ΛN → (0, 1) we denote by νρN (·) the Bernoulli measure
with marginals

ν
ρ(·)
N (η(x) = 1) = ρ(x/N) = 1− νρN (η(x) = 0) , x ∈ ΛN , η ∈ SN . (2.8)

The boundary process L+,N ( L−,N) is invariant with respect to the Bernoulli
measure ν

ρ+

N ( νρ−).
The Markov process associated to the generator LN , see (2.4), is irreducible and

we denote by µstat
N = µstat

N (β, ρ−, ρ+) the unique invariant measure. In the notation
we stress only the dependence on the parameters relevant to us. This means that
for any f : SN → R ∫

S

LNf(η)dµstat
N (η) = 0,

but the generator LN is not self-adjoint with respect to µstat
N . The corresponding

process is called non reversible. The only case where the process is reversible is
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when ρ− = ρ+ and β = 0. In such case the product measure associated to ρ− = ρ+
is invariant and the process with generator LN is also reversible.

We denote by M the space of positive densities bounded by 1:

M :=
{
ρ ∈ L∞

(
[−1, 1], du

)
: 0 ≤ ρ ≤ 1

}
,

where du tands for the integration with respect to the Lebesgue measure on [−1, 1].
We equip M with the topology induced by the weak convergence of measures and
denote by 〈·, ·〉 the duality mapping. A sequence {ρn} ⊂ M converges to ρ in M if
and only if

〈ρn, G〉 =
∫

Λ

ρn(u)G(u)du → 〈ρ,G〉

for any continuous function G : [−1, 1] → R. Note thatM is a compact Polish space
that we consider endowed with the corresponding Borel σ-algebra. The empirical
density of the configuration η ∈ SN is defined as πN (η) where the map πN : SN →
M is given by

πN (η) (u) :=

N−1∑

x=−N+1

η(x)1
{[

x
N − 1

2N , x
N + 1

2N

)}
(u) ,

in which 1{A} stands for the indicator function of the set A. Let {ηN} be a sequence
of configurations with ηN ∈ SN . If the sequence {πN (ηN )} ⊂ M converges to ρ in
M as N → ∞, we say that {ηN} is associated to the macroscopic density profile
ρ ∈ M.

2.3. Functional Spaces. Fix a positive time T , let D([0, T ],M) and respec-
tively D([0, T ],SN) be the set of right continuous with left limits trajectories
π : [0, T ] → M, resp. (ηt)t∈[0,T ] : [0, T ] → SN , endowed with the Skorohod
topology and equipped with its Borel σ− algebra. Take µN on SN and denote by
(ηt)t∈[0,T ] the Markov process with generator N2LN starting, at time t = 0, by
η0 distributed according to µN . Notice that the generator of the process has been
speeded up by N2. This corresponds to the diffusive scaling. Denote by P

β,N
µN

the
probability measure on the path space D([0, T ],SN) corresponding to the Markov
process (ηt)t∈[0,T ] and by E

β,N
µN

the expectation with respect to P
β,N
µN

. We denote by

πN the map from D([0, T ],SN) to D([0, T ],M) defined by πN (η·)t = πN (ηt) and
by Qβ,N

µN
= P

β,N
µN

◦ (πN )−1 the law of the process
(
πN (ηt)

)
t≥0

. For m ∈ L∞([−1, 1])

and u ∈ Λ we denote

(Jneum ⋆ m)(u) =

∫

Λ

Jneum(u, v)m(v)dv.

We need some more notations. For integers n and m we denote by Cn,m([0, T ] ×
[−1, 1]) the space of functions G = Gt(u) : [0, T ]× [−1, 1] → R with n derivatives
in time and m derivatives in space which are continuous up to the boundary. We
denote by Cn,m

0 ([0, T ] × [−1, 1]) the subset of Cn,m([0, T ] × [−1, 1]) of functions
vanishing at the boundary of [−1, 1], i.e. Gt(−1) = Gt(1) = 0 for t ∈ [0, T ]. We
denote by Cn,m

c ([0, T ] × (−1, 1)) the subset of Cn,m([0, T ] × (−1, 1)) of functions
with compact support in [0, T ]× (−1, 1).
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2.4. Results. We denote χ(ρ) = ρ(1− ρ) and σ(ρ) := 2χ(ρ). We have that βχ(ρ)
and βσ(ρ) are respectively the compressibility and the mobility of the system.
Further we denote by ∇f , resp. ∆f , the gradient, resp. the laplacian with respect
to u of a function f . For G ∈ C1,2

0 ([0, T ]× [−1, 1]), ρ ∈ D([0, T ],M) denote

ℓβG(ρ, ρ0) :=
〈
ρT , GT

〉
− 〈ρ0, G0〉 −

∫ T

0

dt
〈
ρt, ∂tGt

〉

−
∫ T

0

dt
〈
ρt,∆Gt

〉
+ ρ+

∫ T

0

dt∇Gt(1)− ρ−

∫ T

0

dt∇Gt(−1)

− β

2

∫ T

0

〈σ(ρt), (∇Gt) · ∇(Jneum ⋆ ρt)〉dt.

(2.9)

Denote by A[0,T ] ⊂ D
(
[0, T ];M

)
the set

A[0,T ] =
{
ρ ∈ L2

(
[0, T ], H1(Λ)

)
: ∀G ∈ C1,2

0 ([0, T ]× Λ) , ℓβG(ρ, ρ0) = 0
}
.

Theorem 2.1. For any sequence of initial probability measures (µN )N≥1, the se-

quence of probability measures (Qβ,N
µN

)N≥1 is weakly relatively compact and all its

converging subsequences converge to some limit Qβ,∗ that is concentrated on the ab-

solutely continuous measures whose density ρ ∈ A[0,T ]. Moreover, if for any δ > 0
and for any continuous function G : [−1, 1] → R

lim
N→0

µN
{∣∣∣ 1

N

∑

x∈ΛN

η(x)G(x/N) −
∫

Λ

γ(u)G(u)du
∣∣∣ ≥ δ

}
= 0 ,

for an initial profile γ : Λ → (0, 1), then the sequence of probability measures

(Qβ,N
µN

)N≥1 converges to the Dirac measure concentrated on the unique weak solution

of the following boundary value problem on (t, u) ∈ (0, T )× Λ




∂tρt(u) + β∇ ·
{
ρt(u)(1− ρt(u))∇(Jneum ⋆ ρt)(u)

}
= ∆ρt(u)

ρt(∓1) = ρ∓ for 0 ≤ t ≤ T ,

ρ0(u) = γ(u) .

(2.10)

Remark 2.2. By weak solution of the boundary value problem (2.10) we mean

ℓβG(ρ, γ) = 0 for G ∈ C1,2
0 ([0, T ]× [−1, 1]).

Theorem 2.3. There exists β0 depending on Λ and Jneum so that, for any β < β0,

for any G ∈ C2
0 ([−1, 1]), for any δ > 0,

lim
N→∞

µstat
N

[∣∣〈πN , G〉 − 〈ρ̄, G〉
∣∣ ≥ δ

]
= 0 ,

where ρ̄ is the unique weak solution of the following boundary value problem


∆ρ(u)− β∇ ·

{
ρ(u)(1− ρ(u))∇(Jneum ⋆ ρ)(u)

}
= 0, u ∈ Λ,

ρ(∓1) = ρ∓ .
(2.11)

We prove Theorem 2.1 and Theorem 2.3 in Section 4. Recall that the stationary
measure µstat

N depends on β.

Next we state the large deviations principle associated to the law of large numbers

stated in Theorem 2.1. Let J β
G = J β

T,G,γ : D([0, T ],M) −→ R be the functional
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given by

J β
G(π) := ℓβG(π, γ) − 1

2

∫ T

0

dt
〈
σ(πt),

(
∇Gt

)2〉
, (2.12)

and ÎβT (·|γ) : D([0, T ],M) → [0,+∞] the functional defined by

ÎβT (π|γ) := sup
G∈C1,2

0 ([0,T ]×[−1,1])

J β
G(π) . (2.13)

To define the large deviation rate functional, we introduce the energy functional
Q : D([0, T ],M) → [0,+∞] given by

Q(π) = sup
G

{∫ T

0

dt〈πt,∇Gt〉 −
1

2

∫ T

0

dt〈σ(πt)Gt, Gt〉
}
, (2.14)

where the supremum is carried over allG ∈ C∞
c ([0, T ]×(−1, 1)). From the concavity

of σ(·) it follows immediately that Q is convex and therefore lower semicontinuous.
Moreover Q(π) is finite if and only if π ∈ L2

(
[0, T ];H1(Λ)

)
, and

Q(π) =
1

2

∫ T

0

dt

∫ 1

−1

du
(∇πt(u))

2

σ(πt(u))
· (2.15)

If (2.15) holds, then an integration by parts and Schwarz inequality imply that
(2.14) is finite. The converse needs to be proven, for a proof of it we refer to [4],

subsection 4.1. The rate functional IβT (·|γ) : D([0, T ],M) → [0,∞] is given by

IβT (π|γ) =
{
ÎβT (π|γ) if Q(π) < +∞ ,

+∞ otherwise .
(2.16)

We show in Lemma 5.6 that IβT (π|γ) = 0 if and only if πt(·) solves the problem
(2.10) with initial datum π0(·) = γ(·).

We have the following dynamical large deviations principle.

Theorem 2.4. Fix T > 0 and an initial profile γ in M. Consider a sequence

{ηN : N ≥ 1} of configurations associated to γ. Then, the sequence of probability

measures {Qβ,N
ηN : N ≥ 1} on D([0, T ],M) satisfies a large deviation principle with

speed N and rate function IβT (·|γ), defined in (2.16):

lim
N→∞

1

N
logQβ,N

ηN

(
πN ∈ C

)
≤ − inf

π∈C
IβT (π|γ)

lim
N→∞

1

N
logQβ,N

ηN

(
πN ∈ O

)
≥ − inf

π∈O
IβT (π|γ) ,

for any closed set C ⊂ D([0, T ],M) and open set O ⊂ D([0, T ],M). The functional

IβT (·|γ) is lower semi-continuos and has compact level sets.

We prove Theorem 2.4 in Section 5.

3. Basic estimate

Next lemma states some properties of the potential Jneum(·, ·) easily obtained
by its definition.
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Lemma 3.1. The potential Jneum(·, ·) is a symmetric probability kernel. Moreover

for any regular function G : Λ → R, we have the following:

∇
(∫

Λ

Jneum(u, v)G(v)dv
)
=

∫

Λ

Jneum(u, v)∇G(v)dv.

Proof.

∇
(∫

Λ

Jneum(u, v)G(v)dv
)
=

∫

Λ

∂uJ
neum(u, v)G(v)dv

=

∫

Λ

[
J(u, v)− J(u, 2− v)− J(u,−2− v)

]
∇G(v)dv =

∫

Λ

Jneum(u, v)∇G(v)dv

�

For any G : Λ → R and x, x+ 1 ∈ ΛN denote by ∇NG( x
N ) the discrete gradient:

∇NG(x/N) = N
[
G((x+ 1)/N)−G(x/N)

]
. (3.1)

Next, we show that the rate Cβ
N of Lβ,N is a perturbation of the rate of the

symmetric simple exclusion generator.

Lemma 3.2. For any x ∈ ΛN , with x+ 1 ∈ ΛN and η ∈ SN ,

Cβ
N (x, x+ 1; η) = 1∓ β

2

(
η(x+ 1)− η(x)

)
N−1∇N

[(
Jneum

)
⋆ π(η)

]
(x/N) +O(N2) .

