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A tribute to the memory of Paul Turán Turán's New Method and Compressive Sampling

.

1 The theorem and its improvement Theorem A (11.6 in [START_REF] Turán | On a New Method of Analysis and its Applications[END_REF]).-Given an integer n ≥ 2 and 0 < δ < 1, there exist real x 1 , x 2 , . . . , x n such that [START_REF] Candès | Compressive sampling[END_REF] n j=1 e 2πimx j < δn for all integers m such that

(2) 1 ≤ m ≤ 1 2 2 nδ 2 /4 1
The proof relies on two ideas : 1) The distribution of the x j modulo 1 is the same as the distribution of the mx j modulo 1. 2) Considering the x j as independent random variables uniformly distributed on T = R/Z, there exists an explicit formula for the moments of | n j=1 e 2πix j |, namely

E n j=1 e 2πix j 2p = p 1 +•••+p k =2p (2p)! p 1 ! • • • p k ! .
A preliminary lemma (5.9 in [START_REF] Turán | On a New Method of Analysis and its Applications[END_REF]) gives an estimate of the right-hand member and a rather simple calculation leads to the result. The improvement consists in using Laplace transforms. We are looking for, taking into account that the cos(2πx j -φ) and the cos 2πx j have the same distribution, P n j=1 e 2πix j > δn Let us choose an integer ν ≥ 3. Given any z complex = 0, there exists a ϕ = 2jπ ν (j = 1, 2, . . . ν) such that Re ze -iϕ ≥ a|z| with a = cos π ν . Therefore

P n j=1 e 2πix j > δn ≤ ν sup ϕ P n j=1 cos(2πx j -ϕ) > δna = νP n j=1 cos 2πx j > δna < νE exp u n j=1 cos 2πx j -δna (u > 0) = νe -uδna n j=1 E(e u cos 2πx j ) = νe -uδna (Ee u cos 2πx )) n
where x is a random variable uniformly distributed on T. Now

E(e u cos 2πx ) = ∞ j=0 u j j! E ((cos 2πx) j ) = ∞ k=0 u 2k (2k)! (2k)! (k!) 2 2 2k ≤ ∞ k=0 1 k! u 2 4 k = e +u 2 /4 Therefore P n j=1 e 2πix j > δ < ν inf u>0 e -uδna+nu 2 /4 = νe -nδ 2 a 2 a 2 = cos 2 π ν
The best choice of ν minimizes log ν -nδ 2 cos 2 π ν . Since

d dv (log v -nδ 2 cos 2 π v ) = 1 v 1 -nδ 2 π v sin 2π v we are lead to choose ν = [δπ √ 2n]
Finally we obtain :

Theorem 1.-Considering the x j (j = 1, 2, . . . n) as independent random variables uniformly distributed on T = R/Z, given n integer ≥ 2 and 0 < δ < 1, the probability

P (M, n, δ) = P (∀m ∈ {1, 2, . . . M} n j=1 e 2πimx j < δn) satisfies 1 -P (M, n, δ) ≤ Mνe -nδ 2 a 2 (a 2 = cos 2 π ν )
for all integers ν ≥ 3, and in particular for ν = [δπ √ 2n].

Therefore P (M, n, δ) > 0 when

M < 1 ν e nδ 2 a 2 (a 2 = cos π ν ) .
This is a better estimate than 1 2 2 nδ 2 /4 already for ν = 4, and even for ν = 3 when nδ 2 ≥ 8.

A question raised by Turán and its discussion

After stating and proving Theorem A (11.6) Turán added the following comment: "It would be interesting to find an explicit system x 1 , . . . , x n that satisfies the theorem" Certainly Turán had in mind a construction of the type of that he gave after Tijdeman of real x j (j = 1, 2, . . . n) such that max It is not sufficient in order to obtain Theorem A but it provides a weaker result of the same type. Actually, taking

δ = c(A) log n n ,
we have

A = 1 6 δ n log n -3 , n A = exp 1 6 (δ √ n log n -3 log n) .
Therefore, given n ≥ 3 and 0 < δ < 1, we can exhibit x 1 , . . . , x n real such that (1) is valid for all integers m such that

(3) 1 ≤ m ≤ exp 1 6 δ n log n -3 log n .
Condition (3) is much stronger than (2), it means that the explicit construction in [START_REF] Turán | On a New Method of Analysis and its Applications[END_REF], pp. 82-83 gives a much weaker result than Theorem A.

