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Dénombrement de valeurs propresdans le plan omplexeRésumé : Nous proposons une approhe pour ompter le nombre de va-leurs propres d'une matrie, situées dans un domaine borné du plan omplexe.L'approhe est fondée sur l'appliation du théorème des résidus. L'intégrationnous ramène à l'évaluation de l'argument prinipal du logarithme d'une fontion.Nous proposons une stratégie pour le hoix du pas qui permette de rester surla même branhe du logarithme pendant l'intégration. Des résultats numéri-ques sont obtenus à partir de tests onduits sur des matries tirées d'ensembleslassiques de matries.Mots-lés : Valeurs propres, résolvante, déterminant, logarithme omplexe



Counting eigenvalues 31 IntrodutionThe loalization of eigenvalues of a given matrix A in a domain of the omplexplane is of interest in sienti� appliations. When the matrix is real symmetrior omplex hermitian, a proedure based on omputations of Sturm sequenesallows to safely apply bisetions on real intervals to loalize the eigenvalues.The problem is muh harder for non symmetri or non hermitian matries andespeially for non normal ones. This last ase is the main onern of this work.Proeeding by trying to ompute the eigenvalues of the matrix may not alwaysbe appropriate for two reasons.First most of the iterative methods frequently used to alulate eigenvaluesof large and sparse matries may loose some of them, sine only a part of thespetrum is omputed, and as suh there is no guarantee to loalize all theeigenvalues of the seleted domain. When a shift-and-invert transformationis used, the eigenvalues are obtained in an order more or less ditated by theirdistane from the shift, and if one eigenvalue is skipped, there is no easy strategythat allows to reover it.Seond the entries of the matrix may be given with some errors and thenthe eigenvalues an only be loalized in domains of C.Many authors have de�ned regions in the omplex plane that inlude theeigenvalues of a given matrix. One of the main tool is the Gershgorin theo-rem. Sine a straight appliation of the theorem often leads to large disks, someauthors extended the family of inequalities for obtaining smaller regions by in-tersetions whih inlude eigenvalues (see e.g., [8, 12℄). Other tehniques onsistto onsider bounds involving the singular values (see e.g., [5℄), the eigenvaluesof the hermitian part and the skew-hermitian part of the matrix (see e.g., [3℄),or the �eld of values of inverses of the shifted matries (see e.g., [11℄).For taking into aount, possible perturbations of the matrix, Godunov[9℄and Trefethen [14℄ have separately de�ned the notion of the of ǫ-spetrum orpseudospetrum of a matrix to address the problem. The problem an then bereformulated as that of determining level urves of the 2-norm of the resolvent
R(z) = (zI −A)−1 of the matrix A.The previous approahes determine a priori enlosures of the eigenvalues. Adual approah an be onsidered: given some urve (Γ) in the omplex plane,ount the number of eigenvalues of the matrix A that are surrounded by (Γ).This problem was onsidered in [6℄ where several proedures were proposed.In this paper, we make some progress with respet to the work in [6℄. Ourproedure is based on the appliation of the residual theorem: the integrationproess leads to the evaluation of the prinipal argument of the logarithm of thefuntion g(z) = det((z+ h)I −A)/det(zI −A). This funtion is also onsideredin [7℄ to ount the eigenvalues when a nonlinear eigenvalue problem is perturbed.This work is mainly onerned with the ontrol of the integration path soas to stay on the same branh along an interval when evaluating the prinipalargument of a logarithm.In setion 2, we present the mathematial tools. In setion 3, we presentthe basis of our strategy for following a branh of the logarithm funtion andonditions for ontrolling the path length. Setion 4 deals with the implemen-tation of our method: we show how to safely ompute the determinant and howto inlude new points along the boundary. In setion 5 we present numerialRR n° 7770



Counting eigenvalues 4test results arried out on some test matries and in setion 6, we onlude withsome few remarks and future works.2 Mathematial tool and previous worksIn this setion we present the Cauhy's argument priniple and some previousworks on ounting eigenvalues in regions of the omplex �eld.2.1 Use of the argument prinipleThe loalization of the eigenvalues of matrix A involves the alulation of deter-minants. Indeed let (Γ) be a losed pieewise regular Jordan urve (pieewise
C1 and of winding number 1) in the omplex plane whih does not inlude eigen-values of A. The number NΓ of eigenvalues surrounded by (Γ) an be expressedby the Cauhy formula (see e.g., [2, 13℄):

