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Original Paper

Specific targeting of the GABA-A receptor a5
subtype by a selective inverse agonist
restores cognitive deficits in Down syndrome
mice

J Braudeau1,2,*, B Delatour1,2,*, A Duchon3,4, P Lopes Pereira3,
L Dauphinot1, F de Chaumont5, J-C Olivo-Marin5, RH Dodd6,
Y Hérault3,4 and M-C Potier1

Abstract
An imbalance between inhibitory and excitatory neurotransmission has been proposed to contribute to altered brain function in individuals with Down

syndrome (DS). Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system and accordingly treatment

with GABA-A antagonists can efficiently restore cognitive functions of Ts65Dn mice, a genetic model for DS. However, GABA-A antagonists are also

convulsant which preclude their use for therapeutic intervention in DS individuals. Here, we have evaluated safer strategies to release GABAergic

inhibition using a GABA-A-benzodiazepine receptor inverse agonist selective for the a5-subtype (a5IA). We demonstrate that a5IA restores learning

and memory functions of Ts65Dn mice in the novel-object recognition and in the Morris water maze tasks. Furthermore, we show that following

behavioural stimulation, a5IA enhances learning-evoked immediate early gene products in specific brain regions involved in cognition. Importantly,

acute and chronic treatments with a5IA do not induce any convulsant or anxiogenic effects that are associated with GABA-A antagonists or non-

selective inverse agonists of the GABA-A-benzodiazepine receptors. Finally, chronic treatment with a5IA did not induce histological alterations in the

brain, liver and kidney of mice. Our results suggest that non-convulsant a5-selective GABA-A inverse agonists could improve learning and memory

deficits in DS individuals.
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Introduction

Down syndrome (DS) is the consequence of trisomy 21, the
most common genetic cause of mental retardation (1/800 live
births), and is characterized by varying degrees of cognitive

impairments (Sherman et al., 2007). Advances in teaching
methods and educational mainstreaming have proven to be
beneficial to people with DS, but are clearly not sufficient to

counteract all cognitive deficits (Wishart et al., 2007). Since
these individuals now have a life expectancy of 55 years and
often survive their parents, treatments aimed at enhancing

cognitive skills to provide higher autonomy are long-awaited.
Unfortunately, attempts with off-label use of various drugs
have not been successful (Reeves and Garner, 2007; Wiseman
et al., 2009).

Recent data strongly suggest that changes associated with
learning and memory dysfunction in DS might result, in part,
from defects in the hippocampus associated with increased

inhibition (GABAergic activity) in the brain, opening new
avenues for pharmalogical intervention (Best et al., 2007;
Kleschevnikov et al., 2004). As a consequence, treatment of

DS mouse models with non-competitive GABA-A
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antagonists, such as picrotoxin or pentylenetetrazol, can
restore impaired phenotypes in DS mice (Fernandez et al.,
2007; Rueda et al., 2008). However, these drugs are convul-

sant at high doses, precluding their use as cognition enhancers
in humans, particularly considering that DS patients are more
prone to convulsions (Menendez, 2005). Frequency of sei-
zures has been reported to reach 6–17% in DS people

(Veall, 1974) with a triphasic distribution of seizure onset
depending on age (infancy, early adulthood and late onset)
(Pueschel et al., 1991).

As an alternative to GABA-A antagonists, we searched
among ligands of the GABA-A-benzodiazepine receptors
that could decrease GABAergic transmission without induc-

ing convulsant activity. This selective pharmacological profile
can be obtained using molecules that are active at the a5
subunit-containing GABA-A-benzodiazepine receptors (Sur

et al., 1999). These receptors are largely expressed in the hip-
pocampus (Wisden et al., 1992), an area integral to learning
and memory. Molecules that specifically decrease GABAergic
transmission through these receptors, such as a5-selective
inverse agonists, have been shown to enhance cognition and
synaptic plasticity without having any adverse convulsant/
pro-convulsant or anxiogenic effects (Ballard et al., 2009;

Collinson et al., 2006; Dawson et al., 2006). To the best of
the authors’ knowledge, these compounds have not yet been
evaluated for the treatment of cognitive impairments associ-

ated with brain dysfunction.
The goal of the present work was to assess the therapeu-

tic potential of an a5-selective inverse agonist, the orally
active 3-(5-methylisoxazol-3-yl)-6-[(1-methyl-1, 2, 3-triazol-

4-yl)methyloxy]-1,2,4-triazolo[3,4-a]phthalazine (Sternfeld
et al., 2004), referred to herein as compound a5IA, in cogni-
tively impaired mouse models of DS. We used Ts65Dn mice,

which are trisomic for orthologues of about half of the genes
on human chromosome 21 (Reeves et al., 1995). These mice
demonstrate learning and memory defects, as well as synaptic

plasticity abnormalities and are widely used for preclinical
research on DS (Escorihuela et al., 1995; Kleschevnikov
et al., 2004; Reeves et al., 1995).

Materials and methods

Animals

Male mice were produced at the Intragene resource centre
(TAAM, CNRS UPS44 Orléans, France) and bred on a

mixed genetic background B6C3, derived from C57BL/6J
(B6) and a congenic inbred line C3H/HeH for the BALB/c
wild-type Pde6b allele (Hoelter et al., 2008), thus avoiding

retinal degeneration and impaired visual acuity. On this back-
ground, Ts65Dn mice show similar behavioural phenotypes
when compared with the original Ts65Dn line (AD and YH,
personal communication; see also Costa et al., 2010). Mice

were acclimated in our animal facility for at least 2 weeks
before initiating behavioural testing. For each experiment,
different batches of mice (3 months old) were used (total

number of animals used: Ts65Dn mice, n¼ 90; euploid litter-
mates, n¼ 122).

All experiments were conducted in accordance with the

ethical standards of French and European regulations

(European Communities Council Directive of 24 November
1986). The supervisor of in vivo studies (B Delatour) received
official authorization from the French Ministry of Agriculture

to carry out research and experiments on animals (authoriza-
tion number 91-282).

