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Abstract

Let G ⊂ Ĝ be two complex connected reductive groups. We deals

with the hard problem of finding sub-G-modules of a given irreducible

Ĝ-module. In the case where G is diagonally embedded in Ĝ = G ×
G, S. Kumar and O. Mathieu found some of them, proving the PRV

conjecture. Recently, the authors generalized the PRV conjecture on

the one hand to the case where Ĝ/G is spherical of minimal rank,

and on the other hand giving more sub-G-modules in the classical

case G ⊂ G × G. In this paper, these two recent generalizations are

combined in a same more general result.

Mathematics Subject Classification 22E46 17B10 14L24

Keywords Branching rules, Affine spherical homogeneous spaces of min-
imal rank, Tensor product decomposition, PRV conjecture.

1 Introduction

Let G be a complex connected reductive group. Let T be a maximal torus of
G and let B be a Borel subgroup containing T . The Weyl group is denoted
by W . The irreducible G-module of highest weight µ is denoted by VG(µ).
For any weight µ of T , there exists a unique dominant weight µ in the W -
orbit of µ. The representation VG(µ̄) is called the irreducible G-module with
extremal weight µ. Parthasarathy-Ranga Rao-Varadarajan conjectured in
the sixties the following statement.

The PRV conjecture.
Let µ and ν be two dominant weights. Then, for any w ∈ W , the ir-

reducible G-module VG(µ+ wν) with extremal weight µ + wν, occurs with
multiplicity at least one in VG(µ)⊗ VG(ν).

∗N.R. was partially supported by the French National Research Agency (ANR-09-
JCJC-0102-01).
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This conjecture was proved independently by S. Kumar in [Kum88] and
O. Mathieu in [Mat89]. This paper is a continuation of [MPR11] where the
authors obtained a new proof and two generalizations of the PRV conjecture.

Assume that G is a subgroup of a bigger connected reductive group Ĝ.
The decomposition of the tensor product concerned by the PRV conjecture
is an example (i.e. when Ĝ = G×G and G is diagonally embedded in Ĝ) of
the following problem.

Find irreducible G-submodules in a given irreducible Ĝ-module.

The homogeneous space (G×G)/G is spherical of minimal rank (see e.g.
[Res10b] for a precise definition). From now on, we consider two reductive
connected groups G ⊂ Ĝ such that Ĝ/G is spherical of minimal rank. Let T̂
be the centralizer of T in Ĝ, then it is well-know that T̂ is a maximal torus
of Ĝ (see Lemma 2 in the appendix). We can deduce that the Weyl group
W of G is canonically a subgroup of the Weyl group Ŵ of Ĝ (see Corollary 2
in the appendix).

In [MPR11], we generalized the PRV conjecture: for any irreducible
Ĝ-module V̂ , we give an explicit family of irreducible G-submodules of V̂
parametrized by W \Ŵ .

Let µ and ν be two dominant weights of G. In [MPR11], we also improve
the PRV conjecture by constructing a family of irreducible submodules of
VG(µ)⊗ VG(ν), strictly containing the PRV components. The cardinality of
this family is not bounded independently of the couple (λ, µ). More precisely,
this family is the set of dominant weights belonging to some explicit line
segments with (at least) one PRV component as end point.

The main result of this paper gives a similar family of irreducible sub-
G-modules of any irreducible Ĝ-module V̂ . In particular, this result is a
common generalization of the two results of [MPR11] explained before.

The precise statement needs some preparation. If α is a root of (G, T ),
α∨ denotes the corresponding coroot. There exists a unique Borel subgroup
B̂ containing T̂ such that B̂ ∩ G = B (see for example [Res10b, Propo-
sition 2.2]). Consider the restriction map ρ : X(T̂ ) −→ X(T ) from the
character group of T̂ to this of T . Let X(T )+ (resp. X(T̂ )+) denote the set
of dominant weights of G (resp. of Ĝ). Let ν̂ ∈ X(T̂ )+; in [MPR11], we
proved that for any ŵ ∈ Ŵ , VG(ρ(ŵν̂)) is a submodule of V

Ĝ
(ν̂). Such a

submodule of V
Ĝ
(ν̂) is called a PRV component. Recall that W is canonically

a subgroup of Ŵ and observe that, for any w in W , ρ(ŵν̂) = ρ(wŵν̂). In
particular, the PRV components are parametrized by W \Ŵ .

Let ∆ and ∆̂ denote the set of simple roots of G and Ĝ. By [Res10b,
Lemma 4.6], ρ(∆̂) = ∆. More precisely, for any α ∈ ∆, we have the following
alternative:
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(i) there exists a unique α̂0 ∈ ∆̂ such that ρ(α̂0) = α; or

(ii) there exist exactly two simple roots α̂1 and α̂2 in ∆̂ such that ρ(α̂1) =
ρ(α̂2) = α. Moreover α̂1 and α̂2 are orthogonal.

