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Abstract. Kolmogorov Superposition Theorem stands that any multi-
variate function can be decomposed into two types of monovariate func-
tions that are called inner and external functions: each inner function
is associated to one dimension and linearly combined to construct a
hash-function that associates every point of a multidimensional space
to a value of the real interval [0, 1]. These intermediate values are then
associated by external functions to the corresponding value of the mul-
tidimensional function. Thanks to the decomposition into monovariate
functions, our goal is to apply this decomposition to images and obtain
image compression.

We propose a new algorithm to decompose images into continuous mono-
variate functions, and propose a compression approach: thanks to the de-
composition scheme, the quantity of information taken into account to
define the monovariate functions can be adapted: only a fraction of the
pixels of the original image have to be contained in the network used to
build the correspondence between monovariate functions. To improve the
reconstruction quality, we combine KST and multiresolution approach,
where the low frequencies will be represented with the highest accuracy,
and the high frequencies representation will benefit from the adaptive
aspect of our method to achieve image compression.

Our main contribution is the proposition of a new compression scheme:
we combine KST and multiresolution approach. Taking advantage of
the KST decomposition scheme, the low frequencies will be represented
with the highest accuracy, and the high frequencies representation will
be replaced by a decomposition into simplified monovariate functions,
preserving the reconstruction quality. We detail our approach and our
results on different images and present the reconstruction quality as a
function of the quantity of pixels contained in monovariate functions.

1 Introduction

The Superposition Theorem is the solution of one of the 23 mathematical prob-
lems conjectured by Hilbert in 1900. Kolmogorov has proved that continuous
multivariate functions can be expressed as sums and compositions of monovari-
ate functions. The KST, reformulated and simplified by Sprecher in [11], [12],
can be written as:



Theorem 1 (Kolmogorov superposition theorem). Every continuous func-

tion defined on the identity hypercube, f : [0, 1]d −→ R, can be written as sums

and compositions of continuous monovariate functions as:

f(x1, ..., xd) =

2d
∑

n=0

gn

(

d
∑

i=1

λiψ(xi + bn)
)

, (1)

with ψ continuous function, λi and b constants. ψ is called inner function and

g external function.

Coordinates xi, i ∈ J1, dK of each dimension are combined into a real number
by a hash function (obtained by linear combinations of inner functions ψ) that
is associated to corresponding value of f for these coordinates by the external
function g.

Igelnik has presented in [5] an approximating construction that provides flex-
ibility and modification perspectives over the monovariate function construction.
Using Igelnik’s approximation network, the image can be represented as a su-
perposition of layers, i.e. a superposition of images with a fixed resolution. The
constructed network can be reduced to a fraction of the pixels of the whole im-
age: the smaller the tiles, the larger the quantity of information. We study the
reconstruction quality using monovariate functions containing only a fraction
of the original image pixels. To improve the reconstruction quality, we apply
this decomposition on images of details obtained by a wavelet decomposition:
external functions obtained from the decomposition of images of details can be
simplified, providing better reconstruction quality than larger tile sizes.

The structure of the paper is as follows: we present the decomposition al-
gorithm in section 2. In section 3, we present the results of gray level image
decompositions, and combine the KST decomposition with wavelets to improve
the reconstruction. In the last section, we present our conclusions and several
promising research perspectives.

Our contributions include improvements and modifications of Igelnik’s algo-
rithm for image decomposition, the characterization of the obtained continuous
decomposition, and the determination of the reconstruction quality as a function
of the quantity of information contained in monovariate functions.

2 Algorithm

We briefly describe the algorithm proposed by Igelnik, and we invite the inter-
ested reader to refer to [5] and [4] for a detailed description of the algorithm.
The first step is the definition of a disjoint tilage over the definition space [0, 1]d

of the multivariate function f . To entirely cover the space, several tilage layers
are generated by translation of the first layer, as illustrated in Figure 1. For
a given tilage layer n, d inner functions ψni are randomly generated: one per
dimension, independently from function f . The functions ψni are sampled with
M points, that are interpolated by cubic splines. The convex combination of
these internal functions ψni with real, linearly independent, and strictly positive



values λi is the argument of external function gn (one per dimension). Finally,
the external function is constructed, using multivariate function values at the
centers of hypercubes. To optimize network construction, each layer is weighted
by coefficients an and summed to approximate the multivariate function f .

