
HAL Id: hal-00634022
https://hal.science/hal-00634022v1

Submitted on 28 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Symbolic computation of minimal cuts for AltaRica
models

Alain Griffault, Gérald Point, Fabien Kuntz, Aymeric Vincent

To cite this version:
Alain Griffault, Gérald Point, Fabien Kuntz, Aymeric Vincent. Symbolic computation of minimal cuts
for AltaRica models. 2011. �hal-00634022�

https://hal.science/hal-00634022v1
https://hal.archives-ouvertes.fr

LaBRI

Symbolic computation of minimal cuts for
AltaRica models

Research Report RR-1456-11

Alain Griffault1, Gérald Point1, Fabien Kuntz1,2 and
Aymeric Vincent1

{firtname.lastname}@labri.fr

September 30, 2011

1 - LaBRI, Université de Bordeaux, 33405 Talence cedex

2 - Thales Avionics S.A., F-31036 Toulouse, France

Abstract

AltaRica[1, 13] tools developped at LaBRI have always been dedicated to model-
checking thus focusing analysis onto functional aspects of systems. In this re-
port we are interested by a problem encountered in safety assessment or diag-
nosis domains: the computation of all failure scenarios. This problem consists
to determine preponderant sequences of failures of elementary components
that lead the system into a critical state. While model-checkers usually look for
a counter-example of a good property of the system, here we want to compute
all the most significant paths to a bad state.

The solution presented in this paper is mainly a mix of existing works taken
from the literature[17, 5, 16, 13]; however, in order to be able to treat large
models, we have also implemented a preprocessing algorithm that permits to
simplify the input model w.r.t. to specified unwanted states.

This work has been realized under the grant of Thales Avionics (Toulouse).

1

Contents

1 Introduction 4
1.1 What is a failure scenario ? . 5
1.2 Failure scenarios of an AltaRica model 6
1.3 Organization of the paper . 8

2 An observer based algorithm 9
2.1 Principle of an observer . 9
2.2 Visible events . 10

2.2.1 How visible global events are specified ? 10
2.2.2 Global or elementary events ? 11

2.3 An observer to compute set of cuts 12
2.4 Observation of sequences . 13

2.4.1 Description of the algorithm 15
2.4.2 Memorizing when events occurs 15

2.5 Implementation . 21

3 Residual Language Decision Diagrams 23
3.1 Residual languages and RLDDs 23
3.2 Basic operations on RLDDs . 26
3.3 Minimal words . 27

3.3.1 A decomposition theorem for sub-words 28
3.3.2 Application to RLDDs . 30

3.4 Complexity . 31

4 Minimal cuts and minimal sequences 34
4.1 A brief introduction to DDs . 34
4.2 Sequence and minimal sequences 35
4.3 Minimal cuts . 36

5 Reduction of models 40
5.1 Principles of the reduction . 40
5.2 Constraint Automata . 41
5.3 Dependencies between variables 42
5.4 Reduction using functional dependencies 45

2

CONTENTS 3

5.5 Computation of functional dependencies 46
5.6 Example . 47

6 Experiments 55
6.1 The cuts command . 55
6.2 Experimental results . 57

6.2.1 Industrial model . 57
6.2.2 Model-checking models 57

7 Conclusion 60

Chapter 1

Introduction

In this report we are interested by the computation of failures scenarios for
AltaRica models. Such computations interest several communities that try to
make safe critical systems. However, each community studies these critical
sequences from a different point of view.

In the formal verification community one looks for what is, more or less, a
bug of the system. Engineers specify sets of functional requirements that must
be fulfilled by the system and verification tools check if behaviours described
by the model satisfy these properties. If this is not the case then, a failure
scenario is returned by the tool as a couter-example.

From the point of view of safety assessment community the system will
eventually fail. Engineers specify (global) failures of the system or at least of its
critical functions and they want to determine and to minimize the probability
of this failure. For this aim they have to identify weakest parts of the system.
In this context it is clear that only one failure scenario is not sufficient and that
all sequences of elementary failures (i.e., those of basic components) must be
considered.