Proof. By definition of HN , for all x, y ∈ ΛN and η ∈ SN ,

(
∇x,yHN

)
(η) =

1

N

(
η(x)− η(y)

)2(
Jneum(

x

N
,
y

N
)− Jneum(0)

)

+
(
η(x) − η(y)

) 1
N

∑

z∈ΛN

η(z)
[
Jneum(

x

N
,
z

N
)− Jneum(

y

N
,
z

N
)
]
.

This concludes the proof. �

We start recalling the definitions of relative entropy and Dirichlet form, that are

the main tools in the [12] approach. Let h : Λ → (0, 1) and ν
h(·)
N be the product

Bernoulli measure defined in (2.8). Given µ, a probability measure on SN , denote

by H(µ|νh(·)N ) the relative entropy of µ with respect to ν
h(·)
N :

H(µ|νh(·)N ) = sup
f

{∫
f(η)µ(dη) − log

∫
ef(η)ν

h(·)
N (dη)

}
,

where the supremum is carried over all bounded functions on SN . Since ν
h(·)
N gives

a positive probability to each configuration, µ is absolutely continuous with respect

to ν
h(·)
N and we have an explicit formula for the entropy:

H(µ|νh(·)N ) =

∫
log
{ dµ

dν
h(·)
N

}
dµ . (3.2)

Further, since there is at most one particle per site, there exists a constant C, that
depends only on h(·), such that

H(µ|νh(·)N ) ≤ CN (3.3)

for all probability measures µ on SN (cf. comments following Remark V.5.6 in [16]).
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3.1. Dirichlet form estimates. One of the main step for deriving the hydro-
dynamic limit and the large deviations, is a super exponential estimate which al-
lows the replacement of local functions by functionals of the empirical density.
One needs to estimate expression such as 〈Z, f〉µN in terms of Dirichlet form

N2〈−LN

√
f(η),

√
f(η)〉µN , where Z is a local function and 〈·, ·〉µN represents

the inner product with respect to some probability measure µN . In the context
of boundary driven process, the fact that the invariant measure is not explicitly
known introduces a technical difficulty. We fix as reference measure a product

measure ν
θ(·)
N , see (2.8), where θ is a smooth function with the only requirement

that θ(∓1) = ρ∓. There is therefore no reasons for N2〈−LN

√
f(η),

√
f(η)〉νθ(·)

to be positive. Next lemma estimates this quantity.
Define the following functionals from h ∈ L2(ν) to R

+:

D0,N

(
h, ν
)
=

N−1∑

x=−N

∫ (
h(ηx,x+1)− h(η)

)2
dν(η) ,

D+,N

(
h, ν
)
=

1

2

∫
c+
(
η(N)

) (
h(σN−1η)− h(η)

)2
dν(η) ,

D−,N

(
h, ν
)
=

1

2

∫
c−
(
η(−N)

(
h(σ−N+1η)− h(η)

)2
dν(η) .

(3.4)

Lemma 3.3. Let θ : Λ → (0, 1) be a smooth function such that θ(∓1) = ρ∓.
There exists a positive constant C0 ≡ C0(‖∇θ‖∞) so that for any a > 0 and for

f ∈ L2
(
ν
θ(·)
N

)
,

∫

SN

f(η)Lβ,Nf(η)dν
θ(·)
N (η) ≤ −

(
1− a

)
D0,N

(
f, ν

θ(·)
N

)
+

C0

a
N−1‖f‖2

L2(ν
θ(·)
N )

, (3.5)

∫

SN

f(η)L±,Nf(η)dν
θ(·)
N (η) = −D±,N

(
f, ν

θ(·)
N

)
. (3.6)

Proof. The proof of (3.6) follows from the reversibility of the Bernoulli measure

ν
θ(·)
N with respect to L±,N . Next, we show (3.5). By Lemma 3.2,

∫

SN

f(η)Lβ,Nf(η)dν
θ(·)
N (η) ≤

N−1∑

x=−N

∫ [(
∇x,x+1f

)
(η)
]
f(η)dν

θ(·)
N (η)

+
A1

N

N−1∑

x=−N

∫ ∣∣∣
(
∇x,x+1f

)
(η)
∣∣∣f(η)dνθ(·)N (η)

(3.7)

for some positive constant A1 depending only on β and J . We write the first term
of the right hand side of (3.7) as

−
N−1∑

x=−N

∫ [(
∇x,x+1f

)
(η)
]2
dν

θ(·)
N (η)

+

N−1∑

x=−N

∫
RN (x, x+ 1; θ, η)

[(
∇x,x+1f

)
(η)
]
f(ηx,x+1)dν

θ(·)
N (η) ,

(3.8)

where

RN (x, x + 1; θ, η) =
[
1− e−N−1∇Nλ(θ(x/N))

(
∇x,x+1η(x)

)]
, (3.9)
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λ is the chemical potential defined by

λ(r) = log [r/(1 − r)] (3.10)

and ∇N stands for the discrete derivative defined in (3.1). By the inequality

for all A,B ∈ R and a > 0 , AB ≤ a

2
A2 +

1

2a
B2 (3.11)

and Taylor expansion, the formula (3.8) is bounded by

−
(
1− a

2

) N−1∑

x=−N

∫ [(
∇x,x+1f

)
(η)
]2
dν

θ(·)
N (η) +

A2

a
N−1‖f‖2

L2(ν
θ(·)
N

)
(3.12)

for all a > 0. Here A2 is a positive constant.
The second term on the right hand side of (3.7) is handled in the identical way.

It is bounded by

a

2

N−1∑

x=−N

∫ [(
∇x,x+1f

)
(η)
]2
dν

θ(·)
N (η) +

A3

a
N−1‖f‖2

L2(ν
θ(·)
N

)
. (3.13)

The lemma follows from (3.7),(3.8), (3.12) and (3.13). �

Denote for h ∈ L2(ν)

Dβ,N

(
h, ν
)
=

N−1∑

x=−N

∫
Cβ

N (x, x + 1; η)
(
h(ηx,x+1)− h(η)

)2
dν(η) .

Lemma 3.4. There exists a positive constant C1 = C1(β, J) such that, for any

measure ν and for h ∈ L2(ν),

(
1− C1

N

)
D0,N

(
h, ν
)
≤ Dβ,N

(
h, ν
)
≤
(
1 +

C1

N

)
D0,N

(
h, ν
)
.

Proof. The proof is elementary since
∣∣Cβ

N (x, x+ ei, η)− 1
∣∣ is uniformly bounded in

N , x and η. �

Lemma 3.5. Let ρ, ρ0 : Λ → (0, 1) be two smooth functions. There exists a positive

constant C′
0 ≡ C′

0(‖∇ρ0‖∞, ‖∇ρ‖∞) such that for any probability measure µN on

SN ,

D0,N

(√ dµN

dν
ρ(·)
N

, ν
ρ(·)
N

)
≤ 2 D0,N

(√ dµN

dν
ρ0(·)
N

, ν
ρ0(·)
N

)
+ C′

0N
−1 . (3.14)

Proof. Denote by f(η) = dµN

dν
ρ(·)
N

(η) and h(η) = dµN

dν
ρ0(·)
N

(η). Since f(η) = h(η)
dν

ρ0(·)
N (η)

dν
ρ(·)
N

(η)

we obtain for −N ≤ x ≤ N − 1 the following
∫

SN

[
∇x,x+1

√
f(η)

]2
dν

ρ(·)
N (η)

=

∫

SN

[√
h(ηx,x+1)R2(x, x + 1; η) +∇x,x+1

√
h(η)

]2
dν

ρ0(·)
N (η)

≤ 2

∫

SN

[
∇x,x+1

√
h(η)

]2
dν

ρ0(·)
N (η)

+ 2

∫

SN

h(ηx,x+1)
[
RN (x, x + 1; ρ, η)

]2
dν

ρ0(·)
N (η) ,
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where

R2(x, x + 1; η) = exp
{
(1/2)N−1∇N [λ(ρ(x/N)) − λ(ρ0(x/N))]∇x,x+1η(x)

}
− 1

and λ is the chemical potential defined by (3.10). We conclude the proof using
Taylor expansion and integration by parts. �

3.2. Superexponential estimates. For a positive integer ℓ and x ∈ ΛN denote
by

Λℓ(x) = ΛN,ℓ(x) = {y ∈ ΛN : |y − x| ≤ ℓ} .
When x = 0, we shall denote Λℓ(0) simply by Λℓ, that is, for all 1 ≤ ℓ ≤ N ,

Λℓ ≡ ΛN,ℓ(0) = {−ℓ, · · · , ℓ} .

Denote the empirical mean density on the box Λℓ(x) by ηℓ(x):

ηℓ(x) =
1

|Λℓ(x)|
∑

y∈Λℓ(x)

η(y) . (3.15)

For a cylinder function Ψ, that is a function on {0, 1}Z depending on η(x), x ∈ Z,

only trough finitely many x, denote by Ψ̃(ρ) the expectation of Ψ with respect to
νρ, the Bernoulli product measure with density ρ:

Ψ̃(ρ) = Eνρ

[Ψ] . (3.16)

Further, denote for G ∈ C([0, T ]× [−1, 1]) and ε > 0

V G,Ψ
N,ε (s, η) =

1

N

∑

x∈ΛN

Gs(x/N)
[
τxΨ(η)− Ψ̃(η[εN ](x))

]
, (3.17)

where the sum is carried over all x such that the support of τxΨ belongs to ΛN and
[·] denotes the lower integer part.

Proposition 3.6. Let {µN : N ≥ 1} be a sequence of probability measures on SN .

For every δ > 0,

lim
ε→0

lim
N→∞

1

N
logPβ,N

µN

[ ∣∣∣
∫ T

0

V G,Ψ
N,ε (s, ηs) ds

∣∣∣ > δ
]

= −∞ .

Proof. Fix c > 0 that will decreases to 0 after ε and a smooth function ρc : Λ →
(0, 1) which is constant in Λ(1−c) = [−1+c, 1−c] and equal to ρ± at the boundary,
i.e ρc(±1) = ρ±. The constant can be arbitrarily chosen and we denote it γ0.
Divide ΛN in two subsets, Λ[(1−2c)N ] and ΛN \ Λ[(1−2c)N ] and split the sum over x

in the definition of V G,Ψ
N,ε into the sum over these two sets. Since

sup
η,ε,N,x∈ΛN

{
Gs(x/N)

[
τxΨ(η)− Ψ̃(η[εN ](x))

] }
< ∞ ,

we have that
∣∣∣∣∣∣
1

N

∑

x∈ΛN\Λ[(1−2c)N ]

Gs(x/N)
[
τxΨ(η)− Ψ̃(η[εN ](x))

]
∣∣∣∣∣∣
≤ cTK0 (3.18)
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for some positive constant K0 which depends on G. By Chebyshev exponential
inequality, for all a > 0,

1

N
log Pβ,N

µN

[ ∣∣∣
∫ T

0

V G,Ψ
N,ε (s, ηs) ds

∣∣∣ > δ
]

≤ −a
(
δ − TK0c

)
+

1

N
logPβ,N

µN

[
exp

(
aN

∣∣∣
∫ T

0

V
c,G,Ψ
N,ε (s, ηs) ds

∣∣∣
) ]

,

(3.19)
where

V
c,G,Ψ
N,ε (s, η) =

1

N

∑

x∈Λ[(1−2c)N ]

Gs(x/N)
[
τxΨ(η)− Ψ̃(ηεN (x))

]
. (3.20)

It is immediate to see that the Radon-Nikodym derivative

dPβ,N
µN

dPβ,N

ν
ρc(·)
N

(
(ηt)t∈[0,T ]

)
=

dµN

dν
ρc(·)
N

≤ eNK1(c)

for some positive K1(c) that depends on c. The right hand side of (3.19) is bounded
by

−a
(
δ − TK0c

)
+ K1(c) +

1

N
logPβ,N

ν
ρc(·)
N

[
exp

(
aN

∣∣∣
∫ T

0

V
c,G,Ψ
N,ε (s, ηs) ds

∣∣∣
) ]

.

