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Abstra
t: A pro
edure for 
ounting the number of eigenvalues of a matrix in aregion surrounded by a 
losed 
urve is presented. It is based on the appli
ation ofthe residual theorem. The quadrature is performed by evaluating the prin
ipalargument of the logarithm of a fun
tion. A strategy is proposed for sele
tinga path length that insures that the same bran
h of the logarithm is followedduring the integration. Numeri
al tests are reported for matri
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Dénombrement de valeurs propresdans le plan 
omplexeRésumé : Nous proposons une appro
he pour 
ompter le nombre de va-leurs propres d'une matri
e, situées dans un domaine borné du plan 
omplexe.L'appro
he est fondée sur l'appli
ation du théorème des résidus. L'intégrationnous ramène à l'évaluation de l'argument prin
ipal du logarithme d'une fon
tion.Nous proposons une stratégie pour le 
hoix du pas qui permette de rester surla même bran
he du logarithme pendant l'intégration. Des résultats numéri-ques sont obtenus à partir de tests 
onduits sur des matri
es tirées d'ensembles
lassiques de matri
es.Mots-
lés : Valeurs propres, résolvante, déterminant, logarithme 
omplexe



Counting eigenvalues 31 Introdu
tionThe lo
alization of eigenvalues of a given matrix A in a domain of the 
omplexplane is of interest in s
ienti�
 appli
ations. When the matrix is real symmetri
or 
omplex hermitian, a pro
edure based on 
omputations of Sturm sequen
esallows to safely apply bise
tions on real intervals to lo
alize the eigenvalues.The problem is mu
h harder for non symmetri
 or non hermitian matri
es andespe
ially for non normal ones. This last 
ase is the main 
on
ern of this work.Pro
eeding by trying to 
ompute the eigenvalues of the matrix may not alwaysbe appropriate for two reasons.First most of the iterative methods frequently used to 
al
ulate eigenvaluesof large and sparse matri
es may loose some of them, sin
e only a part of thespe
trum is 
omputed, and as su
h there is no guarantee to lo
alize all theeigenvalues of the sele
ted domain. When a shift-and-invert transformationis used, the eigenvalues are obtained in an order more or less di
tated by theirdistan
e from the shift, and if one eigenvalue is skipped, there is no easy strategythat allows to re
over it.Se
ond the entries of the matrix may be given with some errors and thenthe eigenvalues 
an only be lo
alized in domains of C.Many authors have de�ned regions in the 
omplex plane that in
lude theeigenvalues of a given matrix. One of the main tool is the Gershgorin theo-rem. Sin
e a straight appli
ation of the theorem often leads to large disks, someauthors extended the family of inequalities for obtaining smaller regions by in-terse
tions whi
h in
lude eigenvalues (see e.g., [8, 12℄). Other te
hniques 
onsistto 
onsider bounds involving the singular values (see e.g., [5℄), the eigenvaluesof the hermitian part and the skew-hermitian part of the matrix (see e.g., [3℄),or the �eld of values of inverses of the shifted matri
es (see e.g., [11℄).For taking into a

ount, possible perturbations of the matrix, Godunov[9℄and Trefethen [14℄ have separately de�ned the notion of the of ǫ-spe
trum orpseudospe
trum of a matrix to address the problem. The problem 
an then bereformulated as that of determining level 
urves of the 2-norm of the resolvent
R(z) = (zI −A)−1 of the matrix A.The previous approa
hes determine a priori en
losures of the eigenvalues. Adual approa
h 
an be 
onsidered: given some 
urve (Γ) in the 
omplex plane,
ount the number of eigenvalues of the matrix A that are surrounded by (Γ).This problem was 
onsidered in [6℄ where several pro
edures were proposed.In this paper, we make some progress with respe
t to the work in [6℄. Ourpro
edure is based on the appli
ation of the residual theorem: the integrationpro
ess leads to the evaluation of the prin
ipal argument of the logarithm of thefun
tion g(z) = det((z+ h)I −A)/det(zI −A). This fun
tion is also 
onsideredin [7℄ to 
ount the eigenvalues when a nonlinear eigenvalue problem is perturbed.This work is mainly 
on
erned with the 
ontrol of the integration path soas to stay on the same bran
h along an interval when evaluating the prin
ipalargument of a logarithm.In se
tion 2, we present the mathemati
al tools. In se
tion 3, we presentthe basis of our strategy for following a bran
h of the logarithm fun
tion and
onditions for 
ontrolling the path length. Se
tion 4 deals with the implemen-tation of our method: we show how to safely 
ompute the determinant and howto in
lude new points along the boundary. In se
tion 5 we present numeri
alRR n° 7770