Real-time quantitative PCR of Gabra-5

Total RNA was extracted from dissected hippocampi of nine
euploid and seven Ts65Dn mice and treated with DNase

using the Nucleospin RNA II kit (Macherey-Nagel,
France). RNAs (500 ng) were individually reverse-transcribed
into cDNAs overnight at 37�C using the Verso cDNA kit

(ThermoFisher Scientific, Waltham, USA) according to the
manufacturer’s instructions. qPCR assays were performed in
a Lightcycler� 480 System (Roche), in the presence of 200nM

of each primer (Gabra5 5’gacggactcttggatggcta3’_forward
and 5’acctgcgtgattcgctct3’_reverse; pPib 5’ttcttcataaccacagt-
caagacc3’_forward and 5’accttccgtaccacatccat3’_reverse for
normalization), 100nM of specific hydrolysis probe and 1X

Lightcycler� 480 Probes Master mix (Roche, France), and
normalized using the Lightcycler� 480 SW 1.5 software.

�5IA synthesis and formulation

The drug used was 3-(5-methylisoxazol-3-yl)-6-[(1-methyl-1,2,

3-triazol-4-yl)methyloxy]-1, 2, 4-triazolo[3, 4-a]phthalazine
(a5IA). It was synthesized by Orga-Link SARL (Magny-les-
Hameaux, France), according to Sternfeld et al. (2004). The
hydrochloride salt was prepared by dissolving the base in hot

ethanol and adding a solution of 5% hydrochloric acid in
ethanol until the solution was slightly acidic. Upon cooling,
a precipitate formed which was collected by filtration, washed

with cold ethanol and dried.
The HCl salt of a5IA was solubilized in a mixture of

DMSO, Cremophor El (BASF, Ludwigshafen, Germany)

and hypotonic water (ProAmp�) (10:15:75). a5IA or vehicle
(solubilization solution) was injected intraperitoneally (i.p.) at
different doses ranging from 1 to 50mg/kg.

Morris water maze

Experiments were performed in a 150-cm diameter Morris

water maze filled with opacified water kept at 19�C and
equipped with a 9 cm diameter platform submerged 1 cm
under the water surface.

In a first pilot experiment, a total of 27 C57BL/6 mice were
used to study dose–response cognitive-enhancement effects of
a5IA (vehicle, 1mg/kg, 5mg/kg, n¼ 9 in each group) in a

delayed matching-to-place task (DMTP) (see Figure 1(a)) as
described previously (Collinson et al., 2002).

In a second experiment, 16 Ts65Dn (vehicle n¼ 8, a5IA
5mg/kg n¼ 8) mice and 16 euploid littermates (vehicle n¼ 8,

a5IA 5mg/kg n¼ 8) were trained during 6 days in the stan-
dard Morris water maze task (MWM) (see Figure 2(a)).
Training consisted of daily sessions (two trials per session).

Start positions varied pseudo-randomly among the four car-
dinal points. Mean inter-trial interval was 2 hours. During
the habituation and spatial training phases each trial ended

when the animal reached the platform. A 90-second cut-off
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was used, after which mice were manually guided to the
platform. Once on the platform, animals were given a
20-second rest before being returned to their cage. Twenty

four hours after the last training trial, retention was assessed
during a probe trial in which the platform was no longer
available. During the four subsequent sessions visual ability
of mice was controlled: platform location was cued by a

white styrene ball placed 12 cm above water surface and
access to external indices was prevented by a black curtain
surrounding the pool.

In all navigation tasks (DMTP, MWM) mice were injected
daily with vehicle or a5IA 30min before each first (T1) trial of
each daily session. Animals were monitored with the Any-

Maze (DMTP task; Stoelting, Wood Dale, USA) or the
VideoTrack (MWM task; Viewpoint, Lyon, France) video
analysis systems.

Novel-object recognition

The apparatus consisted of a square open field

(50 cm� 50 cm) placed in a room with weak controlled lumi-
nosity (4–6 lux) and constant 60 dB white noise.

The first day, all animals (16 euploid and 16 Ts65Dn mice)

were handled by the experimenter. On day 2, mice were habit-
uated for 20min to the empty arena. On day 3, four identical
objects were placed symmetrically 14 cm away from the arena

corners. Mice were free to explore the objects for 20min. On
the test day (day 4), mice were injected i.p. with either vehicle
or a5IA 5mg/kg (eight euploid and eight Ts65Dn mice in
each group). Thirty minutes after injections, mice were

placed in the arena containing two identical objects, and
allowed to explore them for 10min. Mice then returned
to their home cage for a 10-min retention interval. To test

short-term recognition memory, one familiar object and one
novel object were placed in the apparatus, and mice were
free to explore for a 10-min period. Between each trial the

arena and objects were cleaned with 70� ethanol to reduce
olfactory cues.

During all sessions mice were monitored using the Any-

Maze video-tracking software. Object exploration was man-
ually scored with an ethological keyboard and defined as the
orientation of the nose to the object at a distance <4 cm. The
amount of time exploring familiar vs. novel objects was

calculated to assess memory performance.

Measure of cerebral Fos immunoreactivity

Euploid (n¼ 13) and Ts65Dn (n¼ 6) mice were pseudo-
trained in the object recognition task using the same protocol

as described in the novel-object recognition (NOR) task, but
with no retention phase. Thirty minutes before acquisition,
six euploid and three Ts65Dn mice, and seven euploid and
three Ts65Dn were injected i.p. with a5IA (5mg/kg) or vehi-

cle, respectively. Following the acquisition session, mice
returned to their home cage. Ninety minutes following beha-
vioural stimulation, mice were perfused transcardially with

phosphate buffered saline (PBS), their brains fixed in 10%
formalin, cryoprotected and sectioned on a freezing micro-
tome. Fos immunoreactivity (polyclonal AB-5, Calbiochem-

VWR, France; dilution 1:10,000) was detected using the ABC

Figure 1. Dose–response effect of a5IA. The optimal a5IA promnesic

dose was determined in euploid mice trained in the DMTP task. (a)