NΓ =
1

2iπ

∫

Γ

f
′

(z)

f(z)
dz, (1)where f(z) = det(zI −A) is the harateristi polynomial of A.If γ(t)0≤t≤1 is a parametrization of Γ the equation (1) an be rewritten as

NΓ =
1

2iπ

∫ 1

0

f
′

(γ(t))

f(γ(t))
γ

′

(t)dt. (2)The primitive ϕ de�ned by
ϕ(u) =

∫ u

0

f
′

(γ(t))

f(γ(t))
γ

′

(t)dt, u ∈ [0, 1],is a ontinuous funtion whih is a determination of log(f ◦ γ) (e.g. see [13℄):
log f(γ(t)) = log |f(γ(t))|+ i arg(f(γ(t))), t ∈ [0, 1].It then follows that

NΓ =
1

2π
ϕI(1),where ϕI(1) is the imaginary part of ϕ(1) sine its real part vanishes.2.2 Counting the eigenvalues in a region surrounded by alosed urveIn [6℄, two proedures were proposed for ounting the eigenvalues in a domainsurrounded by a losed urve.The �rst method is based on the series expansion of log(I + hR(z)), where

R(z) = (zI−A)−1, ombined with a path following tehnique. The method usesa preditor - orretor sheme with onstant step size satisfying the onstraint
|ϕI(z +∆z)− ϕI(z)| < π,RR n° 7770



Counting eigenvalues 5for a disrete list of points z. The implementation of the algorithm requires theomputation of a few of the smallest singular values and the orresponding leftand right singular vetors of (zI − A); they are used to follow the tangent tothe level urve of the smallest singular value of (zI −A).In the seond proedure, the domain is surrounded by a parameterized user-de�ned urve z = γ(t) and thus
NΓ =

1

2iπ

∫ γ(1)

γ(0)

d
dtdet(γ(t)I −A)

det(γ(t)I −A)
dt (3)Sine γ(0) = γ(1), the funtion γ(t) de�ned on [0, 1], an be extended onto Rby

γext(t) = γ(t mod 1).By subdividing the interval [γ(0), γ(1)] into subintervals of equal length, and byassuming that γext ∈ C∞, they make use of a fundamental result from quadra-ture of periodi funtion to prove an exponential onvergene of the integral.The method is ompared to other integrators with adaptive step sizes.Eah of these methods makes use of the omputation of
u(t) =

det(γ(t)I −A)

|det(γ(t)I −A)| ,whih is e�iently omputed through a LU fatorization of the matrix (γ(t)I −
A) with partial pivoting. In order to avoid under�ow or over�ow, the quantityis omputed by

det(γ(t)I −A)

|det(γ(t)I −A)| =
n
∏

i=1

uii

|uii|where uii is the i-th diagonal element of U in the LU fatorization. The produtis omputed using the proedure that will be desribed later on in setion 4.Our work, whih an be viewed as an improvement of [6℄, mostly deals withthe ontrol of the integration so as to stay on the same branh along an interval,during the evaluation of the prinipal argument of the logarithm of the funtiong(z) de�ned in the introdution.3 Integrating along a urveIn this setion, we desribe strategies for the integration of the funtion g(z) =
f
′

(z)
f(z) , where f(z) = det(zI − A), along the boundary of a domain limited by auser-de�ned urve (Γ) that does not inlude eigenvalues of A.3.1 Following a branh of log(f(z)) along the urveTo simplify the presentation and without loss of generalization, let us assumethat Γ =

⋃N−1
i=0 [zi, zi+1] is a polygonal urve.Let Arg(z) ∈ (−π, π] denote the prinipal determination of the argument ofa omplex number z, and arg(z) ≡ Arg(z) (2π), be any determination of theargument of z. In this setion, we are onerned with the problem of followinga branh of log(f(z)) when z runs along (Γ). The branh (i.e. a determinationRR n° 7770



Counting eigenvalues 6
arg0 of the argument), whih is to be followed along the integrating proess, is�xed by seleting an origin z0 ∈ (Γ) and by insuring

arg0(f(z0)) = Arg(f(z0)). (4)Let z and z + h two points of (Γ). Sine
(z + h)I −A = (zI −A) + hI

= (zI −A)(I + hR(z)),where R(z) = (zI −A)−1, it then follows that
f(z + h) = f(z) det(I + hR(z)). (5)Let Φz(h) = det(I + hR(z)), then