(3.21)
Since e|x| ≤ ex + e−x and

limN−1 log{aN + bN} ≤ max{limN−1 log aN , limN−1 log bN}, (3.22)

we may remove the absolute value in the third term of (3.21), provided our estimates
remain in force if we replace G by −G. Denote by

(LN )s =
1

2
(LN + L⋆

N )

where L⋆
N is the adjoint of LN in L2(ν

ρc(·)
N ). By the Feynman-Kac formula,

1

N
logPβ,N

ν
ρc(·)
N

[
exp

(
aN

∫ T

0

V
c,G,Ψ
N,ε (s, ηs) ds

)]
≤ 1

N

∫ T

0

λN,ε(Gs) ds , (3.23)

where λN,ε(Gs) is the largest eigenvalue of {N2(LN )s +NaVc,G,Ψ
N,ε (Gs, ·)}. By the

variational formula for the largest eigenvalue, for each s ∈ [0, T ],

1

N
λN,ε(Gs) = sup

f

{∫
aVc,G,Ψ

N,ε

(
Gs, η

)
f(η)ν

ρc(·)
N (dη) + N〈LN

√
f,
√
f〉

ν
ρc(·)
N

}
.

(3.24)

In this formula the supremum is carried over all densities f with respect to ν
ρc(·)
N .

By Lemma 3.3, since (3.6) gives a negative contribution, it is enough, to get the
result, to choose c such that c < δ

TK0
and to show that, there exists M > 0 that

depends only on G and c, such that, for all a > 0

lim
ε→0

lim
N→∞

sup
f

{∫
aVc,G,Ψ

N,ε

(
Gs, η

)
f(η)ν

ρc(·)
N (dη) − ND0,N (

√
f, ν

ρc(·)
N )

}
≤ M .

We then let a ↑ ∞. Notice that for N large enough the function V
c,G,Ψ
N,ε

(
Gs, η

)

depends on the configuration η only through the variables {η(x), x ∈ Λ(1−c)N}.
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Since ρc is equal to γ0, in Λc, we replace ν
ρc(·)
N in the previous formula by νγ0

N

with respect to which the operator L0,N is reversible. Therefore D0,N (· , νγ0

N ) is the
Dirichlet form associated to the generator L0,N . Since the Dirichlet form is convex,
it remains to show that

lim
ε→0

lim
N→∞

sup
f

{∫
aVc,G,Ψ

N,ε

(
Gs, η

)
f(η)νγ0

N (dη) − ND0,N (
√
f, ν

γ0(·)
N )

}
= 0,

for any a > 0. This follows from the usual one block and two blocks estimates (cf.
Chap 5 of [16]). �

For x = ±N , a configuration η and ℓ ≥ 1, let

W±,ℓ
N (η) =

∣∣ηℓ(±N)− ρ±
∣∣ , (3.25)

where, see (3.15), ηℓ(N) = 1
ℓ+1

{
η(N−ℓ)+ · · ·+η(N)

}
and ηℓ(−N) = 1

ℓ+1

{
η(−N+

ℓ) + · · ·+ η(−N)
}
.

Proposition 3.7. Fix a sequence {µN : N ≥ 1} of probability measures on SN .

For every δ > 0,

lim
ℓ→∞

lim
N→∞

1

N
logPβ,N

µN

[ ∫ T

0

W±,ℓ
N (ηs)ds > δ

]
= −∞ .

Proof. Consider first the limit the term W+,ℓ
N . Fix a smooth function γ : Λ → (0, 1)

such that γ(−1) = ρ−, and γ(u) = ρ+ for u ∈ [0, 1]. Since the Radon-Nikodym

derivative dµN

dν
γ(·)
N

is bounded by exp(NK1) for some positive constantK1, it is enough

to show that

lim
ℓ→∞

lim
N→∞

1

N
logPβ,N

ν
γ(·)
N

[ ∫ T

0

W+,ℓ
N (ηs)ds > δ

]
= −∞ .

We follow the same steps as in Proposition 3.6. Applying Chebyshev exponential
inequality and Feynman-Kac formula, the expression in the last limit is bounded
for all a > 0 by

−aδ +
T

N
λ̃N,ε(a) , (3.26)

where for all a > 0, 1
N λ̃N,ε(a) is the largest eigenvalue of the ν

γ(·)
N -reversible operator

f → N(LN )s(f) + a
(
W+,ℓ

N

)
f.

Here (LN )s is the symmetric part of the operatorLN in L2(ν
γ(·)
N ). By the variational

formula for the largest eigenvalue, we have

1

N
λ̃N,ε(a) = sup

f

{∫
aW+,ℓ

N (η)f(η)ν
γ(·)
N (dη)

+ N < LN

√
f,
√
f >

ν
γ(·)
N

}
.

In this formula the supremum is carried over all densities f with respect to ν
γ(·)
N .

By Lemma 3.3, we just need to show that, there exists M > 0, such that, for all
a > 0

lim
ℓ→∞

lim
N→∞

sup
f

{∫
aW+,ℓ

N (η)f(η)ν
γ(·)
N (dη)

− ND0,N (
√
f, ν

γ(·)
N )−ND+,N(

√
f, ν

γ(·)
N )

}
≤ M .
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Recall that the profile γ is constant equal to ρ+ on [0, 1]. Since W+,ℓ
N (η) depends

only on coordinates in a box Λℓ(N), we replace ν
γ(·)
N in the previous formula by ν

ρ+

N .
On the other hand, ν

ρ+

N is reversible for L0,N +L+,N and therefore D0,N (· , νρ+

N ) +
D+,N(· , νρ+

N ) is the Dirichlet form associated to the generator L0,N + L+,N . Since
the Dirichlet form is convex, it remains to show that

lim
ℓ→∞

lim
N→∞

sup
f

{∫
aW+,ℓ

N (η)f(η)ν
ρ+

N (dη)

− ND0,N (
√
f, ν

ρ+

N )−ND+,N (
√
f, ν

ρ+

N )
}

= 0.

for any a > 0. This follows from the law of large numbers by applying the same
device used in the proof of the one block and two blocks estimates, (cf. Chap 5 of
[16]).

�

3.3. Energy estimate. We prove in this subsection an energy estimate which is
one of the main ingredient in the proof of large deviations and hydrodynamic limit.
It allows to prove Lemma 4.3 and to exclude paths with infinite energy in the large
deviation regime. For δ > 0, G ∈ C∞

c ([0, T ]× Λ) define

Q̃δ
G(π) =

∫ T

0

dt〈πt,∇Gt〉 − δ

∫ T

0

dt〈σ(πt)Gt, Gt〉 , (3.27)

Q̃δ(π) = sup
G∈C∞

c ([0,T ]×Λ)

{
Q̃δ

G(π)
}
. (3.28)

Notice that

Q̃δ(π) =
1

2δ
Q(π),

where Q(·) is defined in (2.14).
For a function m in M, let mε : Λ → R+ be given by

mε(u) =
1

2ε

∫

[u−ε,u+ε]∩Λ

m(v) dv .

When u ∈ [−1+ ε, 1− ε], mε(u) = (m∗ ιε)(u), where ιε is the approximation of the
identity defined by

ιε(u) =
1

2ε
11{[−ε, ε]}(u) .

Lemma 3.8. There exists a positive constant C1 depending only on ρ± so that for

any given δ0 > 0, for any δ, 0 ≤ δ ≤ δ0, for any sequence {ηN ∈ SN : N ≥ 1} and

for any G ∈ C∞
c ([0, T ]× Λ), we have

lim
ε→0

lim
N→∞

1

N
logPβ,N

ηN

[
exp

(
δ NQ̃δ0

G (πN ∗ ιε)
)]

≤ C1(T + 1) .

Proof. Assume without loss of generality that ε is small enough so that the support
of G(·, ·) is contained in [0, T ] × [−1 + ε, 1 − ε]. Let θ : Λ → (0, 1) be a smooth

function such that θ(∓1) = ρ∓. Since ν
θ(·)
N (ηN ) ≥ exp{−C′

1N} for some finite

constant C′
1 depending only on θ, it is enough to prove the lemma with P

β,N

ν
θ(·)
N

in

place of Pβ,N
ηN .
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Set Ψ1(η) = [η(1) − η(0)]2 and note that Ψ̃1(a) = Eνa

[Ψ1] = σ(a) = 2a(1 − a),

where νa is the Bernoulli measure with parameter a ∈ [0, 1]. Denote BG,Ψ1

N,ε,δ0
the

set of trajectories (ηt)t∈[0,T ] so that

BG,Ψ1

N,ε,δ0
=
{
η· ∈ D([0, T ],SN) :

∣∣∣
∫ T

0

V G2,Ψ1

N,ε (t, ηt)dt
∣∣∣ ≤ 1

δ20

}
,

where V G2,Ψ1

N,ε is defined in (3.17). By (3.22) and Proposition 3.6, it is enough to
show

lim
ε→0

lim
N→∞

1

N
logPβ,N

ν
θ(·)
N

[
e

(
δ NQ̃

δ0
G

(πN∗ιε)
)
11{BG,Ψ1

N,ε,δ0
}
]

≤ C1(T + 1) .

Recalling the definition Q̃δ
G, see (3.27), we have

∫ T

0

dt〈πN
t ∗ ιε,∇G〉 =

∫ T

0

dt

N−1∑

x=−N+1

{ηt(x) − ηt(x+ 1)}Gt(x/N) +OG(ε).

Further on the set BG,Ψ1

N,ε,δ0

δ0

∫ T

0

dt〈σ(πN
t ∗ ιε), G2

t 〉 ≥ δ0

∫ T

0

dt
1

N

N−1∑

x=−N+1

G2
t (x/N) τxΨ1(ηt)

− δ0OG2(N, ε)− 1

δ0
,

where OG(ε) is absolutely bounded by a constant which vanishes as ε ↓ 0 and
OG2(N, ε) is is absolutely bounded by a constant which vanishes as N ↑ ∞. There-
fore to conclude the proof it is enough to show that

lim
N→∞

1

N
logPβ,N

ν
θ(·)
N

[
exp

(
N

∫ T

0

dt V δ
G(t, ηt)

)]
≤ C1T (3.29)

for any δ ≤ δ0, where

V δ
G(t, η) = δ

N−1∑

x=−N+1

Gt(x/N)[η(x) − η(x + 1)]− δ2

N

N−1∑

x=−N+1

G2
t (x/N) τxΨ1(η).