Schematic representation of the DMTP protocol. Training was performed

during 7 consecutive days. Each day, mice underwent one acquisition trial

(T1) and three retention trials (T2–T4); inter-trial interval was 60 sec-

onds. The position of the platform was changed every day, but remained

constant within each session. (b) Performance (distance to platform;

mean � SEM) of the mice between acquisition and retention trials. Data

from the seven training days have been pooled. All mice showed a sig-

nificant increase in behavioural accuracy within each session. While

vehicle-treated mice and mice receiving 1 mg/kg of a5IA showed similar

retention, mice that were treated with the 5 mg/kg dose of a5IA dis-

played a significantly higher retention performance in comparison to

other groups (*p< 0.05, ANOVA with Fisher’s post hoc comparisons).
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method with nickel-enhanced diaminobenzidine as final
chromogen. Immunoreactivity was quantified using QUIA

software (see http://www.bioimageanalysis.org) that auto-
matically calculated the proportion of stained tissue
(p¼ stained area/total area), providing unbiased stereological

measurements. Four regions of interest (ROIs) were analysed:
posterior cingulate cortex, perirhinal cortex, dentate gyrus
and CA1 field of the hippocampus on several serial sections.
Results were then averaged to give a reliable quantitative

evaluation of local Fos immunostaining.

Convulsant and pro-convulsant effects

The convulsant effects were evaluated after a single i.p. injec-
tion of a5IA at high dosage (50mg/kg) or vehicle in Ts65Dn

or euploid littermates. For testing the pro-convulsant effects

of a5IA, a sub-convulsant dose of pentylenetetrazole
(45mg/kg i.p.) was injected i.p. 20min after injection of

a5IA or vehicle. Six or seven mice were used for each condi-
tion. Mice were observed for 20min (convulsant effects) or
30min (pro-convulsant effects): the occurrence of tonic

convulsions and latency to the first myoclonic jerk episode
were recorded.

Locomotor activity

Locomotor activity was evaluated in a total of 33 mice 30min
after i.p. injections (vehicle: 8 euploid and 7 Ts65Dn mice;

a5IA 5mg/kg: 10 euploid and 8 Ts65Dn mice). Locomotion
was measured in a square open field (50 cm� 50 cm; luminos-
ity: 30 lux) with black walls 30 cm high. Each animal was

allowed to freely explore the arena for 10min. Horizontal

Figure 2. a5IA restores spatial learning in Ts65Dn mice. (a) Schematic representation of the MWM protocol (see the text for explanations; PT: probe

trial). (b) Data on learning performance have been pooled into two blocks of 3 days. Vehicle-treated Ts65Dn mice demonstrated decreased learning

index in comparison with the three other trained groups. This deficit was corrected by treatment with a5IA. (c) A hit was defined as reaching the

platform before 90 seconds. Vehicle-treated Ts65Dn mice showed a clear delay in conditioning that was rescued after treatment with a5IA. (d) Only

euploid mice showed a spatial bias for the platform target quadrant during probe trial. Impaired retention of the platform location in Ts65Dn mice was

not rescued after drug treatment. For (b) and (d), horizontal dotted lines at 25% correspond to random performance. For (d), percentage of time spent

in other quadrants (‘others’) calculated as the mean time spent in these three non-target quadrants. *p< 0.05: ANOVA with repeated measures and

contrast analysis. #p< 0.05: paired Student’s t-tests.
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activity was monitored using the Any-Maze software. Time
spent in the 10-cm wide peripheral zone and in the comple-
mentary 30 cm� 30 cm central zone was recorded to evaluate

anxiety.

Anxiety-related behavioural testing

Modulation of anxiety-related behaviours by a5IA was
assessed using an elevated plus maze, in a total of 42 mice,
30min after i.p. injections (vehicle: 11 euploid and 7 Ts65Dn

mice; a5IA 15mg/kg: 14 euploid and 10 Ts65Dn mice). The
maze was constructed of black Perspex (length, 28 cm; width,
5 cm; height from floor, 40 cm; overall luminosity in open

arms: 70 lux) with two opposing open arms, and two enclosed
arms equipped with three 16-cm high walls. Mice were placed
in the central region of the maze and behaviour was recorded

for a 5-min period using the Any-Maze software.
To explore the potential adversity of chronic injections of

a5IA, another group of euploid mice was treated for 2 weeks
(5mg/kg, five injections/week; five a5IA-treated mice; five

vehicle-treated mice) and then evaluated in the elevated plus
maze as described previously.

Anatomopathology after chronic treatment with �5IA

Mice treated for 2 weeks with a5IA 5mg/kg and tested in the

elevated plus maze (see the previous section) were further
treated for another 3 weeks. On the last day of treatment,
urine samples were collected 2 hours after a5IA or vehicle

i.p. administration. The next day, mice were sacrificed. For
anatomo-pathological examination, three additional euploid
non-injected mice were also sacrificed. Liver, kidney, brain
and spleen were dissected and fixed in a 10% formalin solu-

tion. Tissues were then paraffin-embedded, cut and processed
for routine histopathological evaluation (haematoxylin–eosin
and periodic acid-Schiff stainings).

Statistical analysis

In most cases, data were analysed using an analysis of vari-
ance (ANOVA) with Fisher’s post hoc comparisons. ANOVA
with repeated measures or within-subjects designs and con-
trast analysis were carried out when required by the experi-

mental plan to assess complementary statistical effects. Also
in some designs, statistical analysis was performed using
Student’s t-tests. For all analysis statistical significance was

set to a p-value <0.05. All analyses were performed using
Statistica v6 (StatSoft, Inc., Tulsa, OK, USA) or GraphPad
Prism (GraphPad Software, La Jolla, CA, USA) software.