∫ z+h

z

f
′

(z)

f(z)
dz = log(f(z + h))− log(f(z))

= log

(

f(z + h)

f(z)

)

= log(Φz(h))

= log |Φz(h)|+ i arg(Φz(h)).In the previous approah [6℄, given z, the step h is hosen suh that ondition
|arg(Φz(h))| < π, (6)is satis�ed. In [6℄ ondition (6) is only heked at point z + h but we wantthe ondition to be satis�ed at all the points s ∈ [z, z + h], so as to guaranteethat we stay on the same branh along the interval [z, z + h]. We need a morerestritive ondition whih is mathematially expressed by the following lemma:Lemma 3.1 (Condition (A)) Let z and h be suh that [z, z + h] ⊂ (Γ).If

|Arg(Φz(s))| < π, ∀s ∈ [0, h], (7)then,
arg0(f(z + h)) = arg0(f(z)) + Arg(Φz(h)), (8)where arg0 is the determination of the argument determined as in (4) by an apriori given z0 ∈ (Γ).Proof. We prove it by ontradition. Let us assume that there exists k ∈

Z \ {0} suh that
arg0(f(z + h)) = arg0(f(z)) +Arg(Φz(h)) + 2kπ.By ontinuity of the branh, there exists s ∈ [0, h] suh that |Arg(Φz(s))| = π,whih ontradits (7). ⋄Condition (7) is alled Condition (A).RR n° 7770



Counting eigenvalues 73.2 Step size ontrolIn our approah, given z, the step h is hosen suh that ondition of Lemma
(3.1) is satis�ed. Condition (A) is equivalent to

Φz(s) /∈ (−∞, 0], ∀s ∈ [0, h].In order to �nd a pratial riterion to insure it, we look for a more severe ondi-tion by requiring that Φz(s) ∈ Ω, where Ω is an open onvex set, neighborhoodof 1, and inluded in Ω ⊂ C \ (−∞, 0]. Possible options for Ω are the positivereal half-plane, or any disk inluded in it and entered in 1.Sine Φz(0) = 1, let
Φz(s) = 1 + δ, with δ = ρeiθ.A su�ient ondition for (7) be to satis�ed is ρ < 1, i.e.
|Φz(s)− 1| < 1, ∀s ∈ [0, h] (9)This ondition will be referred to as Condition (B), and, when only veri�edat z + h, i.e.

|Φz(h)− 1| < 1, (10)it will be referred to as Condition (B'). This last ondition is the onditionused in [6℄. It is lear that Condition (B) implies Condition (A) whereasthis is not the ase for Condition (B').Sine it is very di�ult to hek (9), we apply the ondition on the linearapproximation Ψz(s) = 1 + sΦ
′

z(0) of Φz(s) at 0. Replaing funtion Φz by itstangent Ψz in (9), leads to
|Ψz(s)− 1| < 1, ∀s ∈ [0, h], (11)whih is equivalent to the following ondition, referred as Condition (C):

|h| < 1

|Φ′

z(0)|
. (12)Example 3.1 (First illustration) Let A =

(

0 0
0 1

)

. It then follows that
f(z) = z(z − 1),

Φz(h) = (1 +
h

z
)(1 +

h

z − 1
),

Φ
′

z(0) =
1

z
+

1

z − 1
.Let us assume that we are willing to integrate along the segment from z = 2to z = 1 + i. In order to see if intermediate points are needed to insure thatthe branh of the logarithm is orretly followed, we onsider the previouslyintrodued onditions on h = t(−1 + i) where t ∈ [0, 1].Condition (A): Φ2(h) = 1 + 3h

2 + h2

2 is a non positive real number if andonly if h ∈ [−2,−1]
⋃

(− 3
2 + iR). From that, it an easily be seen that thesegment [0,−1 + i] does not interset the forbidden region. Therefore nointermediate points are needed.RR n° 7770



Counting eigenvalues 8Condition (B): this ondition is equivalent to |h||3 + h| < 2. By studying thefuntion φ(t) = |h||3 + h| =
√
2t|3 − t+ it|, the parameter t must remainsmaller than α ≈ 0.566.Condition (B'): in this example, this ondition is equivalent to the previousone, sine the funtion φ(t) is inreasing with t.Condition (C): sine Φ