Counting eigenvalues 4test results 
arried out on some test matri
es and in se
tion 6, we 
on
lude withsome few remarks and future works.2 Mathemati
al tool and previous worksIn this se
tion we present the Cau
hy's argument prin
iple and some previousworks on 
ounting eigenvalues in regions of the 
omplex �eld.2.1 Use of the argument prin
ipleThe lo
alization of the eigenvalues of matrix A involves the 
al
ulation of deter-minants. Indeed let (Γ) be a 
losed pie
ewise regular Jordan 
urve (pie
ewise
C1 and of winding number 1) in the 
omplex plane whi
h does not in
lude eigen-values of A. The number NΓ of eigenvalues surrounded by (Γ) 
an be expressedby the Cau
hy formula (see e.g., [2, 13℄):

NΓ =
1

2iπ

∫

Γ

f
′

(z)

f(z)
dz, (1)where f(z) = det(zI −A) is the 
hara
teristi
 polynomial of A.If γ(t)0≤t≤1 is a parametrization of Γ the equation (1) 
an be rewritten as

NΓ =
1

2iπ

∫ 1

0

f
′

(γ(t))

f(γ(t))
γ

′

(t)dt. (2)The primitive ϕ de�ned by
ϕ(u) =

∫ u

0

f
′

(γ(t))

f(γ(t))
γ

′

(t)dt, u ∈ [0, 1],is a 
ontinuous fun
tion whi
h is a determination of log(f ◦ γ) (e.g. see [13℄):
log f(γ(t)) = log |f(γ(t))|+ i arg(f(γ(t))), t ∈ [0, 1].It then follows that

NΓ =
1

2π
ϕI(1),where ϕI(1) is the imaginary part of ϕ(1) sin
e its real part vanishes.2.2 Counting the eigenvalues in a region surrounded by a
losed 
urveIn [6℄, two pro
edures were proposed for 
ounting the eigenvalues in a domainsurrounded by a 
losed 
urve.The �rst method is based on the series expansion of log(I + hR(z)), where

R(z) = (zI−A)−1, 
ombined with a path following te
hnique. The method usesa predi
tor - 
orre
tor s
heme with 
onstant step size satisfying the 
onstraint
|ϕI(z +∆z)− ϕI(z)| < π,RR n° 7770



Counting eigenvalues 5for a dis
rete list of points z. The implementation of the algorithm requires the
omputation of a few of the smallest singular values and the 
orresponding leftand right singular ve
tors of (zI − A); they are used to follow the tangent tothe level 
urve of the smallest singular value of (zI −A).In the se
ond pro
edure, the domain is surrounded by a parameterized user-de�ned 
urve z = γ(t) and thus
NΓ =

1

2iπ

∫ γ(1)

γ(0)

d
dtdet(γ(t)I −A)

det(γ(t)I −A)
dt (3)Sin
e γ(0) = γ(1), the fun
tion γ(t) de�ned on [0, 1], 
an be extended onto Rby