Results

�5IA acts as a cognition enhancer and alleviates

learning and memory deficits in Ts65Dn mice

Synthesis of the �5IA and determination of the phar-
macologically active dose. As a prerequisite we checked
that the level of expression of the Gabra5 gene encoding the
a5 GABA-A subunit was unchanged in the hippocampus of

Ts65Dn mice as compared with euploids (t14¼ 0.40, p¼ 0.69;

data not shown) confirming the presence of the pharmacolog-
ical target in Ts65Dn mice. We concurrently synthesized a5IA
and showed that the spectral characteristics and binding affin-

ity of the compound conformed with published data (see
Supplementary Figure S1) (Sternfeld et al., 2004). We then
determined the optimal dose of a5IA that induced clear
promnesic effects in mice trained in the DMTP version of

the MWM task (Figure 1(a)). As illustrated in Figure 1(b),
a large decrease in distance travelled was observed between
acquisition and retention trials underlying memory of the

goal location (F1,24¼ 66.39, p< 0.0001). The three groups
(vehicle, a5IA 1mg/kg and a5IA 5mg/kg) showed similar
performances during acquisition (F< 1) but a group effect

was observed during retention trial (F2,24¼ 4.5, p< 0.05).
Indeed while the vehicle and the a5IA 1mg/kg groups dem-
onstrated comparable retention performance (F< 1), mice

treated with a5IA 5mg/kg displayed a clear improvement of
performance (comparison with vehicle mice: F1,24¼ 8.5,
p< 0.01). We therefore selected the dose of 5mg/kg to be
used in subsequent behavioural tests in DS models.

Effects of �5IA on reference memory in Ts65Dn mice
using the Morris water maze task. To evaluate the res-
cuing potential of a5IA in behaviourally impaired Ts65Dn
mice, we first assessed the effect of the drug on spatial refer-

ence memory in the standard MWM task, in which mice have
to swim in their environment to locate a hidden platform at a
constant location (Figures 2–4). Out of 16 Ts65Dn and 16
euploid mice, 1 Ts65Dn mouse was discarded from statistical

analysis because it displayed abnormal floating behaviour and
decreased swim speed in the maze. During the probe trial one
euploid mouse was removed from the analysis for the same

reason.
We first analysed the acquisition of place location (Figure

2(b) and 2(c)). ANOVA on swim speeds revealed an effect of

group factor (F3,26¼ 2.99, p< 0.05). Owing to variations in
swim speeds between conditions that may impact non-speci-
fically on performances, we calculated an unbiased index of

spatial learning that is the percentage of the path length spent
by mice in the target quadrant (Faure et al., 2009; Janus et al.,
2004) (Figure 2(b)). ANOVA (main factors: group and block
of sessions) on this learning index indicated significant effect

of group (F3,27¼ 4.77, p< 0.01) and block (F1,27¼ 16.63,
p< 0.001) factors with no significant interactions between
these main factors (F3,27< 1). Vehicle-treated Ts65Dn mice

displayed a low learning index when compared with mice
from the three other groups (all F1,27> 6.53, p< 0.05).
ANOVA on the percentage of trials performed within the

cut-off limit (that is, percentage of hits, Figure 2(c)), a com-
plementary measure of learning proficiency, indicated signif-
icant effect of group (F3,27¼ 3.44, p< 0.05) and session
(F5,135¼ 4.32, p< 0.002) factors with no significant interac-

tions between these main factors (F5,135¼ 0.91, p> 0.55).
Vehicle-treated Ts65Dn mice were once again severely
impaired in terms of hits performed when compared with

mice from the three other groups (percentage of hits: all
F1,27> 6.10, p< 0.05, Figure 2(c)). Finally, ANOVA indicated
that a5IA significantly potentiated the acquisition proficiency

of Ts65Dn mice (F1,27> 6.10, p< 0.025 for the learning index
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and hit measures) allowing them to regain normal levels of
performance. This promnesic effect of the treatment was not

observed in euploid mice that performed equally well in this
test with or without a5IA (F< 1 for the learning index and
percentage of hits measures).

We then analysed navigation strategies of mice (Figure 3).
Indeed, in association with an impaired learning capacity,
Ts65Dn mice also displayed high levels of thigmotaxy. We

measured this ‘wall-seeking behaviour’ as the time spent by
mice in the 10-cm-wide peripheral annulus of the pool. As
shown in Figure 3 thigmotaxy of Ts65Dn mice appeared to
be strongly decreased after a5IA treatment. ANOVA on the

time spent performing thigmotaxy confirmed significant
effects of group (F3,28¼ 13.70; p< 0.0001) and day
(F5,140¼ 7.48; p< 0.0001), underlining that thigmotaxy

decreased across training sessions (Figure 3). The group� day
interaction was non-significant (F15,140¼ 1.37, p¼ ns). Post-
hoc analysis showed that Ts65Dn mice were more thigmotac-

tic in comparison to euploid mice in vehicle condition
(F1,28¼ 20.75, p< 0.0001). While a5IA strongly reduced thig-
motaxy in Ts65Dn mice (F1,28¼ 15.74; p< 0.001) these mice
still displayed increased thigmotaxy after a5IA treatment

(comparison with euploids: F1,28¼ 4.81, p< 0.05). In addi-
tion, in euploid mice, the thigmotaxy-reducing effect of
a5IA, although observed (see Figure 3), did not reach statis-

tical significance (F1,28¼ 2.57, p¼ ns).
Retention of place location was evaluated during

a single probe trial (PT) (no platform available, see

Figure 2(a)). Examination of each group separately

showed that euploid mice clearly located the target quad-
rant as demonstrated by their biased exploration (compar-

ison between target vs. non-target quadrants, paired t-test:
t12> 2.91, p< 0.025 for vehicle and a5IA conditions; see
Figure 2(d)). In contrast, Ts65Dn mice, even after a5IA
treatment, did not show exploratory preference for the
target quadrant during probe test (t< 1.7, p¼ ns for all
treatment conditions), indicating that they could not effi-

ciently remember the goal location.
Finally, although mice produced for this study carried a

functional allele of Pd6b avoiding retinal degeneration (see
the Materials and methods section), their visual ability was

controlled using a non-spatial training procedure (Figure 4).
ANOVA showed no effects of the group factor (F3,28< 1,
p¼ ns). The repetition of training trials (day factor) had a

significant impact on performance (F3,84¼ 3.11, p< 0.05)
and there was no group�day interaction (F< 1) thus indi-
cating that all groups gradually increased their performance

in the visual discrimination task and performed equally,
whatever the genotype or treatment.