′

2(h) = 3
2 + h, this ondition limits the extent of theinterval to |h| < 2

3 or equivalently t <
√
2
3 ≈ 0.471 .In the seond example, we illustrate the lak of reliability of Condition(B').Example 3.2 (Seond illustration) Let A = λIn, where λ ∈ R and In is theidentity matrix of order n. It then follows that

f(z) = (z − λ)n,

Φz(h) =

(

1 +
h

z − λ

)n

,

Φ
′

z(0) =
n

z − λ
.Let us assume that we are willing to integrate from z = λ+1 to z+h = λ+ eiθ.We onsider the previously introdued onditions on h.Condition (A): |θ| < π

n .Condition (B): |θ| < π
3n .Condition (B'): cosnθ > 1

2 whih is satis�ed for values that violate Condi-tion (A).Condition (C): | θ2 | < arcsin 1
2n , whih is guarantied by |θ| < 1

n .In this example, if (Γ) is the irle with enter λ and radius 1, the step sizemust be redued in suh a way that more than 2n intervals are onsidered tosatisfy Condition (A), or even 6n and 2πn intervals with Condition (B) andCondition (C) respetively.Pratially, we onsider that Condition (C) implies Condition (A), aslong as the linear approximation is valid. Problems may our when Φ
′

z vanishes.The following example illustrates suh a situation.Example 3.3 (Critial situation) Let us onsider the matrix of Example 3.1.For z = 1/2, Φ1/2(h) = 1− 4h2, and Φ
′

1/2(0) = 0, and the onditions beomeCondition (A): h /∈ R or |h| < 1/2,Condition (B): |h| < 1/2,Condition (B'): |h| < 1/2,Condition (C): is satis�ed for all h ∈ C.RR n° 7770



Counting eigenvalues 94 ImplementationIn this setion, we desribe the numerial implementation of our method. Strate-gies for inluding new points and a proedure for safely omputing the determi-nants are given.4.1 Avoiding over�ows and under�owsThe implementation of our method requires the omputation of
Φz(h) =

det((z + h)−A)

det(zI −A)
.In order to avoid under�ow or over�ow, we proeed as follows:For any non singular matrix M ∈ Cn×n, let us onsider its LU fatorization

PM = LU where P is a permutation matrix of signature σ. Then det(M) =
σ
∏n

i=1(uii) where uii ∈ C are the diagonal entries of U . If the matrix M is notorretly saled, the produt ∏n
i=1(uii) may generate an over�ow or an under-�ow. To avoid this, the determinant is haraterized by the triplet (ρ,K, n) sothat
det(A) = ρ ∗Kn (13)where:

ρ = σ

n
∏

i=1

uii

|uii|
, (ρ ∈ C with |ρ| = 1), and

K = n

√

√

√

√

n
∏

i=1

|uii| (K > 0).The quantity K is omputed through its logarithm:
log(K) =

1

n

n
∑

i=1

log(|uii|).By this way, the exat value of the determinant is not omputed, as long as thesaling of the matrix is not adequate.In setion 3, it was indiated that our algorithm will heavily be based onthe omputation of Φz(h) = det(I + hR(z)). For h of moderate modulus, thedeterminant does not over�ow. This an be veri�ed sine
Φz(h) =

det((z + h)I −A)

det(zI −A)
=

Kn
2 ρ2

Kn
1 ρ1

,where det(zI − A) and det((z + h)I − A) are respetively represented by thetriplets (ρ1,K1, n) and (ρ2,K2, n). Before raising to power n, to protet fromunder- or over�ow, the ratio K2/K1 must be in the interval [ 1
n
√

Mfl

, n
√

Mfl]where Mfl is the largest �oating point number. When this situation is violated,intermediate points must be inserted between z and z + h.RR n° 7770



Counting eigenvalues 104.2 Estimating the derivativeAn easy omputation shows that the derivative Φ
′

z(0) an be expressed by :
Φ

′

z(0) = trace(R(z)). (14)The evaluation of this simple expression involves many operations, as we showit now. By using the LU-fatorization P (zI −A) = LU whih is available at z,and by using (14), we may ompute Φ
′

z(0) =
∑n

i=1 u
∗
i li, where li = L−1ei and

ui = (U∗)−1ei, with ei being the i-th olumn of the identity matrix. When Ais a sparse matrix, the fators L and U are sparse but not the vetors ui and
li. Therefore, the whole omputation involves O(n3) �oating point operations.Approximations of the trae of the inverse of a matrix have been investigated.They involve less operations than use of the LU fatorization but they are onlyvalid for symmetri or hermitian matries [4, 10℄.If the derivative is approximated by its �rst order approximation, sparsityhelps. More spei�ally, given z and z+h, the derivative of Φz at 0 is estimatedby