In the domain of diagnosis, behaviours are studied afterwards: we observe
an abnormal (not necessarily critical) behaviour of the system and we want
to understand what is happened to fix the problem. Here we have the same
point of view than safety assessment except that the failure can be a more local
phenomenon. Yet, the whole set of behaviours that lead the system in observed
state have to be investigated.

In this study we adopt the point of view of safety assessment and diagnosis
community. We want to compute the whole set of scenarios that produces a
failure or a deviation of the nominal behaviour of the system.

The remain of this introducing chapter formalizes the concept of scenario
and presents what will be computed by algorithms described in next chapters.

4

CHAPTER 1. INTRODUCTION 5

1.1 What is a failure scenario ?

Each community has its own point of view of what can be a failure scenario
and these points of view obviously impact the final object that algorithms have
to produce. For instance, the counter-example generated by a model-checker
is essentially the sequence of states and events that lead the model into a faulty
state; actually, this is the minimum data that we expect in order to fix the bug.

In safety assessment domain, we want to lower the probability of a critical
event. This probability is evaluated with respect to failure rate of elementary
components of the system. In this domain, scenarios are essentially composed
by failure events of components. Actual failure scenarios can contain occur-
rences of non-failure events (e.g. repair, reconfigurations, . . .) but, since they
are deterministic event (from probabilistic point of view), they are ignored.

When we make a diagnosis of an abnormal behaviour of the system one
want to identify what are the components that have contributed to the devi-
ation from the nominal behaviour. Maintenance teams need a “catalog” of
possible combinations of components that have to be checked and possibly
replaced. Yet this domain is mainly interested by elementary failures of com-
ponents.

These remarks justify that scenarios could be abstracted in two ways. Firstly,
certain events are distinguished from others (these are for instance elemen-
tary failures) and only these events should appear in results produced by algo-
rithms. In the sequel we will say that such interesting events are visible. This
notion of visibility is different from observability encountered in classical frame-
works on diagnosis[19] or controlability[15]. Besides, in these frameworks, fail-
ure events are considered unobservable and uncontrollable. In our context,
visibility attribute only identifies events that must be kept in the result.

The second abstraction is related to the relevance of knowing order of ap-
pearance of events. Often, failures are independant events and any interleav-
ing of elementary events should lead the system in a same state. Obviously
this property is not always satisfied. However ignoring the logical ordering
of events has the advantage of decreasing the complexity of the result while
keeping pessimistic. In addition, from a maintenance point of view, we are
only interested by the identification of faulty components. This is the reason
why we compute two kind of scenarios:

1. List of events, called words or sequences in the sequel, that explicit the
order of occurrence of events. A same set of events may occur under
different ordering.

2. Sets of elementary events called cuts by safety assessment community.
Under this form the order of appearance is forgotten.

CHAPTER 1. INTRODUCTION 6

1.2 Failure scenarios of an AltaRica model

An AltaRica model is a hierarchy of abstract machines called constraint au-
tomata[14]. AltaRica semantics[13] permits to flatten a model into a single
constraint automaton equivalent to the whole hierarchical model. The seman-
tics of this flat constraint automaton captures all behaviours of the described
system. This semantics is formalized by the mean of a interfaced labelled tran-
sition system[1]. In the context of this study, since the concept of interface is
not relevant, we will restrict us to labelled transition systems (LTS). The formal
definition of constraint automata is postponed in chapter 5 but their semantics
in terms of LTS is straightforward.

Definition 1 (Labelled Transition Systems) A labelled transition system (LTS)
is a tuple A = 〈S, I, Σ, T 〉 where:

• S is a finite set of states.

• I ⊆ S is the set of initial states.

• Σ is a finite alphabet.

• T ⊆ (S × Σ × S) is a set of transitions.

A labelled transition system is essentially a graph whose vertices are states
of the system and edges between two states are labelled by an event of the

model. We denote by s1
e
−→ s2 the fact that (s1, e, s2) ∈ T .