In summary it can be concluded that a5IA treatment res-
cued the MWM spatial learning deficits present in Ts65Dn

mice and mitigated their use of inadequate navigation
strategies.

Effects of �5IA on short-term memory in Ts65Dn
mice using the novel object recognition task. We then

evaluated a5IA treatment effects on non-spatial memory

Figure 3. a5IA relieves the use of inadequate behavioural navigating

strategies in the Morris water maze. A robust effect of a5IA was observed

on thigmotaxy (percentage of time spent performing thigmotaxy has

been pooled over the six training sessions, mean � SEM). This inadequate

strategy to locate the platform in the water maze was strongly decreased

following treatment with a5IA but more particularly in Ts65Dn mice and

to a lesser (non-significant) extent in euploid mice, likely due to some

ceiling effects as Ts65Dn mice displayed an overall increased basal level

of thigmotaxy in comparison to euploid mice. *p< 0.05; **p< 0.001;

***p< 0.0001; ANOVA with repeated measures and contrast analysis.

Figure 4. Spatial impairments in Ts65Dn mice are not due to visual

deficits. Following evaluation of spatial memory in the Morris water maze

(MWM), mice were trained in a visually guided navigation task (cued

visible platform). Performance was assessed using an unbiased learning

index (mean � SEM, same as in Figure 2). Analysis indicated that beha-

vioural accuracy to locate the visible platform increased across sessions

with no effect of genotype or treatment. The horizontal dotted line at

25% represents level of performance due to random navigation in the

pool. As illustrated, all trained groups performed largely above this level.

Braudeau et al. 1035



using the NOR paradigm assessing short-term recognition
memory (Figure 5(a)).

Out of 16 Ts65Dn and 16 euploid mice, 2 Ts65Dn and 1

euploid were removed from statistical analysis because they
displayed abnormally low levels of object exploration (t< 7 s)
during retention test, hence precluding analysis of their
memory performance. The remaining mice spent a large

amount of time exploring objects (t¼ 77� 4.9 s).
A preliminary analysis of global levels of object explora-

tion was carried out during the acquisition and retention

phases of the object recognition task (data not shown).
ANOVA did not show any effects of the group (F3,25¼ 2.40,
p¼ ns) and testing phase (F1,25¼ 3.67, p¼ ns) nor of the inter-

action between these factors (F3,25< 1, p¼ ns). These results

demonstrate that whatever their genotype and treatment,
mice displayed the same overall levels of exploration directed
towards objects.

Object recognition memory performance was then specifi-
cally evaluated during the retention phase by analysing the
time spent by mice exploring familiar versus novel objects
(Table 1). Unpaired t-tests showed that euploid mice, treated

or not with a5IA, were able to discriminate between the two
objects (vehicle condition: t6¼ 2.49, p< 0.05; a5IA condition:
t7¼ 6.3, p< 0.001) indicating normal recognition memory. In

contrast, vehicle-treated Ts65Dn did not show any significant
exploratory preference towards the novel object (t7< 1)
underscoring impaired recognition memory. However,

Ts65Dn mice treated with a5IA were able to clearly

Figure 5. a5IA alleviates recognition memory deficits in Ts65Dn mice and potentiates neuronal activity (a) Upper part: general protocol of the novel-

object recognition (NOR) (see the text for explanations). Lower part: Learning index (see Table 1 for raw data). Under vehicle, Ts65Dn mice were found

to be impaired. Following i.p. injection of a5IA (5 mg/kg), both euploid and Ts65Dn mice improved their NOR performance and the deficit of Ts65Dn

mice was abolished. *p< 0.05; **p< 0.001; ***p< 0.0001; ANOVA with Fisher’s post hoc comparisons. (b) Upper part: general protocol for assessing

the levels of Fos after behavioural stimulation (see the text for explanations). Lower part: histograms depict the relative increase of Fos immunore-

activity in a5IA-treated mice normalized against values obtained for vehicle-treated littermates. In all brain regions sampled, except the dentate gyrus,

a significant increase of Fos was observed after a5IA injection. #p< 0.05; ###p< 0.001; two way ANOVA with repeated measures and contrast analysis.

No differences between genotypes were observed.

Table 1. a5IA modulates the time spent by mice exploring familiar versus novel objects

Genotype Treatment New object mean� SEM Familiar object mean� SEM

Euploids Vehicle 44.91� 6.43 32.43� 3.47*

a5IA (50 mg/kg) 44.40�6.83 28.48� 4.16***

Ts65Dn Vehicle 44.91� 5.79 48.35� 5.09

a5IA (50 mg/kg) 49.28� 7.27 21.05� 2.16***

In contrast to Ts65Dn vehicle-treated mice, vehicle-treated euploids and a5IA treated mice (Ts65Dn and euploids) discriminated

between familiar and novel objects. Comparison between objects: *p< 0.05, ***p< 0.001, paired t-test.
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differentiate between the two objects, indicating that a5IA
treatment was able to restore normal recognition memory
(t5¼ 4.85, p< 0.005).

In order to better clarify the effects of genotype and a5IA
treatment on recognition memory we calculated a learning
index (I) according to the following formula:

I ¼

Novel Object

Exploration Time

� �
�

Familiar Object

Exploration Time

� �

Total Exploration Time

2
664

3
775

ANOVA on this learning index indicated significant effect of

group (F3,25¼ 12.52, p< 0.001). Post-hoc analysis indicated a
significant effect of a5IA treatment which largely potentiated
recognition memory (Figure 5(a)). The effect was observed in

both euploid (comparison vehicle vs. drug conditions:
F1,25¼ 8.42, p< 0.01) and Ts65Dn mice (F1,25¼ 24.34,
p< 0.0001). The analysis also showed that vehicle-treated
Ts65Dn mice had a lower learning index as compared with

euploid mice (F1,25¼ 4.97, p< 0.05). However, following
a5IA treatment, the learning index of Ts65Dn and euploid
mice were found to be similar (F< 1), underlining recovery of

performance following treatment in this genotype.
In summary, Ts65Dn mice under vehicle condition pre-

sented impaired recognition memory in the NOR task that

was recovered, after a5IA treatment.