γext(t) = γ(t mod 1).By subdividing the interval [γ(0), γ(1)] into subintervals of equal length, and byassuming that γext ∈ C∞, they make use of a fundamental result from quadra-ture of periodi
 fun
tion to prove an exponential 
onvergen
e of the integral.The method is 
ompared to other integrators with adaptive step sizes.Ea
h of these methods makes use of the 
omputation of
u(t) =

det(γ(t)I −A)

|det(γ(t)I −A)| ,whi
h is e�
iently 
omputed through a LU fa
torization of the matrix (γ(t)I −
A) with partial pivoting. In order to avoid under�ow or over�ow, the quantityis 
omputed by

det(γ(t)I −A)

|det(γ(t)I −A)| =
n
∏

i=1

uii

|uii|where uii is the i-th diagonal element of U in the LU fa
torization. The produ
tis 
omputed using the pro
edure that will be des
ribed later on in se
tion 4.Our work, whi
h 
an be viewed as an improvement of [6℄, mostly deals withthe 
ontrol of the integration so as to stay on the same bran
h along an interval,during the evaluation of the prin
ipal argument of the logarithm of the fun
tiong(z) de�ned in the introdu
tion.3 Integrating along a 
urveIn this se
tion, we des
ribe strategies for the integration of the fun
tion g(z) =
f
′

(z)
f(z) , where f(z) = det(zI − A), along the boundary of a domain limited by auser-de�ned 
urve (Γ) that does not in
lude eigenvalues of A.3.1 Following a bran
h of log(f(z)) along the 
urveTo simplify the presentation and without loss of generalization, let us assumethat Γ =

⋃N−1
i=0 [zi, zi+1] is a polygonal 
urve.Let Arg(z) ∈ (−π, π] denote the prin
ipal determination of the argument ofa 
omplex number z, and arg(z) ≡ Arg(z) (2π), be any determination of theargument of z. In this se
tion, we are 
on
erned with the problem of followinga bran
h of log(f(z)) when z runs along (Γ). The bran
h (i.e. a determinationRR n° 7770



Counting eigenvalues 6
arg0 of the argument), whi
h is to be followed along the integrating pro
ess, is�xed by sele
ting an origin z0 ∈ (Γ) and by insuring

arg0(f(z0)) = Arg(f(z0)). (4)Let z and z + h two points of (Γ). Sin
e
(z + h)I −A = (zI −A) + hI

= (zI −A)(I + hR(z)),where R(z) = (zI −A)−1, it then follows that
f(z + h) = f(z) det(I + hR(z)). (5)Let Φz(h) = det(I + hR(z)), then

∫ z+h

z

f
′

(z)

f(z)
dz = log(f(z + h))− log(f(z))

= log

(

f(z + h)

f(z)

)

= log(Φz(h))

= log |Φz(h)|+ i arg(Φz(h)).In the previous approa
h [6℄, given z, the step h is 
hosen su
h that 
ondition
|arg(Φz(h))| < π, (6)is satis�ed. In [6℄ 
ondition (6) is only 
he
ked at point z + h but we wantthe 
ondition to be satis�ed at all the points s ∈ [z, z + h], so as to guaranteethat we stay on the same bran
h along the interval [z, z + h]. We need a morerestri
tive 
ondition whi
h is mathemati
ally expressed by the following lemma:Lemma 3.1 (Condition (A)) Let z and h be su
h that [z, z + h] ⊂ (Γ).If

|Arg(Φz(s))| < π, ∀s ∈ [0, h], (7)then,
arg0(f(z + h)) = arg0(f(z)) + Arg(Φz(h)), (8)where arg0 is the determination of the argument determined as in (4) by an apriori given z0 ∈ (Γ).Proof. We prove it by 
ontradi
tion. Let us assume that there exists k ∈

Z \ {0} su
h that
arg0(f(z + h)) = arg0(f(z)) +Arg(Φz(h)) + 2kπ.By 
ontinuity of the bran
h, there exists s ∈ [0, h] su
h that |Arg(Φz(s))| = π,whi
h 
ontradi
ts (7). ⋄Condition (7) is 
alled Condition (A).RR n° 7770



Counting eigenvalues 73.2 Step size 
ontrolIn our approa
h, given z, the step h is 
hosen su
h that 
ondition of Lemma
(3.1) is satis�ed. Condition (A) is equivalent to