Now, observe that V δ
G = V 1

δG. Therefore, to prove the lemma, we need to show that
for any smooth function G,

lim
N→∞

1

N
logPβ,N

ν
θ(·)
N

[
exp

(
N

∫ T

0

dt V 1
G(t, ηt)

)]
≤ C1T (3.30)

for some constant C1 that not depends on G. By Feynman-Kac formula and the
same arguments used in the proof of Proposition 3.6, the expression of the limit in
the right hand side of (3.30) is bounded above by

∫ T

0

dt sup
f

{∫
V 1
G(t, η)f

2(η)ν
θ(·)
N (dη) + N〈LNf, f〉

ν
θ(·)
N

}
,

where the supremum is over all functions f in L2(ν
θ(·)
N ) such that 〈f, f〉

ν
θ(·)
N

= 1.

By Lemma 3.3, we replace N〈LNf, f〉
ν
θ(·)
N

by −N(1− b)D0,N

(
f, ν

θ(·)
N

)
+ C0

b , where
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b ∈ (0, 1) is arbitrarily chosen and C0 is a constant depending only on ρ±. It
remains, therefore, to show that

lim
N→∞

∫ T

0

dt sup
f

{∫
V 1
G(t, η)f

2(η)ν
θ(·)
N (dη) −N(1− b)D0,N

(
f, ν

θ(·)
N

)}
≤ C1T.

(3.31)
We split

∫
V 1
G(t, η)f

2(η)ν
θ(·)
N (dη) = I1 − I2,

where

I1 =

N−1∑

x=−N+1

Gt(x/N)

∫
{η(x)− η(x + 1)} f2(η) dν

θ(·)
N (η),

I2 =
1

N

N−1∑

x=−N+1

G2
t (x/N)

∫
f2(η) τxΨ1(η) dν

θ(·)
N (η).

We estimate I1 in term of I2 and D0,N

(
f, ν

θ(·)
N ). By changing variables η′ = ηx,x+1,

we have that

I1 =
1

2

N−1∑

x=−N+1

Gt(x/N)

∫
{η(x) − η(x+ 1)} {f2(η) − f2(ηx,x+1)} dνθ(·)N (η)

+
1

2

N−1∑

x=−N+1

Gt(x/N)

∫
{η(x) − η(x+ 1)}RN(x, x + 1; θ, η) f2(η) dν

θ(·)
N (η) ,

(3.32)

where RN (x, x+1; θ, η) is defined in (3.9). For the first term of (3.32), by inequality
(3.11) and Taylor expansion, we have

1

2

N−1∑

x=−N+1

Gt(x/N)

∫
{η(x)− η(x+ 1)} {f2(η)− f2(ηx,x+1)} dνθ(·)N (η)

≤ aN

4
D0,N

(
f, ν

θ(·)
N

)

+
1

4aN

N−1∑

x=−N+1

G2
t (x/N)

∫
τxΨ1(η)

[
f(η) + f(ηx,x+1)

]2
dν

θ(·)
N (η)

≤ aN

4
D0,N

(
f, ν

θ(·)
N

)
+

1

aN
C(G)

+
1

aN

N−1∑

x=−N+1

G2
t (x/N)

∫
τxΨ1(η) f

2(η) dν
θ(·)
N (η)

(3.33)
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where C(G) is some constant that depends on G. For the second term of (3.32),
by (3.11) and Taylor expanding RN we have that

∣∣∣1
2

N−2∑

x=−N+1

Gt(x/N)

∫
{η(x)− η(x+ 1)}RN(x, x + 1; θ, η) f2(η) dν

θ(·)
N (η)

∣∣∣

≤ C a+
1

N a

N−1∑

x=−N+1

∫
Gt(x/N)2 τxΨ1(η) f

2(η) dν
θ(·)
N (η) ,

= C a+
1

a
I2

(3.34)
for all a > 0, for some positive constant C depending only on ρ±. Taking into
account (3.32), (3.34) and (3.33) we have

I1 ≤ 2

a
I2 +

aN

4
D0,N

(
f, ν

θ(·)
N

)
+ C a+

1

aN
C(G) (3.35)

We conclude the proof, by taking a = 2 and b = 1
2 in (3.31). �

The following corollary allows to show Lemma 4.3.

Corollary 3.9. Fix a sequence {Gj : j ≥ 1} ⊂ C∞
c ([0, T ] × Λ), δ0 > 0 and a

sequence {ηN ∈ SN : N ≥ 1} of configurations. There exists a positive constant C1

depending only on the values ρ∓, such that for any 0 < δ ≤ δ0 and any k ≥ 1

lim
ε→0

lim
N→∞

1

N
logPβ,N

ηN

[
exp

(
δ N sup

1≤j≤k
Q̃δ0

Gj
(πN ∗ ιε)

)]
≤ C1(T + 1) . (3.36)

Proof. From (3.22), the limit in (3.36) is bounded above by

max
1≤j≤k

{
lim
ε→0

lim
N→∞

1

N
logPβ,N

ηN

[
exp

(
δ NQ̃δ0

Gj
(πN ∗ ιε)

)]}
.

By Lemma 3.8 the thesis follows. �

4. Hydrodynamic and hydrostatic limits

We prove in this section the hydrodynamic and hydrostatic limit for our system.
The proof is based on the method introduced in [12] and [17] for hydrodynamic and
in [8] for hydrostatic, taking into account, as explained in the introduction, of the
lack of comparison and maximum principle for (2.10).

4.1. The steps to prove Theorem 2.1. Following [12] we divide the proof of the
hydrodynamic behavior in three steps: tightness of the measures (Qβ,N

µN
), an energy

estimate to provide the needed regularity for functions in the support of any limit
point of the sequence (Qβ,N

µN
), and identification of the support of limit point of

the sequence (Qβ,N
µN

) as weak solution of (2.10). We then refer to [17], Chapter 4,
that present arguments, by now standard, to deduce the hydrodynamic behavior of
the empirical measures from the preceding results and the uniqueness of the weak
solution to equation (2.10).
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Lemma 4.1. (Tightness) The sequence (Qβ,N
µN

) is tight and all its limit points Q∗

are concentrated on the following set

Q∗
{
π : 0 ≤ πt(u) ≤ 1, t ∈ [0, T ], u ∈ [−1, 1]

}
= 1 . (4.1)

We then show that Q∗ is supported on densities ρ that satisfy (2.10) in the weak
sense.

We start defining for G ∈ C01,2([0, T ]× Λ) and ε > 0

BG,N
ε =

∫

Λ

GT (u)π
N (ηT )(u)du−

∫

Λ

G0(u)π
N (η0)(u)du

−
∫ T

0

∫

Λ

∂sGs(u)π
N (ηs)(u)duds−

∫ T

0

∫

Λ

∆Gs(u)π
N (ηs)(u)duds

− β

2

1

N

∑

x∈ΛN

∫ T

0

(
∇Gs

)
(x/N)

{
σ
(
η[εN ]
s (x)

)
∇N

(
Jneum ⋆ πN (ηs)

)
(x/N)

}
ds

+

∫ T

0

dt [ρ+(∇Gt)(+1)− ρ−(∇Gt)(−1)] ,

(4.2)

where η
[εN ]
s (x) is the local mean defined in (3.15) and ∇NGs(x/N) stands for the

discrete gradient of Gs(x/N) defined in (3.1).

Proposition 4.2. (Identification of the limit equation). For any function G
in C01,2([0, T ]× Λ) and any δ > 0 we have

lim
ε→0

lim
N→∞

P
β,N
µN

(∣∣BG,N
ε

∣∣ ≥ δ
)
= 0 . (4.3)

The last statement is an energy estimate. Every limit point Q∗ of the sequence
(Qβ

µN
) is concentrated on paths whose densities ρ ∈ L2

(
0, T ;H1(Λ)).

Lemma 4.3. (Energy estimate) Let Q∗ be a limit point of the sequence (Qβ,N
µN

).
Then,

Q∗
[
L2
(
0, T ;H1(Λ)

)]
= 1 . (4.4)

4.2. Proof of Proposition 4.2. LetQ∗ be a limit point of the sequence (Qβ,N
µN )N≥1

and assume, without loss of generality, that Qβ,N
µN converges to Q∗. Fix a function

G in C1,2
0 ([0, T ] × Λ). Consider the P

β,N
µN martingales with respect to the natural

filtration associated with (ηt)t∈[0,T ], M
G
t ≡ MG,N,β

t and NG
t ≡ NG,N,β

t , t ∈ [0, T ],
defined by

MG
t =< πN

t , Gt > − < πN
0 , G0 > −

∫ t

0

(
< πN

s , ∂sGs > +N2Lβ
N < πN

s , Gs >
)
ds ,

NG
t =

(
MG

t

)2

−
∫ t

0

{
N2Lβ

N

(
< πN

s , Gs >
)2 − 2 < πN

s , Gs > N2Lβ
N < πN

s , Gs >
}
ds .

(4.5)
A computation of the integral term of NG

t shows that the expectation of the qua-
dratic variation of MG

t vanishes as N ↑ 0. Therefore, by Doob’s inequality, for
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every δ > 0,

lim
N→∞

P
β,N
µN

[
sup

0≤t≤T
|MG

t | > δ
]

= 0 . (4.6)

Since for any s ∈ [0, T ] the function Gs vanishes at the boundary of Λ, a summation
by parts permits to rewrite the integral term of MG

t as
∫ t

0

< πN
s , ∂sGs > ds

−
∫ t

0

N
{ N−1∑

x=−N+1

(
∇NGs

)
(x/N)Cβ

N (x, x + 1, ηs)
(
∇x,x+1ηs(x)

)}
ds ,

where ∇N is defined in (3.1).
From Lemma 3.2, a summation by parts and Taylor expansion permit to rewrite

the last expression as

O(N) +

∫ t

0

< πN
s , ∂sGs > ds+

∫ t

0

< πN
s ,∆Gs > ds

+

∫ t

0

{
−∇Gs(1)ηs(N) + ∇Gs(−1)ηs(−N)

}
ds

+
β

2N

∫ t

0

{ ∑

x∈ΛN

(
∇Gs

)
(x/N)

(
∇x,x+1ηs(x)

)2 ∇N (Jneum ⋆ πN (ηs))(x/N)
}
ds .

Next, we use the replacement lemma stated in Proposition 3.6 and Proposition 3.7.
We obtain that the integral term of the martingal MG

t can be replaced by
∫ t

0

< πN
s , ∂sGs > ds+

∫ t

0

< πN
s ,∆Gs > ds

+

∫ t

0

{
−∇Gs(1)ρ+ + ∇Gs(−1)ρ−

}
ds

+
β

2

∫ t

0

1

N

{ ∑

x∈ΛN

(
∇Gs

)
(x/N)σ

(
ηεN (x)

)
∇N (Jneum ⋆ πN (ηs))(x/N)

}
ds .

This concludes the proof of the lemma. �

4.3. Steps to prove Theorem 2.3. Let µstat
N = µstat

N (β, ρ−, ρ+) be the unique
stationary measure of the irreducible Markov process (ηt)t≥0 with generator LN .
From Tchebyshev’s unequality, we need to show that

lim
N→∞

Eµstat
N

[∣∣∣
〈
πN , G

〉
−
〈
ρ̄, G

〉∣∣∣
]
= 0 , (4.7)

where Eµstat
N stands for the expectation with respect to the stationary measure

µstat
N . It is enough to prove that any subsequence of the sequence of real numbers

in the limit (4.7) vanishes. Without loss of generality we consider a sequence in
(4.7) as a subsequence along which the limit exists.

Denote by Qβ,N,stat := Qβ,N
µstat
N

the probability measure on the Skorohod space

D
(
[0, T ];M

)
induced by the Markov process (πN

t ) ≡ (πN (ηt)), when the initial
measure is µstat

N .
By the first part of Theorem 2.1 we have that all limit points of the sequence

Qβ,N,stat are concentrated on A[0,T ] for any T > 0, i.e all its limit points are
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concentrated on the weak solutions of the hydrodynamic equation for some unknown
initial profile.