�5IA potentiates evoked-neuronal activity

In order to determine how a5IA modulated behaviour-
evoked neuronal activity in euploid and Ts65Dn mice, we
performed a brain mapping analysis of an immediate early

gene product (Fos protein). Animals were trained as
described previously in the NOR task until completion of
the acquisition phase (Figure 5(b)). We first confirmed that

all groups displayed the same level of object exploration,
with no effect of genotype, treatment and of their interac-
tions (all F< 1; data not shown). In addition, the distance

travelled by mice did not vary significantly with genotype
(F< 1) and treatment (F1,29¼ 2.29, p¼ ns) (data not shown).
It was then concluded that all mice received the same sen-
sorimotor stimulation during the acquisition phase of the

NOR task. Ninety minutes after completion of behaviour,
mice were sacrificed and their brains processed for quanti-
tative assessment of the neuronal activity marker Fos

(Figure 5(b)). The proportion of brain tissue immunola-
belled against Fos was quantified and analysed using
ANOVA. This analysis revealed a significant effect of

Treatment as immunoreactivity was found to be significantly
increased in a5IA treated mice (F1,13¼ 6.376, p< 0.025).
There was, however, no effect of the genotype or of the
interactions between genotype and treatment (F< 1), sug-

gesting that euploid and Ts65Dn mice displayed the same
overall levels of Fos immunoreactivity and underwent simi-
lar effects after a5IA treatment. Complementary analysis

showed that the effect of a5IA was not the same throughout
brain regions (F3,39¼ 85.93, p< 0.0001; Figure 5(b)) illustrat-
ing that NOR-evoked neuronal activity was restricted to

some brain areas (CA1, perirhinal and posterior cingulated

cortices). The interaction between region and treatment was
found to be significant (F3,39¼ 5.612, p< 0.005), likely due
to the lack of a5IA-induced increase of Fos immunoreactiv-

ity in one of the four regions analysed, the dentate gyrus
(effect of treatment: posterior cingulate cortex F1,15¼ 35.59,
p< 0.0001; perirhinal cortex F1,15¼ 6.37; p< 0.025; CA1
F1,15¼ 5.30, p< 0.05; dendate gyrus F< 1).

We thus concluded that following behavioural stimula-
tion, a5IA enhanced evoked immediate early gene products
in specific brain regions such as hippocampus, perirhinal and

posterior cingulate cortices.

�5IA treatment does not induce side effects in Ts65Dn

and euploid mice

Convulsant and pro-convulsant effects. The a5IA mole-
cule was demonstrated previously to be neither convulsant
nor anxiogenic in wild-type mice and rats (Dawson et al.,
2006); however, this characteristic had never been tested in

DS mouse models. We tested the putative convulsant effect of
a5IA after a single injection of 50mg/kg (10� the dose pro-
ducing promnesic effects). Neither euploid nor Ts65Dn mice

displayed any convulsions after injection (Table 2). We then
tested the pro-convulsant effect of a5IA by injecting it (50mg/
kg) 20min before a sub-convulsant dose of pentylenetetrazol

(45mg/kg) that induces myoclonic convulsions in about 50%
of mice. Injection of a5IA did not potentiate convulsant activ-
ity of pentylenetetrazol in either euploid or Ts65Dn mice
(ANOVA on the latency of myoclonic jerks: effect of group

F3,8¼ 1.43, p¼ ns).

Locomotor activity. In the open field task, ANOVA on
travelled distances (Figure 6(a)) did not show any effect of
group (F3,29¼ 2.64, p¼ ns). To evaluate anxiety during the

open field test, a periphery-to-centre exploration ratio was
measured. ANOVA on this measurement did not reveal any
effect of group (F< 1; Figure 6(b)).

Putative anxiogenic effects. In order to better assess the
level of anxiety in euploid and Ts65Dn mice treated or not

with a5IA, we used the elevated plus maze task. Time spent in
the open arms of the elevated plus maze was taken as a mea-
sure of anxiety levels (the greater the time spent, the less anx-

ious). ANOVA of this measure did not show any significant
effect of group (F3,40¼ 2.59, p¼ 0.06). We nevertheless
observed that vehicle-treated Ts65Dn mice had an increased

propensity to stay in open arms as compared to euploid mice
(F1,40¼ 3.68, p¼ 0.062) and hence displayed some trends for
hypo-anxiety traits (for similar findings see Demas et al.,
1996). In addition, as illustrated in Figure 7, it appears that

a5IA slightly decreased time spent in the open arms. This
tendency was significant in Ts65Dn mice (F1,40¼ 4.56,
p< 0.05) but not in euploid mice (F< 1). We therefore pro-

pose that the weak ‘anxiogenic-like’ effects of a5IA in Ts65Dn
mice are mainly due, in our experimental design, to a normal-
ization of behaviour, from low to normal levels of anxiety, in

these mice.
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Effects of chronic treatment with �5IA. Euploid mice

treated with a5IA (5mg/kg) for 2 weeks did not show any
change in their gross behaviour. Body weights were compa-
rable between vehicle and a5IA mice (F< 1) and both groups

showed normal progressive growth (ANOVA on body
weights: F8,64¼ 22.45, p< 0.0001, data not shown).