Φz(s) /∈ (−∞, 0], ∀s ∈ [0, h].In order to �nd a pra
ti
al 
riterion to insure it, we look for a more severe 
ondi-tion by requiring that Φz(s) ∈ Ω, where Ω is an open 
onvex set, neighborhoodof 1, and in
luded in Ω ⊂ C \ (−∞, 0]. Possible options for Ω are the positivereal half-plane, or any disk in
luded in it and 
entered in 1.Sin
e Φz(0) = 1, let
Φz(s) = 1 + δ, with δ = ρeiθ.A su�
ient 
ondition for (7) be to satis�ed is ρ < 1, i.e.
|Φz(s)− 1| < 1, ∀s ∈ [0, h] (9)This 
ondition will be referred to as Condition (B), and, when only veri�edat z + h, i.e.

|Φz(h)− 1| < 1, (10)it will be referred to as Condition (B'). This last 
ondition is the 
onditionused in [6℄. It is 
lear that Condition (B) implies Condition (A) whereasthis is not the 
ase for Condition (B').Sin
e it is very di�
ult to 
he
k (9), we apply the 
ondition on the linearapproximation Ψz(s) = 1 + sΦ
′

z(0) of Φz(s) at 0. Repla
ing fun
tion Φz by itstangent Ψz in (9), leads to
|Ψz(s)− 1| < 1, ∀s ∈ [0, h], (11)whi
h is equivalent to the following 
ondition, referred as Condition (C):

|h| < 1

|Φ′

z(0)|
. (12)Example 3.1 (First illustration) Let A =

(

0 0
0 1

)

. It then follows that
f(z) = z(z − 1),

Φz(h) = (1 +
h

z
)(1 +

h

z − 1
),

Φ
′

z(0) =
1

z
+

1

z − 1
.Let us assume that we are willing to integrate along the segment from z = 2to z = 1 + i. In order to see if intermediate points are needed to insure thatthe bran
h of the logarithm is 
orre
tly followed, we 
onsider the previouslyintrodu
ed 
onditions on h = t(−1 + i) where t ∈ [0, 1].Condition (A): Φ2(h) = 1 + 3h

2 + h2

2 is a non positive real number if andonly if h ∈ [−2,−1]
⋃

(− 3
2 + iR). From that, it 
an easily be seen that thesegment [0,−1 + i] does not interse
t the forbidden region. Therefore nointermediate points are needed.RR n° 7770



Counting eigenvalues 8Condition (B): this 
ondition is equivalent to |h||3 + h| < 2. By studying thefun
tion φ(t) = |h||3 + h| =
√
2t|3 − t+ it|, the parameter t must remainsmaller than α ≈ 0.566.Condition (B'): in this example, this 
ondition is equivalent to the previousone, sin
e the fun
tion φ(t) is in
reasing with t.Condition (C): sin
e Φ

′

2(h) = 3
2 + h, this 
ondition limits the extent of theinterval to |h| < 2

3 or equivalently t <
√
2
3 ≈ 0.471 .In the se
ond example, we illustrate the la
k of reliability of Condition(B').Example 3.2 (Se
ond illustration) Let A = λIn, where λ ∈ R and In is theidentity matrix of order n. It then follows that

f(z) = (z − λ)n,

Φz(h) =

(

1 +
h

z − λ

)n

,

Φ
′

z(0) =
n

z − λ
.Let us assume that we are willing to integrate from z = λ+1 to z+h = λ+ eiθ.We 
onsider the previously introdu
ed 
onditions on h.Condition (A): |θ| < π

n .Condition (B): |θ| < π
3n .Condition (B'): cosnθ > 1

2 whi
h is satis�ed for values that violate Condi-tion (A).Condition (C): | θ2 | < arcsin 1
2n , whi
h is guarantied by |θ| < 1

n .In this example, if (Γ) is the 
ir
le with 
enter λ and radius 1, the step sizemust be redu
ed in su
h a way that more than 2n intervals are 
onsidered tosatisfy Condition (A), or even 6n and 2πn intervals with Condition (B) andCondition (C) respe
tively.Pra
ti
ally, we 
onsider that Condition (C) implies Condition (A), aslong as the linear approximation is valid. Problems may o

ur when Φ
′

z vanishes.The following example illustrates su
h a situation.Example 3.3 (Criti
al situation) Let us 
onsider the matrix of Example 3.1.For z = 1/2, Φ1/2(h) = 1− 4h2, and Φ
′