A path is a sequence p = s0, e1, s1, . . . , en, sn where each si is a state in

S and ei is a letter in Σ and such that for each i = 1 . . . n, si−1
ei−→ si. n

is the length of the path. We denote s0 by α(p) and sn by β(p). The word
λ(p) = e1 . . . en ∈ Σ∗ is called the trace of p. If the length of p is 0 then its trace
is the empty word: λ(p) = ǫ. We denote by |w| the length of a word w.

A run is a path r starting from an initial state of A, i.e., such that α(r) ∈ I .
For any LTS A its set of runs is denoted Run(A).

In this study we are interested by traces of runs that leads the system into
critical states. Given a LTS A = 〈S, I, Σ, T 〉 and a set of critical states F ⊆ S
we define the set of traces leading into F by:

L(A, F) = {λ(r) | r ∈ Run(A) ∧ β(r) ∈ F}

L(A, F) contains all the scenarios that produce the failure of the modelled
system. Elements of L(A, F) are event of any nature: repairs, failures, (re)confi-
gurations, tests, . . . As said at the beginning of this chapter, in the context of
safety assessment, as well as for diagnosis purpose, not all kinds of event are
interesting; in general, we want to retain only failure events. Let V ⊆ Σ be a
set of so-called visible events. We define the erasing morphism ΦV : Σ⋆ → V ⋆:

• ΦV (ǫ) = ǫ

• ΦV (a) = ǫ if a 6∈ V

CHAPTER 1. INTRODUCTION 7

• ΦV (a) = a if a ∈ V

• ΦV (w1.w2) = ΦV (w1).ΦV (w2) for any w1, w2 in Σ⋆

Using ΦV we can formalize the set of failure sequences as:

Sequences(A, F, V) = {ΦV (w) | w ∈ L(A, F)}

Computing this set could permit to study chains of events that produce
specified failures of the system. However Sequences(A, F, V) is an huge set
and can even be infinite if there exist repairable components. Since this set is
a rational language it can be stored in an finite automaton recognizing words.
But in this case it remains the issue of exploiting this automaton regarding
safety assessment or diagnosis which is not an obvious task. In the context
of this study we restrict us to sequences of length bounded by some integer k
specified by the user:

Sequences(A, F, V, k) = {w | w ∈ Sequences(A, F, V) ∧ |w| ≤ k}

As explained in introduction, engineers prefer, at least at first, to forget
the ordering of events and to retain only what are the components that failed
during scenarios; these sets of components or elementary failures are called
cuts. We associate to any sequence of events w, its corresponding set of events
cut(w) : Σ⋆ → 2Σ defined by:

• cut(ǫ) = ∅

• cut(a) = {a} for any a ∈ Σ

• cut(w1.w2) = cut(w1) ∪ cut(w2) for any w1, w2 in Σ⋆

and we have to produce the set Cuts(A, F, V) defined by:

Cuts(A, F, V) = {cut(w) | w ∈ Sequences(A, F, V)}

Even if Sequences(A, F, V, k) and Cuts(A, F, V) are strong abstraction of
what actually produces the global failure of the system or an observed devia-
tion from its nomimal mode, these sets can contain redundant data that must
be removed. This is especially the case of coherent systems where adding new
elementary failures once F has been reached, can not restore the nominal mode
of the system. As a consequence, it is generally the case that sequences of
Sequences(A, F, V, k) or sets in Cuts(A, F, V) can be augmented with a new
event in V while remaining a failure scenario.

To handle this problem, diagnosis community[18, 6] applies the parsimony
principle and retain only preponderant scenarios considering that those oneswith
redundant data should be helpless to fix the failure.