More importantly, mice treated chronically with a5IA
5mg/kg showed similar levels of anxiety as vehicle-treated
mice (unpaired t-test on the time spent in open arms:
t8¼ 1.04, p¼ ns; Figure 7, right panel), suggesting that
a5IA chronic treatment did not alter anxiety-related

behaviours.
Following 5 weeks of chronic treatment with a5IA, vari-

ous organs were collected and processed for routine histo-

pathological examination. Haematoxylin–eosin (Figure 8)
and periodic acid-Schiff stained sections (not shown) did
not reveal any significant macroscopic nor microscopic

tissue alterations in any of the three experimental groups
(non-injected, vehicle-injected or a5IA-treated mice). In par-
ticular, examination of brain, hepatic and renal tissues under

polarized light did not show the occurrence of abnormal crys-
tals in mice that did receive injections of a5IA.

In summary, it appears that treatment with a5IA did not
promote any significant liabilities as it did not induce convul-

sant/pro-convulsant activity nor affected locomotion and
anxiety-related behaviours.

Discussion

�5IA restores cognitive dysfunction in Ts65Dn mice

In this study we demonstrated that treatment with a5IA lar-
gely alleviates the cognitive deficits of Ts65Dn mice. Indeed
Ts65Dn mice receiving a single administration of a5IA
increased their memory performance in the NOR task and
behaved as a5-IA-treated euploid littermates. Furthermore,
repeated a5IA treatment across training sessions in the

MWM task allowed Ts65Dn mice to decrease their anoma-
lous foraging behaviours, and to learn a fixed goal location
with the same efficiency as euploid mice. Rescue of learning

deficits in Ts65Dn mice by a5IA appeared to be specific since

sensory functions in the MWM test or motivation to explore

objects in the NOR task remained unchanged in this genotype
and were not affected by a5IA treatment. These exciting find-
ings provide, for the first time, important preclinical evidence

for the hypothesis that release of GABAergic inhibition by a5
GABA-A benzodiazepine inverse agonists may improve cog-
nitive function in DS individuals.

Treatment with GABAA antagonists (e.g. pentylenetetra-
zol) was previously shown to rescue memory performances in
Ts65Dn mice trained in the NOR task (Fernandez et al.,
2007) and in the MWM task (Rueda et al., 2008). However,

the use of GABA antagonists as well as of non-specific
GABA-A benzodiazepine inverse agonists as therapeutic mol-
ecules has serious limitations because of their known adverse

effects: convulsant, pro-convulsant and anxiogenic effects.
The a5 GABA-A benzodiazepine inverse agonists, thanks to
their unique pharmacological profile, are devoid of such lia-

bilities (for a review see Atack, 2009). In the present study, we
further show that Ts65Dn mice treated with a5IA did not
display any alteration in their locomotor behaviour. More

importantly and as opposed to treatments with pentylenetet-
razol, Ts65Dn did not develop significant alterations of anxi-
ety-related behaviours nor any convulsant or pro-convulsant
activity. A putative renal toxicity of a5IA has been claimed in

some reports (Atack, 2008; Merschman et al., 2005) because
of the in vivo formation and crystallization of insoluble
metabolites at extremely high dosages (240mg/kg/day for 5

weeks). However, we did not find evidence of any anatomo-
pathological lesions in mice chronically treated with a5IA at
5mg/kg, the pharmacologically active dose (see Supplemental

Text T1 for additional discussion).
From these observations it can be concluded that a5IA has

a better therapeutic profile than GABA antagonists. Indeed
the first successful use of a5IA as a cognitive enhancer can-

didate in human subjects has been recently published (Nutt
et al., 2007) affirming its good safety and tolerability.

�5IA effects on acquisition and retrieval of memories

In addition to its therapeutic effects in Ts65Dn mice, a5IA
displayed some promnesic action in euploid mice trained in

Table 2. Lack of convulsant and pro-convuslant activities of a5IA

Genotype Treatment

Latency of myoclonic jerks

mean � SEM

Rate of

convulsant mice

Convulsant effects

Euploids Vehicle / 0/6

a5IA (50 mg/kg) / 0/6

Ts65Dn Vehicle / 0/6

a5IA (50 mg/kg) / 0/7

Pro-convulsant effects after pentylenetetrazol (45 mg/kg)

Euploids Vehicle 448�145 4/6

a5IA (50 mg/kg) 330�90 3/6

Ts65Dn Vehicle 507�39 3/6

a5IA (50 mg/kg) 796�354 4/7

Data indicate that a5IA (50 mg/kg) did not induce any convulsant effects in either euploid or Ts65Dn mice. The drug also did not

promote the convulsant action of pentylenetetrazol (45mg/kg) in the two genotypes.
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short-term memory tasks using the NOR or DMTP para-

digms. Most studies investigating cognitive-enhancing prop-
erties of a5-specific GABA-A inverse agonists were indeed
conducted in rodents trained in the DMTP test (Collinson
et al., 2002; Dawson et al., 2006). However, in a spatial ref-

erence memory task requiring gradual memorization of an
invariant goal location throughout trials and days (MWM
task) we showed that a5IA largely facilitated the performance

of Ts65Dn mice but not those of euploid mice. This under-
scores that a5IA, under non-pathological conditions, might
have positive outcomes but only in specific (short-term

memory) training conditions.

When evaluating the effects of a5IA on the retrieval of
long-term (24 hours) spatial memory during the probe test

of the MWM task, we showed that a5IA did not actually
increase retention performance in either euploid or Ts65Dn
mice. This indicates that a5IA mainly exerts its nootropic
action during the acquisition of information but might be

less potent in stimulating accurate retrieval of the previously
formed memories. Collinson, Atack and colleagues suggested
that GABA-A a5 inverse agonists could, under some circum-

stances, improve both the acquisition and the retrieval of spa-
tial memories. However, they used memory paradigms based
on short–intermediate retention intervals (15–180min) that

do not fully assess long-term recall (at least 24 hours post-
acquisition) as usually performed during probe tests in spatial
navigation tasks (Atack et al., 2006; Collinson et al., 2006).