1/2(0) = 0, and the 
onditions be
omeCondition (A): h /∈ R or |h| < 1/2,Condition (B): |h| < 1/2,Condition (B'): |h| < 1/2,Condition (C): is satis�ed for all h ∈ C.RR n° 7770



Counting eigenvalues 94 ImplementationIn this se
tion, we des
ribe the numeri
al implementation of our method. Strate-gies for in
luding new points and a pro
edure for safely 
omputing the determi-nants are given.4.1 Avoiding over�ows and under�owsThe implementation of our method requires the 
omputation of
Φz(h) =

det((z + h)−A)

det(zI −A)
.In order to avoid under�ow or over�ow, we pro
eed as follows:For any non singular matrix M ∈ Cn×n, let us 
onsider its LU fa
torization

PM = LU where P is a permutation matrix of signature σ. Then det(M) =
σ
∏n

i=1(uii) where uii ∈ C are the diagonal entries of U . If the matrix M is not
orre
tly s
aled, the produ
t ∏n
i=1(uii) may generate an over�ow or an under-�ow. To avoid this, the determinant is 
hara
terized by the triplet (ρ,K, n) sothat
det(A) = ρ ∗Kn (13)where:

ρ = σ

n
∏

i=1

uii

|uii|
, (ρ ∈ C with |ρ| = 1), and

K = n

√

√

√

√

n
∏

i=1

|uii| (K > 0).The quantity K is 
omputed through its logarithm:
log(K) =

1

n

n
∑

i=1

log(|uii|).By this way, the exa
t value of the determinant is not 
omputed, as long as thes
aling of the matrix is not adequate.In se
tion 3, it was indi
ated that our algorithm will heavily be based onthe 
omputation of Φz(h) = det(I + hR(z)). For h of moderate modulus, thedeterminant does not over�ow. This 
an be veri�ed sin
e
Φz(h) =

det((z + h)I −A)

det(zI −A)
=

Kn
2 ρ2

Kn
1 ρ1

,where det(zI − A) and det((z + h)I − A) are respe
tively represented by thetriplets (ρ1,K1, n) and (ρ2,K2, n). Before raising to power n, to prote
t fromunder- or over�ow, the ratio K2/K1 must be in the interval [ 1
n
√

Mfl

, n
√

Mfl]where Mfl is the largest �oating point number. When this situation is violated,intermediate points must be inserted between z and z + h.RR n° 7770



Counting eigenvalues 104.2 Estimating the derivativeAn easy 
omputation shows that the derivative Φ
′

z(0) 
an be expressed by :
Φ

′

z(0) = trace(R(z)). (14)The evaluation of this simple expression involves many operations, as we showit now. By using the LU-fa
torization P (zI −A) = LU whi
h is available at z,and by using (14), we may 
ompute Φ
′

z(0) =
∑n

i=1 u
∗
i li, where li = L−1ei and

ui = (U∗)−1ei, with ei being the i-th 
olumn of the identity matrix. When Ais a sparse matrix, the fa
tors L and U are sparse but not the ve
tors ui and
li. Therefore, the whole 
omputation involves O(n3) �oating point operations.Approximations of the tra
e of the inverse of a matrix have been investigated.They involve less operations than use of the LU fa
torization but they are onlyvalid for symmetri
 or hermitian matri
es [4, 10℄.If the derivative is approximated by its �rst order approximation, sparsityhelps. More spe
i�
ally, given z and z+h, the derivative of Φz at 0 is estimatedby

Φ
′

z(0) ≈
Φz(s)− 1

s
,where s = αh with α = min(10−6µ/|h|, 1), and µ = maxz∈Γ |z|. Therefore, the
omputation imposes an additional LU fa
torization for evaluating the quantity