Applying this principle to Sequences(A, F, V, k) and Cuts(A, F, V) requires
the definition of two criteria that express that a sequence or a cut is more inter-
esting than another one. These criteria are subword order for sequences (de-
noted ⊑) and inclusion for cuts (⊆). Our goal in this study is thus to compute
minimal elements of computed sets of scenarios that is:

CHAPTER 1. INTRODUCTION 8

MinSequences(A, F, V, k) = min⊑{w | w ∈ Sequences(A, F, V, k)}

MinCuts(A, F, V, k) = min⊆{w | w ∈ Cuts(A, F, V)}

1.3 Organization of the paper

The following chapter describe algorithms that have been implemented into
ARC to compute MinSequences and MinCuts for an AltaRica model. In the
next chapter we present observer based algorithms that permit to compute sets
of cuts and sets of bounded sequences. The third chapter describes a data
structure called RLDD used to store finite sequences and to minimize sets of
sequences according to subword order (⊑). The fourth chapter explains how
to obtain MinSequences and MinCuts from Sequences and Cuts. The fifth
chapter shows how large models can be preprocessed in order to be treated by
ARC. We have tested our algorithms on several models; results are presented
in the sixth chapter.

Chapter 2

Observer based algorithms to
compute scenarios

In this chapter we present algorithms that compute sets of cuts or sets of se-
quences for a given targeted set of configurations specified by a Boolean for-
mula φ. Theses algorithms consist essentially in the use of an observer that
records occurrences of visible events; the observation is then used to synthe-
size a Boolean formula that models the set of cuts (or sequences) that generate
configurations satisfying φ.

2.1 Principle of an observer

The usual way to analyze a system is to model it and then use some algo-
rithm to get informations about modeled behaviours. Even with efficient algo-
rithms this direct method encounters well-known problems that are memory
exhaustion and excessive time consumption. These problems occur because
we usually study the whole state-graph of the model regardless of the studied
property.

One way to overcome these issues is to design new algorithms that make
their best effort to build only a “small” part of the whole state-graph (e.g. on-
the-fly algorithms[20] or compositional model-checking[4]). Another way is to
apply existing algorithm to a model with less or restricted behaviours. Since
engineers can not produce a new model for each studied property, the best
methods is to extend the unique model of the system with additional data (w.r.t
to the studied property) that should reduce the number of possible behaviours.

An observer is a new component that is added and synchronized with the
model of the system. The aim of this component is twofold:

• First, it records data related to behaviours of the model. The observer can
store values, remember that some events occur and so on.

9

CHAPTER 2. AN OBSERVER BASED ALGORITHM 10

• Second, according to data it records, the observer can inhibit some behavi-
ours of the system; those considered irrelevant for the computed prop-
erty.

Of course this method strongly depends on the ability of the underlying for-
malism to allow a component to observe and constraint the rest of the model.
A mean to get round this difficulty is to create the observer in the analysis tool,
once the model has been compiled into low-level data-structures. The algo-
rithms proposed in this chapter are based on this approach.

2.2 Visible events

Our objective is to generate cuts or sequences of events that yield unexpected
configurations. To realize that, we observe sequences of global events pro-
duced by the semantics of the model. These global events are vectors of ele-
mentary events; thus, we observe sequences of vectors. Among these vectors
just some of them are kept for the result; these selected events are said visible.
In this setting, two choices had to be made: How visible global events are spec-
ified ? And, what information is pertinent, vectors or elementary events that
compose them ? The first point influence mainly methodology to increase ef-
ficiency of algorithms. The second point influence the design of the algorithm
itself and returned results.

2.2.1 How visible global events are specified ?

Since observed events are often elementary events like failures, the simplest
and the most natural way to specify visible events is by attaching an informa-
tion onto declared events of nodes. One could have define a similar mechanism
for synchronization vectors but, since AltaRica semantics induces implicit (and
sometimes complex) constructions of synchronization vectors, it would have
been confusing or misleading for users.

Our choice has two advantages. First the language already has syntax to
attach tags (also called attributes) to events without any impact on the seman-
tics of the model. Second it permits to identify what are interesting elementary
events in a global event; this can be used to refine displayed results.

In practice tags follow the declaration of the event:

event ev1, ev2 : tag1, ..., tagn;

Tags are attached to the list of events that immediately precedes it. In the
following example, stuck and broken are tagged with the attribute failures
while no tag is attached to action and repair events.

node Component

event

action, repair;

stuck, broken : failures;

..

edon

CHAPTER 2. AN OBSERVER BASED ALGORITHM 11

Global events inherit all attributes of elementary events that compose them.