Altogether these studies suggest that a5IA stimulates

short-term memories in normal and cognitively impaired
mice, likely through a modulation of the attentional–working
memory process. In addition, gradual learning across training

sessions, as evaluated in the MWM task, can also be poten-
tiated by a5IA in Ts65Dn mice but the effects are less pro-
nounced in euploid mice displaying high learning proficiencies

in this task. Finally, the stabilization and late recall of

Figure 6. a5IA does not alter locomotor activity and anxiety of Ts65Dn

and euploid mice in the open field. Effects of a5IA (5mg/kg) were

evaluated on locomotion and anxiety in the open field. (a) Analysis of

horizontal activity (travelled distances; mean � SEM) did not show any

effect of treatment, underscoring that a single a5IA injection did not

modify the gross locomotor activity of both euploid and Ts65Dn mice.

(b) To assess anxiety during the open field session, a periphery-to-centre

exploration ratio was measured (P/C ratio; mean � SEM). Analysis of this

measure did not reveal any effects of Genotype or Treatment.

Figure 7. a5IA does not induce anxiety-related behaviours. Anxiety was

assessed in the standard elevated plus maze task, in both euploid and

Ts65Dn mice under vehicle or a5IA (one single 15 mg/kg i.p. injection;

left panel of the figure). Under vehicle condition, Ts65Dn mice showed a

trend for hypoanxiety (increased time in open arms) in comparison to

euploid mice. Acute treatment with a5IA did not modify the behaviour of

euploid mice, but significantly reduced the time spent in open arms by

Ts65Dn mice. This effect can be ascribed to a normalization of behaviour

in the Ts65Dn mice. Semi-chronic injections of a5IA in euploid mice

(5 mg/kg five times a week for 2 weeks; right panel of the figure) did not

alter the anxiety levels. Horizontal dotted line indicates the baseline

performance of mice acutely treated with vehicle. *p< 0.05, ANOVA with

Fisher’s post hoc comparisons.
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reference memories do not appear to be impacted by a5IA
treatment.

Putative mechanisms of action of �5IA in normal

and diseased brain

In close association with an enhancement of cognitive profi-
ciency, we showed that treatment with a5IA also increased
immediate early gene products (Fos protein levels) following

a behavioural stimulation that mimics a learning episode
(encoding of new information). Increased Fos immunoreac-
tivity was observed in all of the sampled brain areas involved

in recognition memory (posterior cingulate and perirhinal
cortices, pyramidal cell layer of the hippocampus) but not
at the level of the dentate gyrus. This latter observation was

expected as the dentate gyrus is a sector of the hippocampus
that displays only low concentrations of GABAA a5 receptors
(Pirker et al., 2000; Sperk et al., 1997). Paucity of targets
might hence explain the local lack of drug-induced increased

neuronal activity. Importantly we did not find any differences
between euploid and Ts65Dn mice in terms of Fos immuno-
reactivity levels. The absence of a genotype effect under vehi-

cle conditions underscores that Ts65Dn mice did not sustain
an overall pattern of reduced neuronal activity, at least during
the exploration–memorization of a new environment.

Following drug administration, both genotypes displayed

significant (and comparable) increases in the levels of neuro-
nal activity markers. This potentiation of brain activity
during acquisition of new information might therefore be

the substratum of the ‘general’ promnesic effects of a5IA
that should be independent of the disease status.

While we showed that Ts65Dn mice displayed similar

levels of brain activity as euploid mice, it is known from the
literature that these mice concurrently develop synaptic plas-
ticity anomalies as exemplified by impaired LTP (Siarey et al.,
1997). Reduction of synaptic plasticity in Ts65Dn mice is

observed in the absence of any notable changes in the general
properties of excitatory synaptic transmission (Kleschevnikov
et al., 2004). Importantly these LTP deficits can be rescued

following release of the GABAergic inhibitory transmission
by means of picrotoxin (Kleschevnikov et al., 2004). In par-
allel it has been shown recently that a5 GABA-A inverse

agonists, including the drug used in the present study, poten-
tiate LTP in mouse hippocampal slices (Ballard et al., 2009;
Dawson et al., 2006) and it can be postulated that these drugs
likely have the potential to reverse LTP deficits and concom-

itantly to improve cognition in Ts65Dn mice.
In conclusion, we have demonstrated that an a5-selective

GABA-A inverse agonist can restore cognitive function

(short-term recognition memory and spatial learning) in a
mouse model of DS. Our results strengthen the hypothesis
that modifying the GABAergic-mediated balance between

excitatory and inhibitory neurotransmission can efficiently

Figure 8. a5IA does not induce any histological lesions after chronic treatment. Following chronic treatment with a5IA (5 mg/kg; five injections/

week for 5 weeks), different organs were ablated and processed for routine histopathological examination. As illustrated, haematoxylin–eosin staining

did not reveal any significant macroscopic or microscopic tissue alterations in liver or kidney in any of the three experimental groups (non-injected,

vehicle-injected or a5IA-treated mice). The same negative findings were observed following periodic acid-Schiff staining of the tissues (not illus-

trated). Examination of brain, hepatic and renal tissues under polarized light revealed the lack of abnormal crystals in mice receiving injections of a5IA.

The size and distribution of urine crystals (not illustrated) appeared to be very similar in the different groups. Scale bar¼ 100 mm.
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alleviate cognitive impairments in preclinical models of DS.
The exact mechanism of action of a5IA remains to be clari-
fied, but might involve potentiation of neuronal activity and

of synaptic plasticity of neural networks.
a5IA, because of its lack of convulsant or anxiogenic

effects, has a more favourable therapeutic profile than other
GABAergic drugs such as pentylenetetrazol. Also we did not

detect any toxicity of a5IA following repeated injections. The
first successful use of a5IA as a cognitive enhancer for block-
ing alcohol’s amnestic activity in human subjects has indeed

been published, confirming it as safe and well tolerated (Nutt
et al., 2007). The excellent safety profile of a5IA and of sim-
ilar recently developed compounds will undoubtedly facilitate

their clinical investigation in individuals with DS.
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providing animal care.

Funding

The authors wish to thank the Foundation AMIPI Bernard Vendre

and particularly Mr and Mrs Vendre and Mr Jean-Marc Richard, for

their funding and support. We are also grateful for support from the

EEC AnEUploidy program (grant number LSHG-CT-2006-037627),
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