Let (Qβ,Nk,stat) be a sub-sequence converging to a limit point which we denote
by Qβ,∗,stat. Note that different subsequences might have different limit points.
Let β small enough and denote by ρ̄ the unique stationary solution of (2.10), see
Theorem 6.2. By stationarity we have for any δ > 0,

Eµstat
Nk

[∣∣∣
〈
πN , G

〉
−
〈
ρ̄, G

〉∣∣∣
]

= E
β,Nk

µstat
Nk

[∣∣∣
〈
πN
T , G

〉
−
〈
ρ̄, G

〉∣∣∣
]
.

Since the integrand is bounded we have the following:

lim
k→∞

E
β,Nk

µstat
Nk

{∣∣∣
〈
πN
T , G

〉
−
〈
ρ̄, G

〉∣∣∣
}

= EQβ,∗,stat
{(∣∣∣

〈
ρT , G

〉
−
〈
ρ̄, G

〉∣∣∣ 11{A[0,T ]}

(
ρ
))}

≤ ‖G‖2 EQβ,∗,stat
{∥∥ρT − ρ̄

∥∥
2
11{A[0,T ]}

(
ρ
)}

≤ ‖G‖2e−c(β)T

(4.8)

by Theorem 6.2 and ‖v‖2 denotes the L2(Λ) norm of v. Then letting T → ∞ we
have the thesis. �

5. Large deviations

In this section we prove some properties of the rate function and we present the
main steps to derive the large deviations results.

Let L2(Λ) be the Hilbert space of functions G : Λ → R such that
∫
Λ
|G(u)|2du <

∞ equipped with the inner product

〈G, J〉2 =

∫

Λ

G(u)J(u) du .

The norm of L2(Λ) is denoted by ‖ · ‖2.
Let H1(Λ) be the Sobolev space of functions G with generalized derivatives ∇G

in L2(Λ). H1(Λ) endowed with the scalar product 〈·, ·〉H1 , defined by

〈G, J〉H1 = 〈G, J〉2 + 〈∇G , ∇J〉2 ,

is a Hilbert space. The corresponding norm is denoted by ‖ · ‖H1 . Denote by
H−1(Λ) the Hilbert space, dual of H1

0 (Λ), equipped with the norm ‖ · ‖−1

‖v‖2−1 = sup
G∈C∞

c (Λ)

{
2〈v,G〉−1,1 −

∫

Λ

‖∇G(u)‖2du
}

,

where 〈v,G〉−1,1 stands for the duality between H1
0 and H−1. Fix T > 0. For a

Banach space (B, ‖ · ‖B) we denote by L2([0, T ],B) the Banach space of measurable
functions U : [0, T ] → B for which

‖U‖2L2([0,T ],B) =

∫ T

0

‖Ut‖2B dt < ∞

holds.
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5.1. Properties of the rate function. Denote

Bρ±
γ = {π ∈ D([0, T ],M) : π0(·) = γ(·); πt(±1) = ρ±, t ∈ (0, T ]}.

Lemma 5.1. Let π be a trajectory in D([0, T ],M) such that ÎβT (π|γ) < ∞. Then

π belongs to Bρ±
γ .

The proof is similar to the one of Lemma 3.5 in [2]. To prove the lower-
semicontinuity of the rate function, we need the next results

Lemma 5.2. For any β ≥ 0, there exists a constant C0 = C0(β) such that

∫ T

0

‖∂tπt‖2−1 ≤ C0

{
IβT (π|γ) +Q(π)

}
, Q(π) ≤ C0

{
1 + IβT (π|γ)

}

for all π in D([0, T ],M).

Proof. The proof is the same as in Proposition 4.3. [22] or Theorem 3.3. in [20], or
Lemma 4.9. in [4] �

Lemma 5.3. Let {ρn : n ≥ 1} be a sequence of functions in L2([0, T ] × Λ) such

that ∫ T

0

dt ‖ρnt ‖2H1 +

∫ T

0

dt ‖∂tρnt ‖2−1 ≤ C0

for some finite constant C0 and all n ≥ 1. Suppose that the sequence ρn converges

weakly in L2([0, T ]× [−1, 1]) to some ρ. Then, ρn converges strongly in L2([0, T ]×
[−1, 1]) to ρ.

Proof. Recall that H1(Λ) ⊂ L2(Λ) ⊂ H−1(Λ). By [26, Theorem 21.A], the em-
bedding H1(Λ) ⊂ L2(Λ) is compact. Hence, by [24, Lemma 4, Theorem 5], the
sequence {ρn : n ≥ 1} is relatively compact in L2(0, T ;L2(Λ)). In particular, weak
convergence of the sequence {ρn : n ≥ 1} implies strong convergence. �

Theorem 5.4. The functional IβT (·|γ) is lower semicontinuous and has compact

level sets.

Proof. Theorem 5.4 is proven applying Lemma 5.2 and Lemma 5.3. See Theorem
3.4. in [20] or Lemma 4.2. in [4]. �

We provide an explicit representation for the rate function IβT (·|γ) when it is finite.

For π ∈ D([0, T ],M), denote byH1
0 (σ(π)) the Hilbert space induced by C1,2

0 ([0, T ]×
[−1, 1]) endowed with the inner product 〈·, ·〉σ(π) defined by

〈F,G〉σ(π) =
∫ T

0

dt 〈σ(πt),∇Ft · ∇Gt〉 .

Induced means that we first declare two functions F,G in C1,2
0 ([0, T ]× [−1, 1]) to

be equivalent if 〈F −G,F − G〉σ(π) = 0 and then we complete the quotient space

with respect to the inner product 〈·, ·〉σ(π). The norm of H1
0 (σ(π)) is denoted by

‖ · ‖σ(π).
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Lemma 5.5. Take π ∈ D([0, T ],M) with IβT (π|γ) < ∞. Then, it is uniquely de-

termined a function F in H1
0 (σ(π)) such that π is the weak solution of the following

boundary value problem:





∂tπ = ∆π −∇ ·
{
σ(π)

[
β
2∇(Jneum ⋆ π) +∇F

]}
in Λ× (0, T ),

π0(·) = γ(·) in Λ,

πt(±1) = ρ± for 0 ≤ t ≤ T .

(5.1)

Moreover,

IβT (π|γ) =
1

2
‖F‖2σ(π) =

1

2

∫ T

0

dt 〈σ(πt)∇Ft · ∇Ft〉 . (5.2)

Proof. By assumption IβT (π|γ) = ÎβT (π|γ) < ∞, defined in (2.13). Then one pro-
ceeds as in [17] with the only difference that because the boundary conditions the
space is H1

0 (σ(π)). �

Lemma 5.6. Let ρ ∈ L2([0, T ], H1(Λ)) be the weak solution of the boundary value

problem (2.10) then

IβT (ρ|γ) = ÎβT (ρ|γ) = 0, and Q(ρ) < ∞.

Further if IβT (ρ|γ) = 0, then ρ ∈ L2([0, T ], H1(Λ)) is the weak solution of the

boundary value problem (2.10).

Proof. We start showing that if ρ ∈ L2([0, T ], H1(Λ)) is the weak solution of the
boundary value problem (2.10) then Q(ρ) < ∞. Take F (ρ) = ρ log ρ+(1−ρ) log(1−
ρ), for ρ ∈ [0, 1]. Since

∫
Λ
F (ρt(u))du is a bounded quantity for all t ∈ R+, we have

that ∫ T

0

dt
d

dt

∫

Λ

F (ρt(u))du =

∫

Λ

[F (ρT (u))− F (ρ0(u))]du.

Notice that

F ′(ρ) = log
ρ

(1− ρ)
and F ′′(ρ) =

1

ρ(1− ρ)
=

1

χ(ρ)

are not uniformly bounded for ρ ∈ (0, 1).Therefore we need some care to derive
F (ρt(u)) with respect to t. We consider a sequence of smooth functions

Fn(ρ) =
(
1 +

2

n

)−1
(ρ+

1

n
) log(ρ+

1

n
) + (1− ρ+

1

n
) log(1− ρ+

1

n
)

so that limn→∞ Fn(a) = F (a). We have

∫ T

0

dt
d

dt

∫

Λ

Fn(ρt(u))du =

∫ T

0

dt

∫

Λ

F ′
n(ρt(u))

d

dt
ρt(u). (5.3)

To avoid boundary terms, take a smooth function b(·) defined on a neighborhood
of [−1, 1] such that b(∓1) = ρ∓ and 0 < ρ− ≤ b(·) ≤ ρ+ < 1. Denote

Un(t, u) = F ′
n(ρt(u))− F ′

n(b(u)).
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We have
∫ T

0

dt

∫

Λ

F ′
n(ρt(u))

d

dt
ρt(u)

=

∫ T

0

dt

∫

Λ

Un(ρt(u))
d

dt
ρt(u) +

∫ T

0

dt

∫

Λ

F ′
n(b(u))

d

dt
ρt(u)

=

∫ T

0

dt

∫

Λ

Un(ρt(u))
d

dt
ρt(u)du+

∫

Λ

F ′
n(b(u))[ρT (u)− ρ0(u)]du.

(5.4)

Taking into account (5.3), (5.4) and Un ∈ L2([0, T ], H1
0), we get

∫ T

0

dt
d

dt

∫

Λ

Fn(ρt(u))du −
∫

Λ

F ′
n(b(u))

[
ρT (u)− ρ)(u)

]
du

= −
∫ T

0

dt

∫

Λ

∇Un(t, u) [∇ρt(u)− βρt(u)(1− ρt(u))(J
neum ⋆∇ρt)(u)] .

(5.5)

Denote χn(a) = (a+ 1
n )(1 +

1
n − a). We have that

∇Un(t, u) =
∇ρt(u)

χn(ρt(u))
− ∇b(u)

χn(b(u))
.

Taking this into account and collecting the above estimates, we obtain

∫ T

0

dt

∫

Λ

(∇ρt(u))
2

χn(ρt(u))
du

≤ −
∫

Λ

[F (ρT (u))− F (ρ0(u))]du +

∫

Λ

F ′
n(b(u))

[
ρT (u)− ρ0(u)

]
du

+

∫ T

0

dt

∫

Λ

∇b(u) · ∇ρt(u)

χn(b(u))
du

+ β

∫ T

0

dt

∫

Λ

∇ρt(u))
χ(ρt(u))

χn(ρt(u))
(Jneum ∗ ∇ρt)(u)du

− β

∫ T

0

dt

∫

Λ

∇b(u)
χ(ρt(u))

χn(b(u))
(Jneum ∗ ∇ρt)(u)du .

(5.6)

Since b(·) is bounded below by a strictly positive constant and above by a constant
strictly smaller than 1, and since

∫ T

0

dt

∫

Λ

du∇ρt(u)(J
neum ⋆∇ρt)(u) ≤ C

for some constant C, we obtain, uniformly in n

∫ T

0

dt

∫

Λ

(∇ρt(u))
2

χn(ρt(u))
du ≤ C′

for some finite constant C′ which depends only on b and T . To conclude the proof
it remains to apply Fatou’s Lemma and recall the definition of Q(ρ) given in (2.15).