Φ
′

z(0) ≈
Φz(s)− 1

s
,where s = αh with α = min(10−6µ/|h|, 1), and µ = maxz∈Γ |z|. Therefore, theomputation imposes an additional LU fatorization for evaluating the quantity

Φz(s). It is known that, for a sparse matrix, the sparse LU fatorization involvesmuh less operations that its dense ounterpart.4.3 Test for inluding new pointsIn this subsetion, we desribe a heuristi proedure for inluding new points inthe interval [z, z+h]. In setion 3, we introdued Condition (B) whih is moresevere than Condition (A) but might be easier to verify, and we proposed totest its linear approximation alledCondition (C). Unfortunately Example 3.3has exhibited that Condition (C) may be satis�ed while Condition (B') andtherefore Condition (B) is violated. To inrease our on�dene in aeptingthe point z+h, we simultaneously hek Condition (C) and Condition (B').When Condition (C) is violated, we insert M regularly spaed points be-tween z and z + h where
M = min

(⌈

|h| |Φ′

z(0)|
⌉

,Mmax

)

, (15)with Mmax being some user de�ned parameter.In addition, we insist that Condition (C) is satis�ed at eah bound of thesegment [z, z+h]. Therefore, on exit, the ondition |h| < 1
|Φ′

z+h
(0)| must also beguarantied. When it is violated, we insert the point z + h/2 in the list.The following example illustrates the e�et of this step size ontrol.Example 4.1 Let A be the random matrix :

A =













−0.63 0.80 0.68 0.71 −0.31
−0.81 0.44 −0.94 0.16 0.93
0.75 −0.09 −0.91 −0.83 −0.70

−0.83 −0.92 0.03 −0.58 −0.87
−0.26 −0.93 −0.60 −0.92 −0.36













.RR n° 7770



Counting eigenvalues 11
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−1.5
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1

1.5

Figure 1: Example 4.1. The eigenvalues are indiated by the stars. The polyg-onal line is de�ned by the 10 points with irles; the other points of the lineare automatially introdued to insure the onditions as spei�ed in setion 4.3(Mmax = 1 in (15)).The polygonal line (Γ) is determined by 10 points regularly spaed on the irleof enter 0 and radius 1.3. In Figure 1, are displayed the eigenvalues of A, theline (Γ) and the points that are automatially inserted by the proedure. The�gure illustrates that, when the line gets loser to some eigenvalue, the segmentlength beomes smaller.4.4 Global algorithmThe algorithm is skethed in Table 1. From a �rst list Z of points, it extends thelist Z in order to determine a safe split of the integral (1). The omplexity of thealgorithm is based on the number of omputed determinants. For eah z ∈ Z,the numbers det(zI −A) and Φ
′

z(0) are omputed; they involve two evaluationsof the determinant. Therefore, for N �nal points in Z, the omplexity an beexpressed by:
C = 2LLUN,where LLU is the number of operations involved in the omplex LU fatorizationof zI −A.When the matrix A is real and, assuming that the polygonal line (Γ) issymmetri w.r.t. the real axis and intersets it only in two points, half of theomputation an be saved sine

NΓ =
1

π
I
(

∫

Γ+

f
′

(z)

f(z)
dz

)

,where (Γ+) is the upper part of (Γ) when split by the real axis, and I(Z) denotesthe imaginary part of Z.RR n° 7770



Counting eigenvalues 12
Algorithm: EigenntInput

Z={edges of (Γ)} ;
Mpts = maximum number of allowed points ;
Mmax = maximum number of points to insert simultaneously ;Output
neg = number of eigenvalues surrounded by (Γ) ;Status(Z)=-1 ;while Status(Z)6= 0 and length(Z) < Mpts,for z ∈ Z suh that Status(z)==-1,Compute det(zI −A) and Φ