The set of simple roots satisfying the first condition is denoted by ∆1 and
the set of those satisfying the second one is denoted by ∆2.

Theorem 1. Recall that G ⊂ Ĝ are connected reductive groups and that
Ĝ/G is assumed to be spherical of minimal rank. Let ν̂ be a dominant weight
of Ĝ and let ŵ ∈ Ŵ such that ρ(ŵν̂) is a dominant weight of G. Let α ∈ ∆2.
Index the two simple roots α̂1 and α̂2 in ∆̂ belonging to the pullback of α
by ρ in such a way that 〈ŵν̂, α̂∨

1 〉 ≤ 〈ŵν̂, α̂∨
2 〉. Denote by Sα,ŵ,ν̂ the line

segment in X(T ) ⊗ Q whose end points are ρ(ŵν̂) and ρ(sα̂j
ŵν̂). Then

for any ν ∈ Sα,ŵ,ν̂ ∩ X(T )+ the irreducible G-module VG(ν) occurs with
multiplicity at least one in V

Ĝ
(ν̂).

From each PRV component in V
Ĝ
(ν̂), Theorem 1 gives |∆2| line segments

(that may be of length zero) of irreducible components of V
Ĝ
(ν̂). Note that

the length of Sα,ŵ,ν̂ is |〈ŵν̂, α̂∨
1 〉|.

The proof of Theorem 1 above is the object of Section 2. In Section 2.3,
Theorem 1 is illustrated with the example of G = G2 in Ĝ = Spin7.

In Section 3, we get a still larger family of irreducible G-submodules of
V̂ . In Section 4, we get a still larger family of irreducible G-submodules of
VG(λ)⊗ VG(µ). This last result is specific to the case of the tensor product
decomposition. These two results are illustrated by examples. We do not
detail here the results of these two sections, whose statements are quiet
technical, we refer the reader to Theorems 3, 4 and 6.

2 Proof of Theorem 1

2.1 A reduction

In this section we rewrite Theorem 1 as it was written in the tensor prod-
uct case in [MPR11]. In fact, we prove that the following theorem implies
Theorem 1.

Theorem 2. Let ν and ν̂ be two dominant weights of T and T̂ . Assume that
there exist a simple root α ∈ ∆2, ŵ in the Weyl group Ŵ and an integer k
such that

ν = ρ(ŵν̂)− kα. (1)

Denote by α̂1 and α̂2 the two roots in ∆̂ belonging to the pullback of α by
ρ.
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If

k ≥ 0, (2a)

k ≤ 〈ŵν̂, α̂∨
1 〉, (2b)

k ≤ 〈ŵν̂, α̂∨
2 〉, (2c)

then the irreducible G-module VG(ν) occurs with multiplicity at least one in
V
Ĝ
(ν̂).

Before proving that Theorem 2 implies Theorem 1, we state a basic re-
mark.

Remark 1. Let α ∈ ∆2. If S is the neutral component of the kernel of
α, [Res10b, Lemmas 4.3 and 4.4] shows that the inclusion of GS in ĜS

is isomorphic to the diagonal inclusion of (P )SL2 in (P )SL2 × (P )SL2.
It follows that the image of the one-parameter subgroup α̂∨

1 + α̂∨
2 of T̂ is

contained in T , and that α∨ = α̂∨
1 + α̂∨

2 .

Proof of: Theorem 2 implies Theorem 1. Let ν̂ be a dominant weight of Ĝ,
ŵ ∈ Ŵ such that ρ(ŵν̂) is a dominant weight of G, α ∈ ∆2 and ν ∈
Sα,ŵ,ν̂ ∩X+(T ). Recall that 〈ŵν̂, α̂∨

1 〉 ≤ 〈ŵν̂, α̂∨
2 〉. Two different cases occur

according to the sign of 〈ŵν̂, α̂∨
1 〉.

(i) If 〈ŵν̂, α̂∨
1 〉 is non-negative, then 〈ŵν̂, α̂∨

2 〉 is also non-negative. De-
noting by k the integer such that ν = ρ(ŵν̂) − kα, the definition of
Sα,ŵ,ν̂ implies that k satisfies inequalities (2). Then, by Theorem 2,
the irreducible module VG(ν) occurs in V

Ĝ
(ν̂).

(ii) Suppose that 〈ŵν̂, α̂∨
1 〉 is negative, so that 〈sα̂1ŵν̂, α̂

∨
1 〉 ≥ 0.

By Remark 1, 〈ŵν̂, α̂∨
1 + α̂∨

2 〉 ≥ 0. Then 〈ŵν̂, α̂∨
2 〉 ≥ 0. Since α̂1 and

α̂2 are orthogonal, we deduce that 〈sα̂1ŵν̂, α̂
∨
2 〉 ≥ 0.