We have shown that Q(ρ) < ∞. By Lemma 5.5 we conclude that IβT (ρ|γ) = 0.
Similar arguments allow to prove the second statement of the lemma. �
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5.2. Comparison between IβT (·|γ) and I0T (·|γ). Next, we compare the rate func-

tional ÎβT (·|γ) with the rate functional Î0T (·|γ) of the symmetric simple exclusion
process (i.e. β = 0).

Lemma 5.7. For π ∈ D([0, T ],M), with finite energy Q(π) < ∞, we have

1

2
Î0T (π|γ) − β2

16

∫ T

0

dt

∫

Λ

(
∇πt

)2 ≤ ÎβT (π|γ)

≤ 2Î0T (π|γ) +
β2

8

∫ T

0

dt

∫

Λ

(
∇πt

)2
.

(5.7)

Proof. Fix π ∈ D([0, T ],M) with finite energy and G ∈ C1,2
0 ([0, T ] × [−1, 1]).

Recall from (2.12), (2.9) and (2.13) the definitions of J β
G(π), ℓβG and I0T (π). By the

inequality ab ≤ 1
2a

2 + 1
2b

2 we obtain

∣∣∣ℓβG(π, γ)− ℓ0G(π, γ)
∣∣∣ =

∣∣∣∣∣
β

2

∫ T

0

dt

∫

Λ

σ(πt)(∇Gt) · ∇(Jneum ⋆ πt)

∣∣∣∣∣

≤ 1

4

∫ T

0

dt

∫

Λ

σ(πt)(∇Gt)
2 +

β2

4

∫ T

0

dt

∫

Λ

σ(πt)[∇(Jneum ⋆ πt)]
2 .

Since for each u, Jneum(u, v)dv is a probability density on Λ and σ(·) ≤ 1/2, by
Lemma 3.1, Jensen inequality and Fubini’s Theorem,

β2

4

∫ T

0

dt

∫

Λ

σ(πt)[∇(Jneum ⋆ πt)]
2

≤ β2

8

∫ T

0

dt

∫

Λ

Jneum ⋆ (∇πt)
2 =

β2

8

∫ T

0

dt

∫

Λ

(∇πt)
2 .

Hence

J β
G(π) ≤ ℓ0G(π) − 1

4

∫ T

0

dt
〈
σ(πt), (∇Gt)

2
〉
+

β2

8

∫ T

0

dt

∫

Λ

(∇πt)
2

≤ 1

2
sup

G∈C1,2
0 ([0,T ]×Λ)

{
2ℓ0G(π)−

1

2

∫ T

0

dt
〈
σ(πt), (∇Gt)

2
〉}

+
β2

8

∫ T

0

dt

∫

Λ

(∇πt)
2

= 2Î0T (π) +
β2

8

∫ T

0

dt

∫

Λ

(∇πt)
2 .

Now, it is enough to take the supremum over G ∈ C1,2
0 ([0, T ]× [−1, 1]) to obtain

ÎβT (π) ≤ 2Î0T (π) +
β2

8

∫ T

0

dt

∫

Λ

(∇πt)
2 .

The inequality in the left hand side of the statement is obtained in the same
way. �

Setting β = 0 in the boundary value problem (2.10) one gets the following
boundary value problem for the heat equation:
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



∂tρ = ∆ρ in Λ× (0, T ),

ρ0(·) = γ(·) in Λ,

ρt(±1)| = ρ± for 0 ≤ t ≤ T .

(5.8)

Lemma 5.8. Let ρ(0) be the solution of (5.8), we have

ÎβT (ρ
(0)|γ) ≤ β2

8

∫ T

0

dt
〈
σ(ρ

(0)
t ), Jneum ⋆ (∇ρ

(0)
t )2

〉

≤ β2

16

∫ T

0

dt

∫

Λ

∣∣∇ρ
(0)
t

∣∣2 .

(5.9)

Proof. For any G in C1,2
0 ([0, T ]× [−1, 1]), see (2.12), we have

J β
G(ρ(0)) = −β

2

∫ T

0

dt
〈
σ(ρ

(0)
t )∇(Jneum ⋆ ρ

(0)
t ) , ∇Gt

〉

− 1

2

∫ T

0

dt
〈
σ(ρ

(0)
t ),

(
∇Gt

)2〉

≤ β2

8

∫ T

0

dt
〈
σ(ρ

(0)
t ),

[
∇(Jneum ⋆ ρ

(0)
t )
]2〉

,

(5.10)

by inequality (3.11), taking a = 1. The solution of (5.8) belongs to L2([0, T ], H1(Λ))
and its time derivative belongs to L2([0, T ], H−1(Λ)). Therefore,

ÎβT (ρ
0|γ) = sup

G∈C1,2
0 ([0,T ]×[−1,1])

{β
2

∫ T

0

dt
〈
σ(ρ0t )∇(Jneum ⋆ ρ0t ) , ∇Gt

〉

− 1

2

∫ T

0

dt
〈
σ(ρ0t ), (∇Gt)

2
〉}

.

By inequality (3.11), this last expression is bounded by

β2

8

∫ T

0

dt
〈
σ(ρ0t ),

[
∇(Jneum ⋆ ρ0t )

]2〉
.

We conclude the proof by applying Lemma 3.1 and Jensen inequality. �

5.3. IβT (·|γ)-Density. In this section we show that any trajectory π ∈ D([0, T ],M),

with finite rate function, IβT (π|γ) < ∞, can be approximated by a sequence of
smooth trajectories {πn : n ≥ 1} such that

lim
n→∞

πn = π in D([0, T ],M) and lim
n→∞

IβT (π
n|γ) = IβT (π|γ) .

Definition 5.9. A subset A of D([0, T ],M) is said to be IT (·|γ)-dense if for every

π in D([0, T ],M) such that IT (π|γ) < ∞, there exists a sequence {πn : n ≥ 1} in

A such that πn converges to π in D([0, T ],M) and IT (π
n|γ) converges to IT (π|γ).

Definition 5.10. Let A1 be the subset of D([0, T ],M) consisting of trajectories

π such that IβT (π|γ) < ∞ and for which there exists δ > 0 such that π is a weak

solution of the equation (5.8) in the time interval [0, δ].

Lemma 5.11. The set A1 is IT (·|γ)-dense.
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Proof. Fix a path π such that IT (π|γ) < ∞ and let ρ(0) be the solution of the heat
equation (5.8). For ε > 0, define πε as

πε
t (·) =





ρ
(0)
t (·) for 0 ≤ t ≤ ε,

ρ
(0)
2ε−t(·) for ε ≤ t ≤ 2ε,

πt−2ε(·) for 2ε ≤ t ≤ T .

Since limε→0 π
ε = π in D([0, T ],M) and I(·|γ) is lower semicontinuous, it is enough

to prove that ∀ε > 0, IβT (π
ε|γ) < ∞ and that limε→0 I

β
T (π

ε|γ) ≤ IβT (π|γ). From
Lemma 5.1, for each ε > 0, πε

0(·) = γ(·) and πε
t (±1) = ρ±. Decompose the

rate function IβT (π
ε|γ) as the sum of the contribution on each interval [0, ε], [ε, 2ε]

and [2ε, T ]. Since on [0, ε] the path π satisfies equation (5.8), by Lemma 5.8, the
contribution to the first interval is bounded by

β2

8

∫ ε

0

dt

∫

Λ

(∇ρ
(0)
t )2(v)dv .

This converges to 0 when ε ↓ 0. On the time interval [ε, 2ε], πε satisfies

∂tπ
ε
t = −∂tρ

(0)
2ε−t = −∆ρ

(0)
2ε−t = −∆πε .

In particular, the contribution to [ε, 2ε] is equal to

sup
{
2

∫ ε

0

dt
〈
∇ρ

(0)
t ,∇G

〉
+

β

2

∫ ε

0

dt
〈
σ(ρ

(0)
t )∇(Jneum ⋆ ρ

(0)
t ) , ∇Gt

〉

− 1

2

∫ ε

0

dt
〈
σ(ρ

(0)
t ), (∇Gt)

2
〉}

,

(5.11)

where the supremum in taken over allG ∈ C1,2
0 ([0, T ]×[−1, 1]). We apply inequality

(3.11) to the first and second term inside the supremum, then apply Lemma 5.8.
By Lemma 3.1, the supremum (5.11) is bounded by

4

∫ ε

0

dt

∫

Λ

du
(∇ρ

(0)
t )2

σ(ρ
(0)
t )

+
β2

4

∫ ε

0

dt
〈
σ(ρ

(0)
t )[∇(Jneum ⋆ ρ

(0)
t )]2

〉

≤ 4

∫ ε

0

dt

∫

Λ

du
(∇ρ

(0)
t )2

σ(ρ
(0)
t )

+
β2

8

∫ ε

0

dt

∫

Λ

(∇ρ
(0)
t )2 .

This last expression converges to zero as ε ↓ 0. Finally, the contribution on [2ε, T ]
is bounded by IT (π|γ). �

Definition 5.12. Denote by A2 the subset of A1 of all trajectories π such that

for all 0 < δ ≤ T , there exists ε > 0 such that ε ≤ πt(u) ≤ 1 − ε for (t, u) ∈
[δ, T ]× [−1, 1].

Lemma 5.13. The set A2 is IβT (·|γ)-dense.
Proof. By the previous lemma, it is enough to show that each trajectory π in A1

can be approximated by trajectories in A2. Fix π in A1 and let ρ0 be the solution
of the equation (5.8). For each 0 ≤ ε ≤ 1, let πε = (1− ε)π+ ερ0. We have that πε

converges to π as ε ↓ 0 a.e. in Λ × (0, T ). By the lower semicontinuity of IT (·|γ),
it is enough to show that

sup
ε>0

IβT (π
ε|γ) < ∞ and lim

ε→0
IβT (π

ε|γ) ≤ IβT (π|γ) . (5.12)
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Fix ε > 0, by construction πε
0(·) = γ and πε

t (±1) = ρ± for almost all t ∈ [0, T ].
From the convexity of Q(·), for each 0 ≤ ε ≤ 1,

Q(πε) ≤ (1− ε)Q(π) + εQ(ρ0) ≤ Q(π) +Q(ρ0) < ∞ .

Since ∂tπ
ε = ε∂tρ

0+(1− ε)∂tπ and, by the assumption, IT (π|γ) is finite, it follows
from Lemma 5.2, that πε ∈ L2(0, T ;H1(Λ)) and ∂tπ

ε ∈ L2(0, T ;H−1(Λ)). Next

we show that IβT (π
ε|γ) is finite uniformly on ε. We decompose the rate IβT (π

ε|γ) in
two terms:

IβT (π
ε|γ) ≤ A1 +A2 (5.13)

where

A1 = sup
{∫ T

0

dt
〈
∂tπ

ε, Gt

〉
+

∫ T

0

dt
〈
∇πε

t ,∇Gt

〉
− 1

4

∫ T

0

dt
〈
σ(πε

t ), (∇Gt)
2
〉}

(5.14)

A2 = sup
{ β

2

∫ T

0

dt
〈
σ(πε

t )∇(Jneum ⋆ πε
t ) , ∇Gt

〉
− 1

4

∫ T

0

dt
〈
σ(πε

t ), (∇Gt)
2
〉}

,

(5.15)

and the supremum is taken over G ∈ C1,2
0 ([0, T ] × [−1, 1]). By concavity of σ(·),

the term A1 is bounded above by

(1 − ε) sup
{∫ T

0

dt
〈
∂tπt, Gt

〉
+

∫ T

0

dt
〈
∇πt,∇Gt

〉
− 1

4

∫ T

0

dt
〈
σ(πt), (∇Gt)

2
〉}

+ ε sup
{∫ T

0

dt
〈
∂tρ

0, Gt

〉
+

∫ T

0

dt
〈
∇ρ0t ,∇Gt

〉
− 1

4

∫ T

0

dt
〈
σ(ρ0t )∇Gt,∇Gt

〉}
.