Φz(s). It is known that, for a sparse matrix, the sparse LU fa
torization involvesmu
h less operations that its dense 
ounterpart.4.3 Test for in
luding new pointsIn this subse
tion, we des
ribe a heuristi
 pro
edure for in
luding new points inthe interval [z, z+h]. In se
tion 3, we introdu
ed Condition (B) whi
h is moresevere than Condition (A) but might be easier to verify, and we proposed totest its linear approximation 
alledCondition (C). Unfortunately Example 3.3has exhibited that Condition (C) may be satis�ed while Condition (B') andtherefore Condition (B) is violated. To in
rease our 
on�den
e in a

eptingthe point z+h, we simultaneously 
he
k Condition (C) and Condition (B').When Condition (C) is violated, we insert M regularly spa
ed points be-tween z and z + h where
M = min

(⌈

|h| |Φ′

z(0)|
⌉

,Mmax

)

, (15)with Mmax being some user de�ned parameter.In addition, we insist that Condition (C) is satis�ed at ea
h bound of thesegment [z, z+h]. Therefore, on exit, the 
ondition |h| < 1
|Φ′

z+h
(0)| must also beguarantied. When it is violated, we insert the point z + h/2 in the list.The following example illustrates the e�e
t of this step size 
ontrol.Example 4.1 Let A be the random matrix :

A =













−0.63 0.80 0.68 0.71 −0.31
−0.81 0.44 −0.94 0.16 0.93
0.75 −0.09 −0.91 −0.83 −0.70

−0.83 −0.92 0.03 −0.58 −0.87
−0.26 −0.93 −0.60 −0.92 −0.36













.RR n° 7770



Counting eigenvalues 11

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 1: Example 4.1. The eigenvalues are indi
ated by the stars. The polyg-onal line is de�ned by the 10 points with 
ir
les; the other points of the lineare automati
ally introdu
ed to insure the 
onditions as spe
i�ed in se
tion 4.3(Mmax = 1 in (15)).The polygonal line (Γ) is determined by 10 points regularly spa
ed on the 
ir
leof 
enter 0 and radius 1.3. In Figure 1, are displayed the eigenvalues of A, theline (Γ) and the points that are automati
ally inserted by the pro
edure. The�gure illustrates that, when the line gets 
loser to some eigenvalue, the segmentlength be
omes smaller.4.4 Global algorithmThe algorithm is sket
hed in Table 1. From a �rst list Z of points, it extends thelist Z in order to determine a safe split of the integral (1). The 
omplexity of thealgorithm is based on the number of 
omputed determinants. For ea
h z ∈ Z,the numbers det(zI −A) and Φ
′

z(0) are 
omputed; they involve two evaluationsof the determinant. Therefore, for N �nal points in Z, the 
omplexity 
an beexpressed by:
C = 2LLUN,where LLU is the number of operations involved in the 
omplex LU fa
torizationof zI −A.When the matrix A is real and, assuming that the polygonal line (Γ) issymmetri
 w.r.t. the real axis and interse
ts it only in two points, half of the
omputation 
an be saved sin
e

NΓ =
1

π
I
(

∫

Γ+

f
′

(z)

f(z)
dz

)

,where (Γ+) is the upper part of (Γ) when split by the real axis, and I(Z) denotesthe imaginary part of Z.RR n° 7770
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Algorithm: Eigen
ntInput

Z={edges of (Γ)} ;
Mpts = maximum number of allowed points ;
Mmax = maximum number of points to insert simultaneously ;Output
neg = number of eigenvalues surrounded by (Γ) ;Status(Z)=-1 ;while Status(Z)6= 0 and length(Z) < Mpts,for z ∈ Z su
h that Status(z)==-1,Compute det(zI −A) and Φ

′

z(0) ;Status(z) = 1 ;endfor z ∈ Z su
h that Status(z)=1,if Condition (C) not satis�ed at z,Generate M points Z̃ as in (15) ;
Z=Z ∪ Z̃ ; Status(Z̃)=-1 ;elseif Condition (B') not satis�ed at z + h ;
Z=Z ∪ {z + h/2} ; Status(z + h/2)=-1 ;elseStatus(z)=0 ;endendif no new points were inserted in Z ;for z ∈ Z,if Condition (C) is ba
kwardly violated ;

Z=Z ∪ {z − h/2} ; Status(z − h/2)=-1 ;endendendIntegral = ∑z∈Z Arg(Φ
′

z(0)) ; neg = round(Integral/ 2π) ;Table 1: Algorithm for 
ounting the eigenvalues surrounded by (Γ).
RR n° 7770