Denote by k the integer such that ν = ρ(sα̂1ŵν̂)−kα. Then k satisfies
inequalities (2) with sα̂1ŵ instead of ŵ. Hence the irreducible module
VG(ν) occurs in V

Ĝ
(ν̂).

Remark 2. In the first case, the two end points of the line segment Sα,ŵ,ν̂

are dominant and both correspond to a PRV component. In the second one,
ρ(sα̂1ŵν̂) is not necessarily dominant.

2.2 Proof of Theorem 2

2.2.1 Preliminaries

The existence of k satisfying inequalities (2) implies that 〈ŵν̂, α̂∨
1 〉 and

〈ŵν̂, α̂∨
2 〉 are non-negative. If one of them is zero, ν is a PRV component, and
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in that case, Theorem 2 is a consequence of our previous work [MPR11, The-
orem 1]. Hence, we assume from now that 〈ŵν̂, α̂∨

1 〉 and 〈ŵν̂, α̂∨
2 〉 are posi-

tive. In particular, by Lemma 1 in Appendix, we have l(sα̂1ŵ) = l(sα̂2ŵ) =
l(ŵ) + 1.

2.2.2 An asymptotic result

In this section we apply the Borel-Weil theorem and an argument of Geo-
metric Invariant Theory to get an asymptotic version of Theorem 2.

For any character ν of B, Lν denote the G-linearized line bundle on
G/B such that B acts with weight −ν on the fiber over B/B. Similarly,
we define the line bundle Lν̂ on Ĝ/B̂. The Borel-Weil theorem asserts that
H0(G/B,Lν) is the irreducible G-module VG(ν)

∗.
Set X = G/B× Ĝ/B̂ and v̂ = sα̂1 .ŵ. Let S be the neutral component of

the Kernel of α. Let ρS denote the restriction map to S both for characters
of T and T̂ . We denote by GS (resp. by ĜS) the centralizer of S in G (resp.
in Ĝ).

Let w0 denote the longest element in W and consider the following irre-
ducible component of the S-fixed points set:

C = GSw0B/B × ĜSŵB̂/B̂.

Note that C is isomorphic to (P1)3 (see for example [Hum75, Chapter 9]).
Finally consider the line bundle M = L−w0ν ⊠Lν̂ on X. Then, for any non-
negative integer n, H0(X,M⊗n) = VG(nν)⊗ V

Ĝ
(nν̂)∗.

The torus S acts trivially on C and hence on the restriction M|C of M
on C by a character. This character equals ρS(ν) + ρS(−ŵν̂). By assump-
tion (1), this character is trivial. In particular, any point of C is semistable
for the action of S.

The restriction of M to C ≃ (P1)3 is isomorphic as a line bundle to
O(a) ⊗ O(b) ⊗ O(c) for some integers a, b, and c. The torus T acts on the
fiber over w0B/B in the line bundle L−w0ν by the weight ν. The SL2-theory
of P1 implies that a = 〈ν, α∨〉. Similarly we compute b and c and we get

a = 〈ν, α∨〉,
b = 〈ŵν̂, α̂∨

1 〉,
c = 〈ŵν̂, α̂∨

2 〉.

Then, using Remark 1, inequalities (2) are equivalent to

a+ b ≥ c,
a+ c ≥ b,
b+ c ≥ a.

They imply that Css(M, GS/S) is not empty.
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Since Css(M, GS) 6= ∅, Luna’s theorem (see [Lun75, Corollary 2 and
Remark 1] or see also [Res10a, Proposition 8]) implies that Xss(M)∩C 6= ∅.
Fix a positive integer n and a G-invariant section σ in H0(X,M⊗n) such
that σ|C is not identically zero. Let Xv̂ be the closure of the orbit Gv̂B̂/B̂

in Ĝ/B̂. By the remark of Section 2.2.1, the stabilizer of v̂ in GS equals T .
Then GS .v̂ has dimension two and GS v̂ = ĜS v̂. Hence C∩({w0B/B}×Ĝ/B̂)
is contained in {w0B/B} ×Xv̂.

Consider now the restriction τ of σ to Y = {w0B/B} × Ĝ/B̂. Identify-
ing Y with the Ĝ/B̂ by the second projection, M|Y is a B−-linearized line

bundle on Ĝ/B̂. More precisely, it is the line bundle Lν̂ where the action
of B− is obtained by restricting the action of Ĝ and then by twisting by ν.
But τ is a B−-invariant section of M⊗n

|Y . Then τ identifies with a section

τ̄ of Lnν̂ on Ĝ/B̂ which is a B−-eigenvector of weight −nν. Moreover, the
relative position of C and Xv̂ implies that τ̄|Xv̂

is not identically zero. Note
that this implies that VG(nν)

∗ appears in V
Ĝ
(nν̂)∗.