Example 1 The following example models a component that is started when a second
one fails. To model this phenomenon, the start-up of the first one is weakly synchro-
nized with the failure of the second one.

node Component1

event start: not_a_failure;

edon

node Component2

event stuck : failure;

edon

node Main

sub c1 : Component1;

c2 : Component1

sync <c1.start?, c2.stuck>;

edon

The global events generated by the synchronization of events are:

• 〈ǫ, c1.start, c2.broken〉 tagged with attributes not a failure and
failure;

• 〈ǫ, c1.ǫ, c2.broken〉 tagged with only the attribute failure;

When used within ARC, any attribute can be used to specify visible events.
Note that ARC also allows to specified disabled events that are ignored while
the computations of cuts or sequences. Disabling attributes are applied to vec-
tors using the same rules that for visible events. In the case where a vector
possesses both a disabled event and a visible one; disabling prevails.

2.2.2 Global or elementary events ?

Choosing the kind of data that must be kept in the result depends on the ex-
pected abstraction level. When computing cuts, we adopt a coarse point of
view on what produces unexpected configurations. Each minimal cut identi-
fies components that contribute to the failure of the system. Clearly, in the case
of computation of cuts, elementary events are the important data.

When sequences are computed, we look for detailed information on the
logical ordering of events that yield the failure and even the fact that a different
ordering does not produce the unexpected configuration becomes a pertinent
information. For this kind of study it makes no sense to loose the fact that
some elementary events have occurred simulateously; especially if one wants
to simulate failure scenarios using some tool. Clearly, in case of sequences
computation global events should be returned by algorithms.

The choice between elementary events and vectors has an important impact
on the result after minimization. Since basic objects that compose computed
scenarios are not the same, the set of minimal cuts and the set of minimal se-
quences for a same model can be completely different.

CHAPTER 2. AN OBSERVER BASED ALGORITHM 12

To illustrate this last point, consider the following models that represent
two components that can fail. The failure of the second one induces the fail-
ure of the first one. Thus, we declare two synchronization vectors: one where
the first component fails alone and one where both components fail simultane-
ously.

node Component

event failure : vis;

state mode : { ok, nok }; init mode := ok;

trans mode = ok |- failure -> mode := nok;

edon

node Main

sub

c1, c2 : Component;

sync

<c1.failure>;

<c1.failure, c2.failure>;

edon

Now suppose we are interested by the unexpected configuration where c1
has failed. In the case of minimal cuts we get only one scenario:

(c1.failure)

while in the case of sequences we get two:

(<c1.failure, c2.failure>)

(c1.failure)

2.3 An observer to compute set of cuts

In [17], A. Rauzy proposes an algorithm to compute cuts from the explicit state-
graph representing the semantics of an AltaRica model. The principle of this
algorithm is to compute couples (c,~e) where c is a configuration and ~e is a
vector of bits (one bit ~e[ei] per visible event ei) such that:

1. There exists a path p, from an initial configuration to c;

2. p is labelled by events ei such that ~e[ei] = 1.

Each vector ~e is then translated into the Boolean formula F~e:

F~e
def
=

∧

~e[ei]=1

ei ∧
∧

~e[ei]=0

¬ei

Finally the formula Fφ representing the cuts for a specification of unwanted
states φ is the disjunction of formulae F~e for which there exists a configuration
that satisfy φ:

Fφ
def
=

∨

{(c,~e)|c|=φ}

F~e

CHAPTER 2. AN OBSERVER BASED ALGORITHM 13

Algorithm 1 Computation of vectors encoding cuts

1: C ← {〈c,~0〉|c ∈ Initial}, D ← ∅
2: while C 6= ∅ do
3: let 〈c,~e〉 ∈ C
4: C ← C \ {〈c,~e〉}, D ← D ∪ {〈c,~e〉}
5: for all transitions t = 〈c, ei, c

′〉 do
6: C ← C ∪ {〈c′, ~e[ei]← 1〉}
7: end for
8: end while

The algorithm 2.3 is the one proposed by A. Rauzy in [17] (the author did
not give more about data structure used by the algorithm); we omit details
related to mode automata.