(5.16)
Since ρ0 solves the heat equation the second term of the last expression is equal to
zero, while le first term is bounded above by 4I0T (π|γ) which is bounded by Lemma
5.7. By Schwartz inequality, Lemma 3.1 and Jensen inequality

A2 ≤ β2

4

∫ T

0

dt
〈
σ(πε

t )(J
neum ⋆∇πε

t )
2
〉
≤ β2

8

∫ T

0

dt

∫

Λ

(
|∇πt|2 + |∇ρ0t |2

)
. (5.17)

By (5.16) and (5.17) we have that sup
ε>0

IβT (π
ε|γ) < ∞.

We are now going to prove limε→0 I
β
T (π

ε|γ) ≤ IβT (π|γ). We have by definition
of πε that

∫ T

0

dt
〈
∂tπ

ε, Gt

〉
= (1− ε)

∫ T

0

dt
〈
∂tπ,Gt

〉
+ ε
〈
∂tρ

0, Gt

〉
, (5.18)

for any G ∈ C1,2
0 ([0, T ]× [−1, 1]). By Lemma 5.5, there exists F ∈ H1

0 (σ(π)) such
that π solves the boundary value problem (5.1). Taking this into account and (5.18)
we can write
∫ T

0

dt
〈
∂tπ

ε, Gt

〉

=

∫ T

0

dt
{〈

−∇πε,∇Gt

〉
+ (1− ε)

〈
σ(πt)

[β
2
∇(Jneum ⋆ π) +∇Ft

]
,∇Gt

〉}

=

∫ T

0

dt
{〈

−∇πε,∇Gt

〉
+
〈
F
β
t (π

ε),∇Gt

〉
+
〈β
2
σ(πε

t )∇(Jneum ⋆ πε
t ),∇Gt

〉}
,

(5.19)
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where

F
β
t (π

ε) = (1− ε)σ(πt)
[β
2
∇(Jneum ⋆ πt) +∇F

]
− β

2
σ(πε

t )∇(Jneum ⋆ πε
t ) .

By the definition of ÎβT , see (2.13), we have that

ÎβT (π
ε|γ) = sup

{∫ T

0

dt
〈
F
β
t (π

ε) , ∇Gt

〉
− 1

2

∫ T

0

dt
〈
σ(πε

t ) , (∇Gt)
2
〉}

= IβT (π
ε|γ),

(5.20)

where the supremum is taken over all G ∈ C1,2
0 ([0, T ] × Λ). The last equality in

(5.20) holds because Q(πε) is bounded for any ε > 0 and then (2.16) applies. Since
for any ε > 0 there exists δ(ε) > 0 so that σ(πε) ≥ δ(ε) we can apply to the first
term inside the argument of the supremum of (5.20) inequality (3.11) to cancel the
contribution of the second term inside the argument of the supremum, obtaining

IβT (π
ε|γ) ≤ 1

2

∫ T

0

dt

∫

Λ

du
(Fβ

t (π
ε))2

σ(πε
t )

.

On the other hand, from (5.2),

IβT (π|γ) =
1

2

∫ T

0

dt
〈
σ(πt)∇Ft,∇Ft

〉
.

Therefore, to conclude the proof, it is enough to show that

lim
ε→0

1

2

∫ T

0

dt

∫

Λ

du
(Fβ

t (π
ε))2

σ(πε
t )

=
1

2

∫ T

0

dt
〈
σ(πt)∇Ft,∇Ft

〉
. (5.21)

By the continuity of σ and the definition of Fβ
t (π

ε),

lim
ε→0

(Fβ
t (π

ε))2

σ(πε
t )

= σ(πt)
(
∇Ft

)2
, a.e. in Λ× (0, T ).

By the convexity of a → a2, the concavity of σ(·) and Lemma 3.1, for any 0 < ε < 1,

(Fβ
t (π

ε))2

σ(πε)
≤ β2

4
σ(π)

[
Jneum ⋆ (∇π)2

]

+
[
σ(π) + σ(ρ0)

][
Jneum ⋆

(
(∇π)2 + (∇ρ0)2

)]
.

Therefore (5.21) follows by Lebesgue dominated convergence Theorem. �

Definition 5.14. Denote by A3 the trajectories π ∈ D([0, T ],M) such that π is

the solution of the boundary value problem (5.1) for some F ∈ C1,2
0 ([0, T ]× Λ).

The last step is to prove that A3 is I
β
T (·|γ)-dense. We follow the strategy adopted

in [8]: given a trajectory πt(u) in D([0, T ],M) with finite rate function IT (π|γ) <
∞, from Lemma 5.5, there exists a function F in H1

0 (σ(π)) such that π is a weak
solution to the equation (5.1). Instead of approximating π by a sequence of smooth
trajectories in D([0, T ],M) (cf. [4],[20],[22]), we will approximate F by smooth
functions (Fn) and we then show that the corresponding smooth solutions (πn) of
(5.1) converge to π in D([0, T ],M) and IT (π

n|γ) converges to IT (π|γ).

Lemma 5.15. The set A3 is IβT (·|γ)-dense.
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Proof. In view of the previous lemma, it is enough to show that for each π in A2, we
can exhibit a sequence {πn : n > 0} in A3 which converges to π in D([0, T ],M) and
such that IT (πn|γ) converges to IT (π|γ). Fix π ∈ A2. Since IT (π|γ) is finite, by
Lemma 5.5, there exists a function F ∈ H1

0 (σ(π)) such that π is the weak solution
to the boundary value problem (5.1). We claim hat F ∈ L2

(
[0, T ], H1(Λ)

)
and

then, can be approximated by a sequence of smooth functions (Fn)n≥1. Indeed,
let 0 < δ < T be such that, π is the solution of the heat equation (5.8) in the time

interval [0, δ]. We have that ∇F = −β
2∇(Jneum ⋆ π) in [0, δ]× Λ and

∫ T

0

dt

∫

Λ

∣∣∇Ft(u)
∣∣2du =

∫ δ

0

dt

∫

Λ

β2

4

∣∣∇(Jneum ⋆ π)(t, u)
∣∣2du

+

∫ T

δ

dt

∫

Λ

∣∣∇Ft(u)
∣∣2du .

(5.22)

On the other hand, since π ∈ A2, there exists 0 < ε < 1 such that ε ≤ πt(·) ≤ 1− ε
for δ ≤ t ≤ T . Therefore

∫ T

δ

dt

∫

Λ

∣∣∇Ft(u)
∣∣2du ≤ 1

σ(ε)
‖F‖2σ(π)

=
2

σ(ε)
IβT (π|γ) < ∞ .

(5.23)

It follows from (5.22) and (5.23) that F ∈ L2
(
[0, T ], H1(Λ)

)
. Let (Fn)n>0 be a se-

quence of functions in C1,2
0 ([0, T ]×Λ) such that lim

n→+∞
Fn = F in L2

(
[0, T ], H1(Λ)

)
.

For each integer n > 0, let πn be the weak solution of (5.1) with Fn in place of
F . By (5.2)

IβT (π
n|γ) = 1

2

∫ T

0

dt 〈∇Fn
t · σ(πn

t )∇Fn
t 〉 ≤

1

4

∫ T

0

dt

∫

Λ

du ‖∇Fn
t (u)‖2 .

Since the sequence (Fn)n>0 converges to F in L2
(
[0, T ], H1(Λ)

)
, it follows from

the last inequality that IβT (π
n|γ) is uniformly bounded. Thus, by Theorem 5.4,

the sequence πn is relatively compact in D([0, T ],M). Let {πnk : k ≥ 1} be
a subsequence of πn converging to some π0 in D([0, T ],M), then {πnk : k ≥ 1}
converges weakly to π0 in L2

(
[0, T ]× [−1, 1]

)
. Since IβT (π

n|γ) is uniformly bounded,

by Lemma 5.2 and Lemma 5.3, πnk converges to π0 strongly in L2([0, T ]× [−1, 1]).

For every G in C1,2
0 ([0, T ]× [−1, 1]), we have

〈πnk

T , GT 〉 − 〈γ,G0〉 =
∫ T

0

dt 〈πnk
t , ∂tGt〉

+

∫ T

0

dt 〈πnk

t ),∆Gt〉 − ρ+

∫ T

0

dt∇Gt(1) + ρ−

∫ T

0

dt∇Gt(−1)

+

∫ T

0

〈∇Gt, σ(π
nk

t )
[β
2
∇(Jneum ⋆ πnk

t ) +∇Fnk

t

]
〉 dt.
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Letting k → ∞, we obtain

〈π0
T , GT 〉 − 〈γ,G0〉 =

∫ T

0

dt 〈π0
t , ∂tGt〉

+

∫ T

0

dt 〈π0
t ,∆Gt〉 − ρ+

∫ T

0

dt∇Gt(1) + ρ−

∫ T

0

dt∇Gt(−1)

+

∫ T

0

〈∇Gt, σ(π
0
t )
[β
2
∇(Jneum ⋆ π0

t ) +∇Ft

]
〉 dt.

That is π0 is a weak solution of equation (5.1). Thus, by uniqueness of weak
solutions of (5.1), π0 = π.

To conclude the proof of the lemma it remains to prove that limn→∞ IβT (π
n|γ) =

IβT (π|γ). The sequence (πn)n>0 converges to π strongly in L2([0, T ]× [−1, 1]) and
the sequence (Fn)n>0 converges to F in L2([0, T ], H1(Λ)). Taking into account
that π is bounded and σ is Lipschitz, we obtain

lim
n→∞

IβT (π
n|γ) = lim

n→∞

1

2

∫ T

0

dt 〈∇Fn
t · σ(πn

t )∇Fn
t 〉

=
1

2

∫ T

0

dt 〈∇Ft · σ(πt)∇Ft〉 = IβT (π|γ) .

�

5.4. Upper bound. Let Q̃ = Q̃2 be the functional given by (3.28) with δ0 = 2.
For all 0 ≤ a ≤ 1, denote by Ea : D([0, T ],M) → [0,+∞] the following functional

Ea(π) = ÎβT (π|γ) + a(1 + a)Q̃(π) .

The proof of the upper bound relies on the following proposition.

Proposition 5.16. Let K be a compact set of D([0, T ],M). There exists a positive

constants C, such that for any 0 ≤ a ≤ 1,

lim
N→∞

1

Nd
logQβ,N

ηN (K) ≤ − 1

1 + a
inf
π∈K

Ea(π) + aC(T + 1) .

Proof. Fix a density profile θ : [−1, 1] → (0, 1), a function G in C1,2
0 ([0, T ]× [−1, 1])

and a function H in C∞
c ([0, T ]×Λ). For a local function Ψ : {0, 1}Z → R, a function

G, c > 0 and ε > 0, let BG,Ψ
N,ε,c and EG

N,c denote the set of trajectories (ηt)t∈[0,T ]

defined by

BG,Ψ
N,ε,c =

{
η· ∈ D([0, T ],SN) :

∣∣∣
∫ T

0

V G,Ψ
N,ε (t, ηt)dt

∣∣∣ ≤ c
}
,

EG
N,c =

{
η· ∈ D([0, T ],SN) :

∣∣∣
∫ T

0

WG
N (t, ηt)dt

∣∣∣ ≤ c
}
,

where V G,Ψ
N,ε and WG

N are defined in (3.17) and (3.25).