2.2.3 Multiplicity one

We introduce a notation: let H be an algebraic group and let χ be a character
of H; if V is a representation of H, we denote by V (H)χ the subspace of H-
eigenvectors of weight χ.

Define X◦
v̂ = Gv̂B̂/B̂, and recall that Xv̂ = X◦

v̂ . Now, we prove that the
multiplicity of VG(ν)

∗ in H0(X◦
v̂ ,Lν̂) is one. We have an injection

ι : H0(X◦
v̂ ,Lν̂) → C[G]

and the image ι(H0(X◦
v̂ ,Lν̂)) equals C[G]({1}×Gv̂)ρ(v̂ν̂) . The isotropy sub-

group Gv̂ contains the torus T. Hence by using the Frobenius theorem, we
can deduce the following:

ι(H0(X◦
v̂ ,Lν̂)) ⊂ C[G]({1}×T )ρ(v̂ν̂) ≃

⊕

χ∈X(T )+

VG(χ)
∗ ⊗ VG(χ)

(T )ρ(v̂ν̂) .

In particular the multiplicity of VG(ν)
∗ in H0(X◦

v̂ ,Lν̂) is at most the

dimension of VG(ν)
(T )ρ(v̂ν̂) . But, by assumption,

ρ(v̂ν̂) = ρ(ŵν̂ − 〈ŵν̂, α̂∨
1 〉α̂

∨
1 ) = ν − lα,

where l = 〈ŵν̂, α̂∨
1 〉 − k. Then the dimension of VG(ν)

(T )ρ(v̂ν̂) is at most one
and the multiplicity of VG(ν)

∗ in H0(X◦
v̂ ,Lν̂) is at most one.

We now show that this multiplicity is one. Recall that α∨ = α̂∨
1 + α̂∨

2 (see
Remark 1). Hence inequalities (2) implies that 0 ≤ l ≤ 〈ν, α∨〉. Therefore
the dimension of VG(ν)

(T )ρ(v̂ν̂) is one. Let us choose a non-zero element f in
the space C[G](B−×T )(−ν,ρ(nv̂ν̂)) . The subgroup Gv̂ is a solvable subgroup of
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G containing T , so Gv̂ = Gu
v̂ .T , where Gu

v̂ is the unipotent radical of Gv̂. It
is sufficient to prove that f is Gu

v̂ -invariant.
Consider the element ι(τ̄): it is a non-zero element belonging to the one

dimensional space: C[G](B−×Tv̂)(−nν,ρ(nv̂ν̂)) . Hence, up to multiplying f by
a non-zero scalar, we may assume that fn = ι(τ̄). We deduce that fn is
Gu

v̂ -invariant. Hence f is Gu
v̂ -invariant because Gu

v̂ possesses no non-trivial
character and the algebra C[G] is factorial.

2.2.4 Conclusion

We can now finish the proof of Theorem 2 by showing that VG(ν)
∗ ⊂ V

Ĝ
(ν̂)∗.

Consider the following morphisms:

H0(Ĝ/B̂,Lν̂)

ϕ
��
��

H0(Xv̂,Lν̂)� _

π

��

H0(X◦
v̂ ,Lν̂)
� _

ι
��
��

C[G]

The morphisms π and ι are defined above and ϕ is the restriction mor-
phism. By [Bri01, Corollary 8], the map ϕ is surjective. Since H0(Ĝ/B̂,Lν̂)
is isomorphic to V

Ĝ
(ν̂)∗, it is sufficient to prove that VG(ν)

∗ ⊂ H0(Xv̂,Lν̂).
In Section 2.2.3, we showed that there exists a non-zero B−-equivariant

section κ in H0(X◦
v̂ ,Lν̂) of weight −ν. It remains to prove that κ ex-

tends to a regular section on Xv̂ to conclude the proof. Since the space
H0(X◦

v̂ ,Lnν̂)
(B−)nν is one dimensional, we may assume that κ⊗n = τ̄ , where

τ̄ is the section obtained in 2.2.2, so κ⊗n extends to a regular section on Xv̂.
The normality of Xv̂ (see [Bri03, Theorem 1]) implies that κ extends to a
regular section on Xv̂.

Remark 3. In general the multiplicity of VG(ν) in V
Ĝ
(ν̂) does not equal one;

but, as a consequence of the proof, the multiplicity of VG(ν)
∗ in H0(Xv̂,Lν̂)

is one.