′

z(0) ;Status(z) = 1 ;endfor z ∈ Z suh that Status(z)=1,if Condition (C) not satis�ed at z,Generate M points Z̃ as in (15) ;
Z=Z ∪ Z̃ ; Status(Z̃)=-1 ;elseif Condition (B') not satis�ed at z + h ;
Z=Z ∪ {z + h/2} ; Status(z + h/2)=-1 ;elseStatus(z)=0 ;endendif no new points were inserted in Z ;for z ∈ Z,if Condition (C) is bakwardly violated ;

Z=Z ∪ {z − h/2} ; Status(z − h/2)=-1 ;endendendIntegral = ∑z∈Z Arg(Φ
′

z(0)) ; neg = round(Integral/ 2π) ;Table 1: Algorithm for ounting the eigenvalues surrounded by (Γ).
RR n° 7770



Counting eigenvalues 13

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5
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8
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Figure 2: Spetrum of the matrix of Example 5.1.5 Numerial testsThe tests are run on a laptop Dell (Proessor Intel Core i7-2620M CPU, lok:2.70 GHz, RAM: 4 GB). The program eigennt is oded in Matlab.In the following tests, we desribe the performanes of the algorithm for threereal matries hosen from the set Matrix Market [1℄. The maximum insertedpoints in an interval is Mmax = 10. When (Γ) is symmetri w.r.t. the realaxis, only half of the integration is performed. The storage of the matries iskept sparse (exept for omputing the spetra of the matries of the two �rstexamples).Example 5.1 (Matrix ODEP400A) This matrix is a model eigenvalue prob-lem oming from an ODE.
n ‖A‖1 Spetral radius Spetrum inluded in400 7 4.00 [-4,4.38e-4℄x[-0.01,0.01℄This matrix is of small order and its spetrum is displayed in Figure 2.The �rst experiment onsists to fousing on the right part of the spetrum byde�ning a regular polygon of 10 verties; the polygon is entered in the origin,symmetri w.r.t. with the real axis as shown in �gure 3 (only its upper partis drawn), and of radius R = 10−3. Five eigenvalues were orretly found assurrounded by the polygon. Some statistis are displayed in the �rst line ofTable 2.The seond experiment fouses on the bifuration between real and omplexeigenvalues in the neighborhood of −3.5. In the box [−4,−3.4]×[−10−3i, 10−3i],

89 eigenvalues are ounted (see the statistis in the seond line of Table 2). Theaspet ratio of the box is large. The re�ning proess proeeds in 16 steps toprodue 1506 intervals from the initial four. If the integral is omputed by theRR n° 7770
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Figure 3: Example 5.1: First experiment on the right end of the spetrum.Table 2: Statistis for Example 5.1.Nb. of eigenvalues in (Γ) nb. of intervals elapsed timeExper. 1 5 25 5.6e-2 sExper. 2 89 1506 1.1 srelation (8) at eah step (hene even if the neessary onditions for orretnessare not satis�ed), it would only have been orret at the �fth step and after ;this orresponds to 825 intervals. This illustrates the loss in e�ieny whih isimposed by the onstraint for a safe omputation.Example 5.2 (Matrix TOLS2000) This matrix omes from a stability anal-ysis of a model of an airplane in �ight.
n ‖A‖1 Spetral radius Spetrum inluded in2000 5.96 ×106 r= 2.44 ×103 [-750,0℄x[-r,+r℄Two experiments onsider the right part of the spetrum. A �rst box

[−20, 0] × [75i, 125i] is not symmetri w.r.t. the real axis. Therefore, the in-tegration is not redued. Eight eigenvalues are deounted. The seond box
[−20, 0] × [−500i, 500i] is symmetri w.r.t. the real axis but it inludes 542eigenvalues. The statistis are reported in Table 3. In Figure 4, the spetrumand two zooms on it are displayed.Nb. of eigenvalues in (Γ) nb. of intervals elapsed timeExper. 1 8 1943 6.69 sExper. 2 542 12400 44.5 sTable 3: Statistis for Example 5.2.RR n° 7770
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Exper. 1: Box=[−20, 0]× [75i, 125i] Exper. 2: Box=[−20, 0]× [−500i, 500i]Figure 4: Example 5.2: Spetrum of the matrix (up) and zooms on the tworegions of experiments.Example 5.3 (Matrix E40R5000) This sparse matrix omes from modeling2D �uid �ow in a driven avity, disretized on a 40×40 grid and with a Reynoldsnumber is Re = 5000.
n ‖A‖1 Spetral radius Spetrum inluded in17281 1.21 ×102 r=65.5 (*) [0,20.2℄x[-r,+r℄(*) Estimated by the Matlab proedure eigs.This example shows the reliability of the proposed proedure. Computingthe 6 eigenvalues of largest real part with the Matlab proedure eigs (it imple-RR n° 7770