No such construction is available at the present time with (1) instead of (3). However, a random choice of the x j can be as good as an explicit construction from a practical point of view. It may provide good expamples with a high probability, since choosing

M = 1 2 2 nδ 2/4
in Theorem 1 gives

Mνe -nδ 2 a 2 = ν 2 M -c with c = 4a 2 log 2 -1 a 2 = cos 2 π ν .
For instance c > 4, 2 when ν = 10: when M is large we are nearly insured that Theorem A works with a random choice of the x j .

A discrete version of Theorem 1

In Theorem 1 the x j are independent random variables that are uniformly distributed on T. Here we replace T by Z N = Z/NZ, N prime ≥ 5, and we choose M = N -1 2 . Theorem 2.-Considering the X j (j = 1, 2, . . . n) as independent random variables uniformly distributed on Z N , N prime ≥ 5, given n integer ≥ 2 and 0 < δ < 1, the probability

P (N, n, δ) = P (∀m ∈ Z N \{0} n j=1 e 2πimX j /N < δn satisfies 1 -P (N, n, δ) < N -1 2 νe -nδ 2 a 2 , a 2 = cos 2 π ν ,
for all integers ν ≥ 3 and in particular for

ν = [δπ √ 2n].
The proof relies on the following lemma

Lemma.-If X is a random variable uniformly distributed on Z N , N ≥ 5, then [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF] E(e u cos 2πX/N ) ≤ e u 2/4 (u > 0) .

Proof of the lemma. We compare the Taylor expansions on both sides:

E(e u cos 2πX/N ) = ∞ k=0 u k k! J k J k = E cos k 2πX N .
Using

cos k u = 2 -k k j=0 k! j!(k -j)! cos(k -2j)u
and

E cos 2πjX N = 1 if j ∈ NZ 0 if j / ∈ NZ ,
we see that

J 0 = 1, J 1 = 0, J 2 = 1 2 , J 3 = 0, J 4 = 3 8 , J 5 = 1 16
or 0 and J 6 = 1 2 or 5 6 according to N = 5 or N = 5 and

J k ≤ J 6 ≤ 1 2 if k ≥ 6 .
In both cases u ≤ 1 or u > 1 we have

∞ k=0 u k k! J k ≤ 1 + ∞ k=1 u 2k (2k)! 2kJ 2k-1 + J 2k + 1 2k + 1 J 2k+1
to be compared with

e u 2 /4 = 1 + ∞ k=1 u 2k 4 k k! .
It suffices to prove that for k ≥ 1

2kJ 2k-1 + J 2k + J 2k+1 2k + 1 ≤ (2k!) 4 k k! = (k + 1)(k + 2) • • • (2k) 4 k .
We check this inequality for k = 1, 2, 3:

0 + 1 2 + 0 ≤ 2 4 0 + 3 8 + 1 5 × 16 ≤ 3 × 4 4 2 6 16 + 1 2 + 1 7 × 2 ≤ 4 × 5 × 6 4 3
and for k ≥ 4 we just use J ℓ ≤ 1 2 (ℓ ≥ 6) and we check

1 2 2k + 1 + 1 2k + 1 < (k + 1)(k + 2) • • • (2k) 4 k .
The lemma is proved.

Let us remark that (3) is not valid when N = 2 or N = 3.

The assumption that N is prime is essential in the proof of the theorem. It insures that the X j and the mX j (m = 1, 2, . . . M) have the same joint distribution. The proof of Theorem 2 is copied from that of Theorem 1, with a slight modification: here again

P n j=1 e 2πiX j /N > δn ≤ νP n j=1 cos 2πX j N -ϕ > δna
for some ϕ multiple of 2π ν and a = cos π ν , but now

P n j=1 cos 2πX j N -ϕ > δna ≤ E exp u n j=1 cos 2πX j N -ϕ -δna = e -δnau E exp u cos 2πX N -ϕ n
and we shall check that this is

≤ e -δnau E exp u cos 2πX N n ≤ e -δnau+nu 2 /4
because of (4) and we proceed from that point as in Theorem 1. The main change is the inequality

E exp u cos 2πX N -ϕ ≤ E exp u cos 2πX N
and it is justified in expanding the first exponential in the form

∞ j=0 α j (u) cos j 2πX N -ϕ
with α j (u) ≥ 0 and using

E cos j 2πX N -ϕ ≤ E cos j 2πX N
for all j, multiples of N or not. Theorem 2 is proved and will be used in what follows.