2.3 The example G2 ⊂ Spin7

In this section Ĝ = Spin7 and G = G2. The first fundamental representation
of G2 has dimension 7 and induces an embedding of G2 in SO7. Since G2

is simply connected this embedding can be raised to Ĝ = Spin7. We use
the numeration of Bourbaki [Bou02]. Denote by ŝ1, ŝ2 and ŝ3 the simple
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reflections of Ŵ . The fundamental weights of Ĝ and G are denoted by ˆ̟i for
i = 1, 2, 3 and by ̟i for i = 1, 2. Here ρ is characterized by: ρ( ˆ̟1) = ̟1,
ρ( ˆ̟2) = ̟2 and ρ( ˆ̟3) = ̟1. We use the basis of fundamental weights
for Ĝ and G to express the weights; in particular ν̂ = (ν̂1, ν̂2, ν̂3) means
ν̂ = ν̂1̟1 + ν̂2̟2 + ν̂3̟3.

We begin by giving the PRV components of any irreducible representation
of Ĝ.

Proposition 1. Let ν̂ = (ν̂1, ν̂2, ν̂3) be a dominant weight of Ĝ (ie ν̂i ≥ 0 for
any i). Then the dominant weights of G, obtained as the restriction ρ(ŵν̂)
of an element of the orbit Ŵ .ν̂, are

• ν1 = (ν̂1 + ν̂3, ν̂2);

• ν2 = (−ν̂1 + ν̂3, ν̂1 + ν̂2) if ν̂1 ≤ ν̂3
or ν2 = (ν̂1 − ν̂3, ν̂2 + ν̂3) if ν̂1 ≥ ν̂3;

• ν3 = (−ν̂1 + ν̂2 + ν̂3, ν̂1) if ν̂1 ≤ ν̂2 + ν̂3
or ν3 = (ν̂1 − ν̂2 − ν̂3, ν̂2 + ν̂3) if ν̂1 ≥ ν̂2 + ν̂3;

• ν4 = (−ν̂1 + ν̂2, ν̂1) if ν̂1 ≤ ν̂2
or ν4 = (ν̂1 − ν̂2, ν̂2) if ν̂1 ≥ ν̂2.

It may happen of course that some of the four PRV components above
are the same.

Proof. First remark that, since |Ŵ/W | = 4 we have at most 4 PRV compo-
nents. The weights νi, for i = 1, · · · , 4 in the statement of the proposition
are dominant. We have to prove that they equal ρ(ŵν̂), for some ŵ. This is
checked by:

• ν1 = ρ(ν̂);

• ν2 = ρ(ŝ1ν̂) = ρ(−ν̂1, ν̂1 + ν̂2, ν̂3)
or ν2 = ρ(ŝ3ν̂) = ρ(ν̂1, ν̂2 + ν̂3,−ν̂3);

• ν3 = ρ(ŝ1ŝ2ν̂) = ρ(−ν̂1 − ν̂2, ν̂1, 2ν̂2 + ν̂3)
or ν3 = ρ(ŝ3ŝ2ν̂) = ρ(ν̂1 + ν̂2, ν̂2 + ν̂3,−2ν̂2 − ν̂3);

• ν4 = ρ(ŝ1ŝ2ŝ3ν̂) = ρ(−ν̂1 − ν̂2 − ν̂3, ν̂1, 2ν̂2 + ν̂3)
or ν4 = ρ(ŝ3ŝ2ŝ3ν̂) = ρ(ν̂1 + ν̂2 + ν̂3, ν̂2,−2ν̂2 − ν̂3).

The set ∆2 is reduced to the short root α1. Then Theorem 1 gives line
segments parallel to α1 and having (at least) one PRV component as end
point.

8



Corollary 1. The irreducible representation VG2(ν) occurs with multiplicity
at least one in VSpin7(ν̂) for all dominant weights ν contained in one of the
three following line segments (distinct in general):

• the line segment whose end points are ν1 and ν2, of length min(ν̂1, ν̂3);

• the line segment whose end points are ν3 and ν3
′

= (ν̂1+3ν̂2+ ν̂3,−ν̂2),
of length min(ν̂1 + ν̂2, 2ν̂2 + ν̂3);

• the line segment whose end points are ν4 and ν4
′

= (ν̂1+3ν̂2+2ν̂3,−ν̂2−
ν̂3), of length min(ν̂1 + ν̂2 + ν̂3, 2ν̂2 + ν̂3).

Remark that ν3
′

and ν4
′

are not dominant in general and are never
strictly dominant. In particular the line segments with end points ν3 and ν4

intersect the wall of the dominant chamber corresponding to α2.
We illustrate this result in Figure 1 where ν̂ = (2, 2, 1).