Define Ψ1(η) = [η(1)− η(0)]2, let AG,H
N,ε,c be the set

AG,H
N,ε,c = B∇G,Ψ1

N,ε,c ∩ E∇G
N,c ∩B∇H,Ψ1

N,ε,c .

By the superexponential estimates stated in Proposition 3.6 and Proposition 3.7,
it is enough to prove that, for every 0 < a ≤ 1,

lim
c→0

lim
ε→0

lim
N→∞

1

N
logQβ,N

ηN

(
K ∩ AG,H

N,ε,c

)
≤ − 1

1 + a
inf
π∈K

Ea(π) + aC0T .
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For H ∈ C∞
c ([0, T ]× Λ), recall from (3.27) the definition of Q̃H(π) = Q̃2

H(π), with
δ0 = 2 and write

1

N
logQβ,N

ηN

(
K ∩ AG,H

N,ε,c

)
=

1

N
logEβ,N

ηN

[
11{K ∩ AG,H

N,ε,c}eaNQ̃H(πN∗ιε)e−aNQ̃H(πN∗ιε)
]
.

By Hölder inequality the right hand side of the last equality is bounded above by

1

(1 + a)N
logEβ,N

ηN

[
11{K ∩ AG,H

N,ε,c}e−a(1+a)NQ̃H(πN∗ιε)
]

(5.24)

+
a

(1 + a)N
logEβ,N

ηN

[
e(1+a)NQ̃H(πN∗ιε)

]
.

From Lemma 3.8, the second term of this inequality is bounded by aC1(T + 1).
Consider the exponential martingale MG

t defined by

MG
t = exp

{
N
[
〈πN

t , Gt〉 − 〈πN
0 , G0〉

− 1

N

∫ t

0

e−N〈πN
s ,Gs〉(∂s +N2LN ) eN〈πN

s ,Gs〉 ds
]}

.

(5.25)

Since the sequence {ηN : N ≥ 1} is associated to γ, an elementary computation

shows that on the set AG,H
N,ε,c

MG
T = expN

{
J β
G(πN ∗ ιε) + OG(ε) + O(c)

}
, (5.26)

where OG(ε) (resp. O(c)) is a quantity which vanishes as ε ↓ 0 (resp. c ↓ 0) and

J β
G(·) is the functional defined in (2.12). Consider the first term of (5.24) and

rewrite it as

1

(1 + a)N
logEβ,N

ηN

[
MG

T (MG
T )−1

11{K ∩ AG,H
N,ε,c}e−a(1+a)NQ̃H(πN∗ιε)

]

Optimizing over πN in K, since MG
t is a mean one positive martingale, the previous

expression is bounded above by

− 1

1 + a
inf
π∈K

{
J β
G(π ∗ ιε) + a(1 + a)Q̃H(π ∗ ιε)

}
+ OG(ε) + O(c) .

Optimize the previous expression with respect to G and H . Since the set K is

compact and J β
G(· ∗ ιε) and Q̃H(· ∗ ιε) are lower semi-continuous for every G, H ,

ε, we may apply the arguments presented in [25, Lemma 11.3] to exchange the
supremum with the infimum. In this way we obtain that the last expression is
bounded above by

1

1 + a
sup
π∈K

inf
G,H,ε

{
− J β

G(π ∗ ιε) − a(1 + a)Q̃H(π ∗ ιε)
}

+ OG(ε) + O(c) .

Letting first ε ↓ 0 and then c ↓ 0, we obtain that the limit of the previous expression
is bounded above by

1

1 + a
sup
π∈K

inf
G,H

{
− J β

G(π) − a(1 + a)Q̃H(π)
}

This concludes the proof of the lemma because supG J β
G(π) = ÎβT (π|γ). �
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Proof of the upper bound. Let K be a compact set of D([0, T ],M). If for all

π ∈ K, Q̃(π) = ∞ then the upper bound is trivially satisfied. Suppose that

infπ∈K

{
Q̃(π)

}
< ∞, from Proposition 5.16, for any 0 < a ≤ 1,

lim
N→∞

1

N
logQβ,N

ηN

(
K
)

≤ − 1

1 + a
inf

π∈K,Q̃(π)<∞
Ea(π) + aCT

= − 1

1 + a
inf
π∈K

{
IβT (π|γ) + a(1 + a)Q̃(π)

}
+ aCT

≤ − 1

1 + a
inf
π∈K

{
IβT (π|γ)

}
− a inf

π∈K
Q̃(π) + aCT .

To conclude the proof of the upper bound for compact sets, it remains to let a ↓ 0.
To pass from compact sets to closed sets, we have to obtain exponential tightness

for the sequence Qβ,N
ηN . The proof presented in [16, Section 10.4.] is easily adapted

to our context.

5.5. Lower bound. In this section we establish the large deviations lower bound.
The strategy of the proof of the lower bound consists of two steps. We first prove

that for each π ∈ A3, recall its definition in 5.14, and each neighborhood Nπ of π
in D

(
[0, T ],M

)

lim
N→∞

1

N
logQβ,N

ηN

{
Nπ

}
≥ −IβT (π|γ) . (5.27)

The proof of the lower bound is then accomplished by showing, see Subsection 5.3,

that for any π ∈ D
(
[0, T ],M

)
with IβT (π|γ) < ∞ we can find a sequence of πk ∈ A3

such that limk→∞ πk = π in D
(
[0, T ],M

)
and limk→∞ IβT

(
πk|γ

)
= IβT (π|γ).

The proof of (5.27) is similar to the one in the periodic case, see [16, Section
10.5.]. It depends on establishing laws of large numbers, in hydrodynamic scaling,
for weak perturbations of the original process, and controlling by the Girsanov for-
mula the relative entropies of the processes that go with these perturbations. Fix a
path π ∈ A3. Then, by construction, there exists F ∈ C1,2

0

(
[0, T ]× [−1, 1]

)
so that

π is the weak solution of the equation (5.1). Recall from (5.25) the definition of the
exponential martingale MF

T . Let PF
ηN be the probability measure on the path space

D([0, T ],SN) with density MF
T with respect to P

β,N
ηN : P

F
ηN [A] = E

β,N
ηN

[
MF

T 11{A}
]
.

Let (ηt)t∈[0,T ] be the process with law P
F
ηN on D([0, T ],SN). Let (πN

t )t∈[0,T ] be

the corresponding empirical measure. Then (πN
t )t∈[0,T ] converges weakly in prob-

ability to (πt)t∈[0,T ]. From the super exponential estimates, Proposition 3.6 and
Proposition 3.7, we have

lim
N→∞

1

N
logQβ,N

ηN

{
Nπ

}
≥ − lim

N→∞

1

N
H
(
P
F
ηN

∣∣Pβ,N
ηN

)
,

where H
(
P
F
ηN

∣∣Pβ,N
ηN

)
stands for the relative entropy given by

H
(
P
F
ηN

∣∣Pβ,N
ηN

)
=

∫
log
{ dPF

ηN

dPβ,N
ηN

}
dPF

ηN .

To conclude the proof, it remains to show that

lim
N→∞

1

N
H
(
P
F
ηN

∣∣Pβ,N
ηN

)
= IβT (π|γ) .
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The proof of [16, Theorem 10.5.4] is easily adapted to our model. �

6. Appendix

In this section we summarize the properties of the equation (2.10) needed to
prove the main results of the paper. The proofs of these results are based on
applying standard tools in partial differential equations, although some care need
to be taken because of the presence of the nonlocal term. Notice that because of
the nonlocal term the comparison property does not hold for this equation, so tools
based on maximum principle will not work for (2.10).

We recall the notion of weak solution of (2.10). A function ρ(·, ·) : [0, T ] ×
Λ → [0, 1] is a weak solution of the initial-boundary value problem (2.10) if ρ ∈
L2
(
[0, T ], H1(Λ)

)
and for every G ∈ C1,2

0 ([0, T ] × [−1, 1]) one has ℓβG(ρ, γ) = 0,

where ℓβG was defined in (2.9).

Theorem 6.1. For any β ≥ 0 there exists an unique weak solution of (2.10).

The existence of a weak solution of (2.10) is a consequence of the the tightness
of (Qβ

µN
)N≥1 and the characterization of the support of its limit points, see Lemma

4.3. The uniqueness can be easily proven performing estimates as in Theorem 6.2
for all β. A proof of existence without invoking the hydrodynamic limit can be
done applying in our setting the argument done in [10], Section 4.

Theorem 6.2. There exists β0 depending on Jneum and Λ, so that for β ≤ β0

there exists an unique weak stationary solution ρ̄ of (2.11). Further, let ρt(ρ0) be

the weak solution of (2.10) with initial datum ρ0 ∈ M. For β < β0, there exists

c(β) > 0 so that

‖ρt(ρ0)− ρ̄‖L2(Λ) ≤ e−c(β)t‖ρ0 − ρ̄‖L2(Λ).

Proof. Let ρi,0 ∈ M and ρi,t be the solution of (2.10) for t ≥ 0 , with initial datum
ρi,0, i = 1, 2. Set v = ρ1 − ρ2, we have

1

2

d

dt
‖vt‖2L2 = −

∫

Λ

∇v [∇v − βχ(ρ1)J
neum ⋆∇ρ1 + βχ(ρ2)J

neum ⋆∇ρ2]

= −
∫

Λ

∇v [∇v − βχ(ρ1)J
neum ⋆∇v + β[χ(ρ2)− χ(ρ1)]J

neum ⋆∇ρ2] .

(6.1)

Since χ(a) ≤ 1
4 for a ∈ [0, 1] and |χ(ρ2)− χ(ρ1)| = |[ρ2 − ρ1] [1− (ρ2 + ρ1)]| ≤ |v|

we have that ∫

Λ

∇v [∇v − βχ(ρ1)J
neum ⋆∇v] ≥ ‖∇v‖2L2 [1− β

4
] (6.2)

∣∣∣∣
∫

Λ

∇v [χ(ρ2)− χ(ρ1)]∇Jneum ⋆ ρ2]

∣∣∣∣ ≤ sup |∇Jneum|‖∇v‖L2‖v‖L2

≤ a

2
sup |∇Jneum|2‖∇v‖2L2 +

1

2a
‖v‖2L2,

(6.3)

for any a > 0. Taking into account (6.2) and (6.3) we can estimate (6.1) as following:

1

2

d

dt
‖v‖2L2 ≤ −‖∇v‖2L2[1− β(

1

4
+

a

2
sup |∇Jneum|2)] + β

2a
‖v‖2L2 . (6.4)
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and we choose a so that
1

4
+

a

2
sup |∇Jneum|2 ≤ 1

3

Since we are in a bounded domain we can use the Poincaré inequality

‖v‖2L2 ≤ C(Λ)‖∇v‖2L2

obtaining

1

2

d

dt
‖v‖2L2 ≤ −‖v‖2L2

[1− β
3 ]

C(Λ)
+

β

2a
‖v‖2L2. (6.5)

Take β0 so that

[1− β0

3 ]

C(Λ)
− β0

2a
= 0

Then for β < β0 there exists c(β) > 0,
[1−β

3 ]

C(Λ) − β
2a = c(β) > 0, so that

1

2

d

dt
‖v‖2L2 ≤ −c(β)‖v‖2L2 . (6.6)

This implies immediately that the stationary solution is unique and that it is ex-
ponential attractive in L2. �
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