With this scheme, the original equation 1 becomes:

f(x1, ..., xd) ≃

N
∑

n=1

angn

( d
∑

i=1

λiψni(xi)

)

. (2)

Remark 1. In the equation 1, one internal function ψ is defined for the whole
network, and the argument xi is translated for each layer n of a constant bn. In
this algorithm, one inner function ψ is defined per dimension (index i) and layer
(index n).

The tilage is then constituted with hypercubes Cn obtained by cartesian
product of the intervals In(j), defined as follows:

Definition 1.

∀n ∈ J1, NK, j > −1, In(j) = [(n− 1)δ + (N + 1)jδ, (n− 1)δ + (N + 1)jδ +Nδ],

where δ is the distance between two intervals I of length Nδ, such that the
function f oscillation is smaller than 1

N
on each hypercube C. Values of j are

defined such that the previously generated intervals In(j) intersect the interval
[0, 1], as illustrated in Figure 1.

(a) (b)

Fig. 1. (a) Cartesian product of intervals I to define a disjoint tilage of hypercubes C.
(b) Superposition of translated disjoint tilages.

2.1 Inner functions construction ψni

Each function ψni is defined as follows: generate a set of j distinct numbers ynij ,
between ∆ and 1 − ∆, 0 < ∆ < 1, such that the oscillations of the interpo-
lating cubic spline of ψ values on the interval δ is lower than ∆. j is given by
definition 1. The real numbers ynij are sorted, i.e.: ynij < ynij+1. The image of



the interval In(j) by function ψ is ynij . This discontinuous inner function ψ is
sampled by M points, that are interpolated by a cubic spline, as illustrated in
Figure 3(a). We obtain two sets of points: points located on plateaus over inter-
vals In(j), and points M ′ located between two intervals In(j) and In(j+1), that
are randomly placed. Points M ′ are optimized during the network construction,
using a stochastic approach (see [5]).

Once functions ψni are constructed, the argument
∑d

i=1 λiψni(x) of external
functions can be evaluated. On hypercubes Cnij1,...,jd

, it has constant values

pnj1,...,jd
=

∑d

i=1 λiyniji
. Every random number yniji

generated verifies that the
generated values pniji

are all different, ∀i ∈ J1, dK, ∀n ∈ J1, NK, ∀j ∈ N, j > −1.

Fig. 2. Example of function ψ sampled by 500 points that are interpolated by a cubic
spline.

2.2 External function construction gn

The function gn is defined as follows:

– For every real number t = pn,j1,...,jd
, function gn(t) is equal to the N th of

values of the function f at the center of the hypercube Cnij1,...,jd
, noted Ak.

– The definition interval of function gn is extended to all t ∈ [0, 1]. Two points
Bk and B′

k are placed in Ak neighborhood, such that tBk
< tAk

< tB′

k
. The

placement of points Bk and B′

k in the circles centered in Ak must preserve
the order of points: ..., B′

k−1, Bk, Ak, B
′

k, Bk+1, ..., i.e. the radius of these
circles must be smaller than half of the length between two consecutive
points Ak. Points B′

k and Bk+1 are connected with a line defined with a
slope r. Points Ak and B′

k are connected with a nine degree spline s, such
that: s(tAk

) = gn(tAk
), s(tB′

k
) = gn(tB′

k
), s′(tB′

k
) = r, and s(2)(tB′

k
) =

s(3)(tB′

k
) = s(4)(tB′

k
) = 0. Points Bk and Ak are connected with a similar

nine degree spline. The connection condition at points Ak of both nine degree
splines give the remaining conditions. This construction ensures the function
continuity and the convergence of the approximating function to f (proved
in [5]). Figure 3(b) illustrates this construction.