̟1

̟2

Weight of a PRV component

Weight obtained by Theorem 1

Segment obtained by Theorem 1

Weight ν such that VG(ν) ⊂ V
Ĝ
(ν̂)

ν2 ν1 = ρ(ν̂)

ν3

ν4

ν3
′

ν4
′

Figure 1: Illustration of Corollary 1
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Remark 4. In that example, note that ρ(ν̂)−α2 is not a highest weight of a
G-submodule of V

Ĝ
(ν̂). Nevertheless it is dominant and we have 〈ν̂, α̂2〉 = 2.

Hence we cannot expect to extend our result to the roots α in ∆1.

3 A generalization of Theorem 1

In this section, we come back to the general situation of connected reductive
groups G ⊂ Ĝ such that Ĝ/G is spherical of minimal rank.

To state the result, we define the basic notion of hyperrectangle generated
by a finite set of pairwise orthogonal line segments having one end point in
common. For 1 ≤ k ≤ s, let Ik = [a, bk] be k pairwise orthogonal line
segments in an affine space. The hyperrectangle generated by the family
(Ik)1≤k≤s is

R = {a+
s∑

k=1

λk

−→
abk | λk ∈ [0, 1]}.

We improve Theorem 1, by replacing the line segments Sα,ŵ,ν̂ by hyper-
rectangles containing them.

Theorem 3. Let ν̂ be a dominant weight of Ĝ and let ŵ ∈ Ŵ such that ρ(ŵν̂)
is a dominant weight of G. Let α1, . . . , αs be s pairwise orthogonal simple
roots of G in ∆2 (with s ≥ 1). Denote by Rα1,...,αs,ŵ,ν̂ the hyperrectangle
generated by the s pairwise orthogonal line segments (Sαi,ŵ,ν̂)i∈{1,...,s} (that
have ρ(ŵν̂) as common end point).

Then, for any ν ∈ Rα1,...,αs,ŵ,ν̂ ∩X+(T ), the irreducible G-module VG(ν)
occurs with multiplicity at least one in V

Ĝ
(ν̂).

Proof. The proof of this theorem is very similar to the proof of Theorem
1, so that we will only explain the main changes. First by a similar rea-
soning to that of Section 2.1, the proof reduce to the following: if ν =
ρ(ŵν̂)+

∑s
i=1 k

iαi, where the integers ki satisfy three inequalities similar to
inequalities (2), then VG(ν) occurs in V

Ĝ
(ν̂).

For each i ∈ {1, . . . , s}, there exist two simple roots α̂i
1 and α̂i

2 such that
ρ(α̂i

1) = ρ(α̂i
2) = αi. Index them in such a way that, for any i ∈ {1, . . . , s},

〈ŵν̂, (α̂i
1)

∨〉 ≤ 〈ŵν̂, (α̂i
2)

∨〉.

Arguing like in Section 2.2, we may assume that for i ∈ {1, . . . , s},

〈ŵν̂, (α̂i
1)

∨〉 > 0,

and hence that l(sα̂i
1
ŵ) = l(ŵ) + 1.

Set v̂ = sα̂1
1
. . . sα̂s

1
ŵ. Note that the simple reflexions sα̂i

1
commute. Set

X = G/B × Ĝ/B̂, S = ∩s
i=1(kerα

i)◦ ⊂ T and let C be the irreducible
component of XS containing (w0B/B, v̂B/B). Observe that GS/S is the
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product of s groups isomorphic to SL2 or PSL2. Note also that C is iso-
morphic to ((P1)3)s, with the natural action of GS/S. In particular, the
inequalities satisfied by the integers ki implies that Css(M|C , G

S) 6= ∅.
Then Xss(M) ∩ C 6= ∅. We deduce that there exists a positive integer n
and a G-section τ of Lnν̂ which is a eigenvector of weight −nν for B− and
whose restriction to Xv̂ is not identically zero.

Since the simple roots αi
1 are pairwise orthogonal, for any 0 ≤ li ≤ 〈ν, αi〉,

the weight ν−
∑

i l
iαi of T occurs in VH(ν) with multiplicity exactly one. We

deduce (see Section 2.2.2) that dimH◦(X◦
ν̂ ,Lν̂)

(T )
ν−

∑
i l

iαi = 1. We conclude
as in Section 2.2.4.

We illustrate Theorem 3 by the following example.

Example 1. Let G = Sp6 diagonally embedded in Ĝ = Sp6× Sp6. In that
case, the first and the third simple roots of Sp6 are orthogonal. Consider the
dominant weight ν̂ = ((2, 0, 4), (2, 0, 2)) in the basis of fundamental weights.
The irreducible components VG(ν) of the tensor product V

Ĝ
(ν̂), obtained by

Theorem 3, are represented in Figure 2. On this figure, the standard basis is
the basis denoted by (ǫ1, ǫ2, ǫ3) in Bourbaki.