Counting eigenvalues 13

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5
−8

−6

−4

−2

0

2

4

6

8
x 10

−3

Figure 2: Spe
trum of the matrix of Example 5.1.5 Numeri
al testsThe tests are run on a laptop Dell (Pro
essor Intel Core i7-2620M CPU, 
lo
k:2.70 GHz, RAM: 4 GB). The program eigen
nt is 
oded in Matlab.In the following tests, we des
ribe the performan
es of the algorithm for threereal matri
es 
hosen from the set Matrix Market [1℄. The maximum insertedpoints in an interval is Mmax = 10. When (Γ) is symmetri
 w.r.t. the realaxis, only half of the integration is performed. The storage of the matri
es iskept sparse (ex
ept for 
omputing the spe
tra of the matri
es of the two �rstexamples).Example 5.1 (Matrix ODEP400A) This matrix is a model eigenvalue prob-lem 
oming from an ODE.
n ‖A‖1 Spe
tral radius Spe
trum in
luded in400 7 4.00 [-4,4.38e-4℄x[-0.01,0.01℄This matrix is of small order and its spe
trum is displayed in Figure 2.The �rst experiment 
onsists to fo
using on the right part of the spe
trum byde�ning a regular polygon of 10 verti
es; the polygon is 
entered in the origin,symmetri
 w.r.t. with the real axis as shown in �gure 3 (only its upper partis drawn), and of radius R = 10−3. Five eigenvalues were 
orre
tly found assurrounded by the polygon. Some statisti
s are displayed in the �rst line ofTable 2.The se
ond experiment fo
uses on the bifur
ation between real and 
omplexeigenvalues in the neighborhood of −3.5. In the box [−4,−3.4]×[−10−3i, 10−3i],

89 eigenvalues are 
ounted (see the statisti
s in the se
ond line of Table 2). Theaspe
t ratio of the box is large. The re�ning pro
ess pro
eeds in 16 steps toprodu
e 1506 intervals from the initial four. If the integral is 
omputed by theRR n° 7770
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Figure 3: Example 5.1: First experiment on the right end of the spe
trum.Table 2: Statisti
s for Example 5.1.Nb. of eigenvalues in (Γ) nb. of intervals elapsed timeExper. 1 5 25 5.6e-2 sExper. 2 89 1506 1.1 srelation (8) at ea
h step (hen
e even if the ne
essary 
onditions for 
orre
tnessare not satis�ed), it would only have been 
orre
t at the �fth step and after ;this 
orresponds to 825 intervals. This illustrates the loss in e�
ien
y whi
h isimposed by the 
onstraint for a safe 
omputation.Example 5.2 (Matrix TOLS2000) This matrix 
omes from a stability anal-ysis of a model of an airplane in �ight.
n ‖A‖1 Spe
tral radius Spe
trum in
luded in2000 5.96 ×106 r= 2.44 ×103 [-750,0℄x[-r,+r℄Two experiments 
onsider the right part of the spe
trum. A �rst box