Counting eigenvalues 16ments the ARPACK ode) returns the eigenvalues {8.3713± 64.653i, 8.8025±
64.876i, 16.203, 20.166}. By inreasing the number p of requested eigenvalues,only a few of them onverged: for instane for p = 20, only the two rightmostwere found. Inreasing even further up to p = 100, 14 eigenvalues were givenbak, inluding the already omputed two rightmost and 12 additional ones withreal parts belonging to the interval [12.2,12.9℄. Therefore, the user is inlined toask for the exat situation in this region. De�ning the retangle Γ = Γ+ ∩ Γ−where Γ+ = (14, 14+2i, 12+2i, 12) and where Γ− is the symmetri of Γ+ w.r.t.the real axis, the proedure eigennt returnsNumber of eigenvalues in (Γ) number of intervals elapsed time116 7986 54 h 42 mnTable 4: Statistis for Example 5.3.Atually, the right number of eigenvalues was already given before the lastre�ning step with 3994 intervals. Taking into aount the result of the experi-ment, after several tries of shifts in eigs, all the 116 eigenvalues surrounded by
(Γ) were obtained by requesting p = 200 eigenvalues in the neighborhood of theshift σ = 13.5 (elapsed time: 10.2s).6 ConlusionIn this paper, we have developed a reliable method for ounting the eigenvaluesin a region surrounded by a user-de�ned polygonal line. The main di�ulty totakle lies in the step ontrol whih must be used during the omplex integrationalong the line. The method is reliable but it involves a high level of omputation.This is the prie to pay for the reliability. In forthoming works, a parallelversion of the method will be developed and implemented. The ode involvesa high potential for parallelism sine most of the determinant omputationsare independent. A seond level of parallelism is also investigated within theomputation of a determinant for matries arising in domain deompositions.Referenes[1℄ Matrix market. Servie of the Mathematial and Computational SienesDivision / Information Tehnology Laboratory / National Institute of Stan-dards and Tehnology. http://math.nist.gov/MatrixMarket/.[2℄ 1970. Real and omplex analysis. MGraw Hill, New York, 1970.[3℄ M. Adam and M. J. Tsatsomeros. An eigenvalue inequality and spetrumloalization for omplex matries. ETNA, 15:239�250, 2006.[4℄ Z. Bai and G. H. Golub. Bounds for the trae of the inverse and thedeterminant of symmetri positive de�nite matries, 1996.[5℄ Christopher Beattie and Ilse C.F. Ipsen. Inlusion regions for matrix eigen-values. Linear Algebra and its Appliations, 358(1-3):281 � 291, 2003.RR n° 7770



Counting eigenvalues 17[6℄ O. Bertrand and B. Philippe. Counting the eigenvalues surrounded by alosed urve. Siberian Journal of Industrial Mathematis, 4:73�94, 2001.[7℄ D. Bindel. Error bounds and error estimates for nonlinear eigenvalue prob-lems. In Householder Meeting 2008, 2008.[8℄ R. A. Brualdi and S. Mellendorf. Regions in the omplex plane ontainingthe eigenvalues of a matrix. The Amerian Mathematial Monthly, 10:975�985, 1994.[9℄ S. Godunov. Spetral portraits of matries and riteria of spetrum di-hotomy. In L. Atanassova and J. Hezberger, editors, Third Int'l. IMACS-CAMM Symposium on Computer Arithmeti and Enlosure Methods, Am-sterdam, 1992.[10℄ G. H. Golub and G. Meurant. Matries, Moments and Quadrature withAppliations. Prineton University Press, 2009.[11℄ M. E. Hohstenbah, D. A. Singer, and P. F. Zahlin. Eigenvalue inlusionregions from inverses and of shifted matries. LAA, 429:2481�2496, 2008.[12℄ T.-Z. Huang, W. Zhang, and S.-Q. Shen. Regions ontaining eigenvaluesof a matrix. ELA, 15:215�224, 2006.[13℄ R. A. Silverman. Introdutory Complex Analysis. Dover Publiations, In.New York, 1972.[14℄ L. Trefethen. Pseudospetra of matries, pages 234�266. Longman, 1992.Dundee 1991.
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