0 2 4 6 8 10 0

2

4

6

8

0

1

2

3

4

5

6

7

ε
2

ε
1

ε
3

classical PRV component
component obtained with Theorem 1
line segments parallel to α1 or α3

line segments parallel to α2

component obtained with Theorem 3

Figure 2: some weights of VSp6(2, 0, 4)⊗ VSp6(2, 0, 2)
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In this example, we observe that Theorem 3 gives two new components
in addition of those obtained by Theorem 1. In fact, Theorem 3 gives here
two rectangles, one of them being truncated by the dominant chamber (see
Figure 2).

4 A specific result for tensor product decomposi-

tion

From now on, we specialize to the case where G is diagonally embedded in
Ĝ = G × G. Fix two dominant weights of G. Then, Theorem 1 produces
line segments in X(T )⊗Q parallel to any simple roots of G. In this section,
we use the symmetry induced by duality, in order to produce similar line
segments whose direction is a root but not necessarily a simple one.

Let µ and ν be two dominant weights of G. We say that a non-necessarily
dominant weight λ is a virtual PRV component (with respect to µ and ν) if
there exists v and w in W such that λ = vµ + wν. Now we state the main
result of this section.

Theorem 4. Let v and w be two elements of W , and let β be a root of G.
The line through the virtual PRV component λ1 = vµ+wν in the direction

β contains the following four virtual PRV components: λ1, λ2 = vµ+ sβwν,
λ3 = sβvµ+ wν and λ4 = sβvµ+ sβwν. Choose i and j such that 〈λi, β

∨〉
and 〈λj , β

∨〉 are two largest among the family (〈λl, β
∨〉)l=1,2,3,4. Denote by

Sβ,v,w,µ,ν the line segment in X(T )⊗Q whose end points are λi and λj.
Suppose that at least one of the following roots β, v−1β or w−1β is simple.

Then, for any λ ∈ Sβ,v,w,µ,ν ∩X+(T ), the irreducible G module VG(λ) occurs
with multiplicity at least one in VG(µ)⊗ VG(ν).

Remark 5. (i) If 〈λi, β
∨〉 = 〈λj , β

∨〉 then the line segment is reduced to
a point.

(ii) Note that in the case of a simple direction, if Sβ,v,w,µ,ν ∩ X+(T ) is
not empty, the line segment Sβ,v,w,µ,ν defined as above always contains
a PRV component (see [MPR11, Proposition 2]). But if the direction
is not simple, there exist line segments intersecting X+(T ) and that
contain no PRV component (see the example at the end of the section).

As in the general case, we rewrite Theorem 4 as follows.

Theorem 5. Let λ, µ, and ν be three dominant weights of G, let v, w be
two elements of W , and let β be a root of G such that one of the following
roots β, v−1β or u−1β is simple. Suppose that λ = vµ+wν − kβ where k is

12



an integer satisfying:

k ≥ 0, (3a)

k ≤ 〈vν, β∨〉, (3b)

k ≤ 〈wµ, β∨〉. (3c)

Then, the irreducible G-module VG(λ) occurs with multiplicity at least
one in VG(µ)⊗ VG(ν).

Proof. The case where β is simple is not new: it is the second result of our
preceding work [MPR11], or the simple translation of Theorem 2. The two
other cases can be deduce from this one. Indeed, assume that α = v−1β is
simple. Rewrite the condition

λ = vµ+ wν − kβ (4)

as µ = v−1λ− v−1wν + kα, or equivalently as

µ = v−1λ+ sαv
−1ww0(−w0ν) + (k − 〈v−1wν, α∨〉)α. (5)

Setting ν ′ = −w0ν, v′ = v−1, w′ = sαv
−1ww0 and k′ = 〈v−1wν, α∨〉 − k,

equation (5) becomes:

µ = v′λ+ w′ν ′ − k′α . (6)

One can check that conditions (3) are equivalent to

k′ ≥ 0,

k′ ≤ 〈v′ν ′, α∨〉,

k′ ≤ 〈w′λ′, α∨〉.

Hence, Theorem 2 or [MPR11, Theorem 2] implies that VG(µ) appears
in the tensor product VG(λ)⊗VG(ν

′). But as VG(ν
′) = VG(−w0ν) = VG(ν)

∗,
we deduce that VG(λ) appears in VG(µ)⊗ VG(ν).

Proof of: Theorem 5 implies Theorem 4. By eventually changing v by sβv
and w by sβw, we may assume that the two values 〈vν, β∨〉 and 〈wµ, β∨〉
are non-negative. Assume also that 〈vν, β∨〉 ≥ 〈wµ, β∨〉 so that two largest
values among the family (〈λl, β

∨〉)l=1,2,3,4 are 〈λ1, β
∨〉 and 〈λ2, β

∨〉. A
weight λ belongs to the line segment Sβ,v,w,µ,ν = [λ1, λ2] if and only if λ =
vµ + wν − kβ with 0 ≤ k ≤ 〈vν, β∨〉 and hence we can conclude with
Theorem 5.