The external function has a ”noisy” shape, which is related to the global
sweeping scheme of the image: Sprecher and al. have demonstrated in Ref.[13]



(a) (b)

Fig. 3. (a) Plot of gn. Points B, A and B′ are connected by a nine degree spline. Points
B′ and B are connected by lines. (b) Example of function gn for a complete layer of
Lena decomposition.

that using internal functions, space-filling curves can be defined. The linear com-
bination of inner functions associates a unique real value to every couple of the
multidimensional space [0, 1]d. Sorting these real values defines a unique path
through the tiles of a layer: the space filling curve. Figure 4 illustrates an ex-
ample of such a curve: the pixels are swept without any neighborhood property
conservation.

Fig. 4. Igelnik’s space filling curve.

2.3 Network stochastic construction

The construction of monovariate functions requires some parameters to be op-
timized using a stochastic method (ensemble approach, see [4]): the weights an

associated to each layer, and the placement of the sampling points M ′ of inner
functions ψ that are located between two consecutive intervals. To optimize the



network convergence, three sets of points are constituted: a training set DT , a
generalization set DG, and a validation set DV . N layers are successively built.
To add a new layer, K candidate layers are generated with the same plateaus
ynij , which gives K new candidate networks. The difference between two candi-
date layers is the set of sampling points M ′ located between two intervals In(j)
and In(j + 1), that are randomly chosen. We keep the layer from the network
with the smallest mean squared error that is evaluated using the generalization
set DG. The weights an are obtained by minimizing the difference between the
approximation given by the network and the image of function f for the points
of the training set DT . The algorithm is iterated until N layers are constructed.
The validation error of the final network is determined using validation set DV ,
i.e. by applying the approximated function to DV .

To determine coefficients an, the difference between f and its approximation
f̃ must be minimized:

‖Qnan − t‖ , noting t =





f(x1,1, ..., xd,1)
...

f(x1,P , ..., xd,P )



 , (3)

with Qn a matrix of column vectors qk, k ∈ J0, nK that corresponds to the ap-
proximation (f̃) of the kth layer for points set

(

(x1,1, ..., xd,1), ..., (x1,P , ..., xd,P )
)

of DT :

Qn =
[





f̃0(x1,1, ...xd,1)
...

f̃0(x1,P , ...xd,P )



 , ...,





f̃n(x1,1, ...xd,1)
...

f̃n(x1,P , ...xd,P )





]

.

An evaluation of the solution Q−1
n t = an is proposed by Igelnik in Ref.[4].

The coefficient al of the column vector (a0, ..., an)T is the weight associated to
layer l, l ∈ J0, nK. Figure 5 presents an overview of a network constituted of 5
tilage layers.

3 Results

The algorithm presented in the previous section can be used to decompose gray
level images (seen as bivariate functions). Each pixel corresponds to a tile of the
bidimensional space [0, 1]d, where the bivariate function has a constant value.
By changing the parameters δ and N , the size of the tilage can be adjusted, i.e.

the number of tiles per layer. The tile size directly determines the number of
pixels of the original image that are utilized for the network construction: pixel
values located on the center of tiles are utilized to construct external functions
gn. Decreasing the number of pixels from the original image in external functions
(i.e. increasing tile size) leads to a partial use of the original image pixels. To
characterize the compression properties of the network, we represent the number
of pixels of the original image that are contained in the network as a function
of PSNR reconstruction, by training the network with a 100x100 pixels image



Fig. 5. Overview of a 5 tilage layer network.

to reconstruct a 100x100 pixels image. Figure 6 presents several reconstructions
obtained using between 100% and 15% of the pixels from original image, and
figure 8 (dot line) details the obtained PSNR. Figure 7 presents the reconstuction
using KST and reconstructions obtained using bicubic and nearest neighboor
interpolation of an image containing only a fraction of original image pixels.

(a) (b) (c) (d)

Fig. 6. Lena reconstruction, using 100%(a), 70%(b), 40%(c), 15%(d) of original image
pixels.