A new variation around the compressive sampling theorem of Candès, Romberg and Tao

Here we need new notations. We denote by G the abelian group Z N = Z/NZ, considered as the space of times, t. The dual group Ĝ, also represented by Z N , is considered as the space of frequencies, ω, and the duality is expressed by (ω, t) = e tω N , e(u) = e 2πiu .

A signal x(t) is a complex-valued function on G. Its Fourier transform is

x(ω) = 1 √ N t∈G x(t)e -tω N
and x(t) is reconstructed from the x(ω) by the inversion formula

x(t) = 1 √ N ω∈ Ĝ x(ω)e tω N .
The compressive sampling consists in reconstructing x(t) by using only a small set of frequencies ω, that is, ω ∈ Ω, Ω ⊂ Ĝ. It needs an assumption on the signal, usually that the signal is supported by a small set of times t, say t ∈ S, S ⊂ G. The cardinal of S is denoted by T : |S| = T . Let us recall the notation:

x 0 = cardinal of the support of x .

It is convenient to consider x as an element of ℓ 1 (G) and x as an element of A( Ĝ) = F ℓ 1 (G), with the norms

x A = x 1 = t∈G |x(t)| .
The process of reconstruction is as follows: x| Ω can be extended to Ĝ in many ways; if there is a unique extension of minimal norm in A( Ĝ) and if this unique extension is x, then x is the solution of a problem of convex analysis (find a point of minimal norm in a given closed convex set) tractable from a numerical point of view. The reconstruction works under the assumption (α): x is the extension of x| Ω of minimal norm in A( Ĝ).

Here is the theorem of Candès, Romberg and Tao (2006, [START_REF] Candès | Robust Uncertainty Principles : Exact Signal Reconstruction from Highly Incomplete Frequency Information[END_REF][START_REF] Candès | Compressive sampling[END_REF]) that can be considered as a paradigm in the theory of compressive sampling, or compressed sensing.

Theorem B (2.1 in [START_REF] Candès | Compressive sampling[END_REF]).-Suppose that the signal x is carried by a set of T points ( x 0 ≤ T ). Choose the probability that (α) is valid satisfies

(6) P ((α)) = 1 -O(N -δ ) (N → ∞)
I gave a number of variations about this theorem in [START_REF] Kahane | Idempotents et échantillonnage parcimonieux[END_REF] and [START_REF] Kahane | Variantes sur un théorème de Candès, Romberg et Tao[END_REF]. Here is such a variation (just copied from the remark after (ii) in [START_REF] Kahane | Variantes sur un théorème de Candès, Romberg et Tao[END_REF]):

(β): if there is a function

L(t) = ω∈Ω L(ω)e tω N such that (7) sup t∈G\{0} |L(t)| < 1 2T L(0) ,
then (α) is valid for all signals x such that x 0 ≤ T . A more restricted form, used in [START_REF] Kahane | Idempotents et échantillonnage parcimonieux[END_REF] and [START_REF] Kahane | Variantes sur un théorème de Candès, Romberg et Tao[END_REF], is the following:

(γ): if K(t) = ω∈Ω e tω N satisfies (8) sup t∈G\{0} |K(t)| < 1 2T K(0) , then (α) is valid for all signals x such that x 0 ≤ T .
How to construct such a function L(t), or such a function K(t)? Here again a random choice is convenient, and it leads to the following result (cf. V 2 ′′ in [START_REF] Kahane | Variantes sur un théorème de Candès, Romberg et Tao[END_REF]):

Theorem C.-Suppose that Ω is produced by a random selection on Ĝ with parameter τ (0 < τ < 1), meaning that the events (ω ∈ Ω) are independent and P (ω ∈ Ω) = τ for all ω ∈ Ĝ (then |Ω| has a binomial distribution B(τ, N) with mean value τ N and variance τ (1 -τ )N). Assume that

(9) τ N = 4C(T 2 + 1) log N (C > 1)
and N = ±1 modulo 6. Then

P ((8)) > 1 -νN -Ca 2 +1
for all integers ν ≥ 3 and a 2 = cos 2 π ν . Consequently (10) P (∀x :

x 0 ≤ T (α)) = 1 -O(N -δ ) (N → ∞) for all δ < C -1.
The assumption (9) is much stronger than ( 5), but the result (10) is much stronger than [START_REF] Kahane | Variantes sur un théorème de Candès, Romberg et Tao[END_REF].