The following theorem is obtained by combining Theorem 3 and Theo-
rem 4.
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Theorem 6. Let v and w be two elements of the Weyl group, and let
(βi)1≤i≤s be s pairwise orthogonal roots. Suppose that there exists u ∈
{1, v, w} such that for any i ∈ {1, . . . , s}, u−1βi is simple.

Denote by Rβ1,...,βs,v,w,µ,ν the hyperrectangle generated by the s pairwise
orthogonal line segments (Sβi,v,w,µ,ν)i∈{1,...,s} defined in Theorem 4.

Then for any λ ∈ Rβ1,...,βs,v,w,µ,ν ∩ X+(T ), the irreducible G-module
VG(λ) occurs with multiplicity at least one in VG(µ)⊗ VG(ν).

Example 2. Consider the tensor product VSp6(2, 1, 0) ⊗ VSp6(0, 3, 1). The
irreducible components of this tensor product obtained by Theorem 4 are rep-
resented in Figure 3.

0
1

2
3

4
5

6
7

0

1

2

3

4

5
0

1

2

3

4

5

ε
1

ε
2

ε
3

component of the tensor product
classical PRV component
component obtained with Theorem 1
line segments parallel to α1 or α3

line segments parallel to α2

Figure 3: Weights of VSp6(2, 1, 0)⊗ VSp6(0, 3, 1)

There are 12 PRV components, 7 more weights given by Theorem 1, 7
more weighs given by Theorem 4, and no more with Theorem 6. To summa-
rize, we obtain 26 weights (represented in Figure 3) among the 32 existing
ones.

We observe a new phenomenon that cannot occur with Theorem 1: the
two end points of a line segment can be both outside the dominant chamber
(for example, the one in the lower left in Figure 3).
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Return to the example VSp6(2, 0, 4)⊗ VSp6(2, 0, 2) seen in Example 1. In
this case, there are 14 PRV components, plus 17 new dominant weights with
Theorem 1, plus 2 new ones with Theorem 3, plus 16 new ones with Theorem
4, plus 9 new ones with Theorem 6. To summarize, the results of this paper
give 58 dominant weights among the 83 existing ones.

5 Appendix

By lack of reference, we collect here technical results.
We begin with a result on the length of Weyl group elements.

Lemma 1. Let G be a reductive group. Fix a Borel subgroup containing
a maximal torus. Let W be the Weyl group of G. For any simple root α,
denote by sα the corresponding reflection in W .

Let λ be a dominant weight and u be an element of W . Let β be a simple
root such that 〈uλ, β∨〉 > 0. Then l(sβu) = l(u) + 1. In particular we also
have that if 〈uλ, β∨〉 < 0 then l(u) = l(sβu) + 1.

Proof. The length of u equals the length of u−1. It is the cardinality of

{γ positive root | u−1γ is a negative root}.

Let γ be a positive root such that u−1γ is a negative root. We claim that γ
cannot be the simple root β. Indeed, since 〈λ, u−1β∨〉 = 〈uλ, β∨〉 > 0 and λ
is dominant, u−1β is positive. Then the application

{γ > 0 | u−1γ < 0} −→ {γ > 0 | u−1sβγ < 0}
γ 7−→ sβγ

is well-defined because u−1sβsβγ = u−1γ and sβγ is a positive root for all
positive roots γ different from β. This application is also clearly injective,
so that the cardinality of the second set, which is the length of u−1sβ and
also sβu, is bigger than the length of u.

But we have either l(sβu) = l(u) + 1 or l(sβu) = l(u) − 1 because sβ is
a simple reflection, so the proposition follows.

Now, we give a result on the maximal torus of a spherical reductive
subgroup.

Lemma 2. Suppose that G is a spherical reductive subgroup in a reductive
group Ĝ. Let T be a maximal torus of G. Then, the centralizer of T in Ĝ is
a maximal torus of Ĝ.

Proof. By [Bri86], since G is spherical, it has finitely many orbits in Ĝ/B̂.
Since G is reductive, T has finitely many fixed points in any G-orbit. Hence
T has finitely many fixed points in Ĝ/B̂. It follows that T is regular in
Ĝ.
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As a consequence of the preceding corollary, we have the following result.

Corollary 2. In the situation of the preceding lemma, the Weyl group of G
is canonically a subgroup of the Weyl group of Ĝ.

Proof. The lemma implies that the normalizer of T in G normalizes T̂ . In
particular, it is contained in the normalizer of T̂ in Ĝ. The injection of the
corollary is obtained by taking the quotient of this inclusion by T̂ .
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