We combine our decomposition scheme with a multiresolution approach to
improve the reconstruction quality: a wavelet decomposition leads to 4 sub-



Fig. 7. PSNR of image reconstruction as a function of the number of pixels utilized to
define external functions.

images, one is a low-frequencies image, and three contains high frequencies. Our
goal is to decompose the images of details using small tiles, and, taking advan-
tage of the limited contrast, to replace values in external functions to reduce the
number of pixels from the original image required to the external functions con-
struction (as if larger tiles were used). An interesting property of this approach
is that the decomposition of the images of details (high frequencies) leads to sim-
ple external functions, with limited oscillations. Computing the mean value for
every external function and replacing the values located at a distance from the
mean value smaller than the standard deviation allows to decrease the number
of pixels retained for the network construction. Precisely, the smallest tile size
(a tile = a pixel) is utilized to decompose an image of details, and is reduced
up to only 15% of pixels after external function simplification. We compare this
simplification approach with well known image interpolation techniques: we re-
construct 100x100 images of details obtained with wavelets decomposition using
bicubic and nearest neighboor interpolation with only a fraction of the original
image pixels. Figure 8 details the obtained PSNR for Lena: the reconstruction
PSNR is higher and above 30dB for up to a 60% compression rate, and no visible
artefacts can be seen (see figure 10). Figure 9 presents the compression and as-
sociated reconstruction PSNR for five images: Lena, Goldhill, Peppers, Barbara,
and Mandrill. The reconstruction PSNR is higher and above 40 dB for up to 65%
compression rate. Figure 10 presents the results obtained on these five images
with two external functions simplification (high and low compression rates). We
observe that the reconstruction is not visibly altered. The irregular repartition
of measures is due to the external function simplifications: measures are realized
with regular simplification criteria over external functions, but the simplification
of external functions obtained is image dependent, so the compression ratio.



Fig. 8. PSNR of image reconstruction using wavelets as a function of the number of
pixels utilized to define external functions.

Fig. 9. PSNR of five classical image reconstruction.

4 Conclusion and perspectives

We have dealt with multivariate function decomposition using KST. We have
presented our implementation of Igelnik’s algorithm, that provides control over
the size of tiles, which determines the quantity of pixels from the decomposed
image that are utilized and contained in the network. Using this size reduction,
we have proposed a compression approach, that has been proved adapted to
the decomposition of subimages of details obtained from a wavelet decomposi-
tion. Due to the simple representation of the high frequencies, the monovariate
functions can be simplified: the three images of details can be replaced by a de-



composition into simplified monovariate functions, preserving the reconstruction
quality. We have presented the results of our approach, applied to various gray
level images and different simplification parameters of external functions.

Our principal contribution is the presentation of a compression method, com-
bining KST decomposition and wavelets decomposition simplification: the de-
composition of an image into continuous monovariate functions, that relies on a
superposition of tilage layers, that can be used to compress an image, and the
reconstruction and compression rate improved by applying this decomposition
to wavelet image decomposition.

From these results, several perspectives can be pointed out: further develop-
ments of this approach are required to obtain a complete compression method,
i.e. the size of the compressed image has to be evaluated, which implies the
development of an adapted quantization. The second perspective is the addition
of encryption and authentication to this compression scheme: considering the
direct decomposition of an image into monovariate functions, one can remark
that definitions of external and internal monovariate functions are independent.
Moreover, internal functions are required to re-arrange external functions and
reconstruct the image. Can internal functions be used as a signature or as an en-
cryption key? And finally, a multiresolution approach can be considered: layers
of a network can have different tilage densities, so the image could be progres-
sively reconstructed, with an increasing resolution, by progressively superposing
the layers.
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Fig. 10. Reconstruction of (a)(b) lena, (c)(d) barbara, (e)(f) goldhill, (g)(h) peppers
and (i)(j) mandrill, using about 50% and 80% (respectively) of the number of original
image pixels.