[−20, 0] × [75i, 125i] is not symmetri
 w.r.t. the real axis. Therefore, the in-tegration is not redu
ed. Eight eigenvalues are de
ounted. The se
ond box
[−20, 0] × [−500i, 500i] is symmetri
 w.r.t. the real axis but it in
ludes 542eigenvalues. The statisti
s are reported in Table 3. In Figure 4, the spe
trumand two zooms on it are displayed.Nb. of eigenvalues in (Γ) nb. of intervals elapsed timeExper. 1 8 1943 6.69 sExper. 2 542 12400 44.5 sTable 3: Statisti
s for Example 5.2.RR n° 7770
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Exper. 1: Box=[−20, 0]× [75i, 125i] Exper. 2: Box=[−20, 0]× [−500i, 500i]Figure 4: Example 5.2: Spe
trum of the matrix (up) and zooms on the tworegions of experiments.Example 5.3 (Matrix E40R5000) This sparse matrix 
omes from modeling2D �uid �ow in a driven 
avity, dis
retized on a 40×40 grid and with a Reynoldsnumber is Re = 5000.
n ‖A‖1 Spe
tral radius Spe
trum in
luded in17281 1.21 ×102 r=65.5 (*) [0,20.2℄x[-r,+r℄(*) Estimated by the Matlab pro
edure eigs.This example shows the reliability of the proposed pro
edure. Computingthe 6 eigenvalues of largest real part with the Matlab pro
edure eigs (it imple-RR n° 7770
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ode) returns the eigenvalues {8.3713± 64.653i, 8.8025±
64.876i, 16.203, 20.166}. By in
reasing the number p of requested eigenvalues,only a few of them 
onverged: for instan
e for p = 20, only the two rightmostwere found. In
reasing even further up to p = 100, 14 eigenvalues were givenba
k, in
luding the already 
omputed two rightmost and 12 additional ones withreal parts belonging to the interval [12.2,12.9℄. Therefore, the user is in
lined toask for the exa
t situation in this region. De�ning the re
tangle Γ = Γ+ ∩ Γ−where Γ+ = (14, 14+2i, 12+2i, 12) and where Γ− is the symmetri
 of Γ+ w.r.t.the real axis, the pro
edure eigen
nt returnsNumber of eigenvalues in (Γ) number of intervals elapsed time116 7986 54 h 42 mnTable 4: Statisti
s for Example 5.3.A
tually, the right number of eigenvalues was already given before the lastre�ning step with 3994 intervals. Taking into a

ount the result of the experi-ment, after several tries of shifts in eigs, all the 116 eigenvalues surrounded by
(Γ) were obtained by requesting p = 200 eigenvalues in the neighborhood of theshift σ = 13.5 (elapsed time: 10.2s).6 Con
lusionIn this paper, we have developed a reliable method for 
ounting the eigenvaluesin a region surrounded by a user-de�ned polygonal line. The main di�
ulty tota
kle lies in the step 
ontrol whi
h must be used during the 
omplex integrationalong the line. The method is reliable but it involves a high level of 
omputation.This is the pri
e to pay for the reliability. In forth
oming works, a parallelversion of the method will be developed and implemented. The 
ode involvesa high potential for parallelism sin
e most of the determinant 
omputationsare independent. A se
ond level of parallelism is also investigated within the
omputation of a determinant for matri
es arising in domain de
ompositions.Referen
es[1℄ Matrix market. Servi
e of the Mathemati
al and Computational S
ien
esDivision / Information Te
hnology Laboratory / National Institute of Stan-dards and Te
hnology. http://math.nist.gov/MatrixMarket/.[2℄ 1970. Real and 
omplex analysis. M
Graw Hill, New York, 1970.[3℄ M. Adam and M. J. Tsatsomeros. An eigenvalue inequality and spe
trumlo
alization for 
omplex matri
es. ETNA, 15:239�250, 2006.[4℄ Z. Bai and G. H. Golub. Bounds for the tra
e of the inverse and thedeterminant of symmetri
 positive de�nite matri
es, 1996.[5℄ Christopher Beattie and Ilse C.F. Ipsen. In
lusion regions for matrix eigen-values. Linear Algebra and its Appli
ations, 358(1-3):281 � 291, 2003.RR n° 7770
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s, 4:73�94, 2001.[7℄ D. Bindel. Error bounds and error estimates for nonlinear eigenvalue prob-lems. In Householder Meeting 2008, 2008.[8℄ R. A. Brualdi and S. Mellendorf. Regions in the 
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an Mathemati
al Monthly, 10:975�985, 1994.[9℄ S. Godunov. Spe
tral portraits of matri
es and 
riteria of spe
trum di-
hotomy. In L. Atanassova and J. Hezberger, editors, Third Int'l. IMACS-CAMM Symposium on Computer Arithmeti
 and En
losure Methods, Am-sterdam, 1992.[10℄ G. H. Golub and G. Meurant. Matri
es, Moments and Quadrature withAppli
ations. Prin
eton University Press, 2009.[11℄ M. E. Ho
hstenba
h, D. A. Singer, and P. F. Za
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