Assuming that N is prime, Theorem 2 is a new way to look at Theorem C. Now the X j of Theorem 2 are random frequencies, not necessarily distinct, and Ω is the random set of values taken by the X j , j = 1, 2, . . . n, therefore |Ω| ≤ n. We can write and, choosing δ = 1 2T , P (( 7)) is the same as P (N, n, δ) in Theorem 2. The result reads as follows Theorem 3.-Suppose that Ω is the set of values taken by n independent random variables X j uniformly distributed on Z N and assume that

(12) n = 4CT 2 log N (C > 1)
and N is prime ≥ 5. Then the function L defined in (11) satisfies

(13) P ((7)) > 1 - ν 2 N 1-Ca 2
for all integers ν ≥ 3 and a 2 = cos 2 π ν . Consequently (14) P (∀x :

x 0 ≤ T (α)) = 1 -O(N -δ ) (N → ∞)
for all δ < C -1.

The conclusion (14) is the same as (10) and the assumption (12) is only a slight improvement of (9). However, using (13) in an optimal way, it is interesting to apply Theorem 3 when T , small, and N are given. Forgetting the fact that ν is an integer, the best choice of ν in (13) satisfies

C π ν sin 2π ν log N = 1 .
We choose a slight variation:

sin 2 π ν = 1 2C log N , a 2 = 1 - 1 2C log N , ν < π √ 2C log N That gives (15) P ((7)) > 1 - π 2 2Ce log N N 1-C
instead of (13) and accordingly (16) P (∀x :

x 0 ≤ T (α)) > 1 - π 2 2Ce log NN 1-C
much more precise as (14). As an example, let me choose N = 997 and T = 2, and estimate n and p = π 2 √ 2Ce log N N 1-C for a few values of C:

C = 2 n = 242 p < 0, 036 C = 3 n = 332 p < 0, 000044
The random choice of Ω with n = 332 is near to insure that (α) is valid for all signals carried by 2 points in Z 997 . Though that has no practical value it shows the power of random methods compared to explicit constructions (here not yet discovered).

Let me conclude with an observation on random subsets of a given finite set, here Z N . In Theorems B, C, 2 and 3 I used P ( ) for the probability of an event consisting in a collection of sets Ω included in Z N , but the probability spaces were different. Here are the probability spaces we met.

1 (Theorem B) P ( ) is the uniform distribution on all subsets consisting of f points.

2 (Theorem C) P ( ) is defined by the condition that all events (ω ∈ Ω) are independent and have the same probability τ (random selection).

3 (Theorems 2 and 3) P (Ω) is the probability that Ω is exactly the range of X 1 , X 2 , . . . X n , independent random variables uniformly distributed on Z N .

Another natural probability space is 4 (Poisson point process) P (Ω) is a Poisson variable of parameter τ |Ω|.

Roughly speaking, f , τ N and n have the same role, but the relation between these probabilities deserves attention. All of them are invariant under any permutation of the given set (here Z N ). In other words, the conditional probability when |Ω| is given is uniform. They are well defined by the distribution of |Ω|: the Dirac measure at f in case 1, the Bernoulli distribution B(τ, N) in case 2, the Poisson distribution P (τ ) in case 4, and interesting distribution carried by {1, 2, . . . n} in case 3. The comparison between these distributions of |Ω| is done in [START_REF] Candès | Robust Uncertainty Principles : Exact Signal Reconstruction from Highly Incomplete Frequency Information[END_REF] and [START_REF] Kahane | Variantes sur un théorème de Candès, Romberg et Tao[END_REF] for cases 1 and 2, it is easy to extend it to case 4, the case 3 needs more attention. It is known among probabilists as the occupation problem and much is known about (see for example [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF] or [START_REF] Durrett | Probability: Theory and Examples, Wedsworth and Brooks/Cole[END_REF]); I thank Gregory Miermont for this observation.

e

  2πimx j ≤ c(A) n log n . This construction involves prime numbers and gives an estimate of c(A): c(A) = 6A + 3 , ([7]p.83) .

( 5 )

 5 f = [CT log N] ([ ] : integral point) and choose Ω randomly with the uniform distribution among all subsets of Ĝ such that |Ω| = f . If C = 22(1 + δ)