Rauzy’s algorithm is essentially the computation of reachable configura-
tions augmented with ~e vectors. One way to implement this algorithm is to
directly embed vectors into the model by the mean of additional Boolean vari-
ables. Actually, the model is augmented with an observer that records occur-
rences of visible events into Boolean variables. The augmentation consists in
the following steps:

1. Add to the constraint automaton a new Boolean variable ve for each visi-
ble event e. Each variable ve is initialized with false.

2. For each macro-transition labelled by a visible event e, add the assign-
ment ve ← true.

This modification of the model is illustrated on the figure 2.1.
The above modification of the model does not create deadlock nor change

sequences of events (actually semantics are bisimilar); however state graphs
can be non-isomorphic as show on figure 2.2.

2.4 Observation of sequences

There exist important differences in the nature of the expected result when
computing cuts or sequences. These differences make the problem of sequences
generation a bit harder because more informations have to be recorded.

• First we have to remember the logical ordering of events that lead the
system in an unexpected configuration.

• Second, events may occur several times. Cuts forget multiple occurrences
of a same event and thus guarantee that what is computed is a possibly
huge but finite set. In the case of sequences, the result can contain an
infinite number of elements. Since models have a finite number of con-
figurations, if an infinite number of sequences yield a same unexpected

CHAPTER 2. AN OBSERVER BASED ALGORITHM 14

node Generator

flow

out : bool;

state

mode : { ok, ko };

on : bool;

init

mode := ok, on := false;

event

push;

fails : visible;

assert

if mode = ko then out = false

else out = true;

trans

mode = ok |- push -> on := not

on;

mode = ok |- fails -> mode :=

ko;

edon

node ObservedGenerator

flow

out : bool;

state

mode : { ok, ko };

on : bool;

init

mode := ok, on := false;

state

fails_event : bool;

init

fails_event := false;

event

push, fails;

assert

if mode = ko then out = false

else out = true;

trans

mode = ok |- push -> on := not

on;

mode = ok |- fails -> mode :=

ko, fails_event := true;

edon

Figure 2.1: An AltaRica node (left) and the observed version of the same

node (right). One wants to observe occurrences of the failure event called

fails. A new Boolean variable fails event is added to the model and

transitions labelled by fails now set to true the new variable.

C0

C1

a b

C0, 〈a← 0, b← 0〉

C1, 〈a← 1, b← 0〉 C1, 〈a← 0, b← 1〉

a b

Figure 2.2: Even if configurations are reachable in both graphs, the state

graph of the observed model is impacted by vectors that records occur-

rences of events.

CHAPTER 2. AN OBSERVER BASED ALGORITHM 15

state then there exists a sub-sequence that can be repeated as many time
as we want (i.e a loop). Clearly such sequences are irrelevant for risk
assessment or diagnosis and algorithms should ignore them.

Our objective in this section is to design an algorithm similar to the one used
to compute cuts. This latter consists to synchronize the model with an observer
that records sufficient data to encode scenarios. Since AltaRica does not sup-
port dynamic creation of variables, an upper bound to the state space required
to store the current sequence must be known in advance. But, contrary to cuts,
it is difficult to get this bound suitable to store the longest sequence (remember
that events can be repeated). These considerations leads us to design the algo-
rithm with the hypothesis that the length of sequences, the number of visible
events, is fixed in advance by the user. Under this hypothesis it becomes feasi-
ble to write an observer that requires only a ”small” amount of memory cells
(i.e. variable) to encode sequences. Actually, the number of additional vari-
ables should remain reasonable because, even if scenarios composed of more
than five events are theoretically possible, they are, from a probabilistic point
of view, extremely rare; thus users should look for sequence of length less or
equal to 4 visible events.

2.4.1 Description of the algorithm

The algorithm proposed here is parameterized by the set of visible events EV

and the maximal number k of visible events that can occur in a sequence. As
already said, we follow the same principles than for algorithm used to compute
cuts but this time we have to take into account the ordering of events and to
translate the resulting DD into a set of sequences.

To record events and their logical order of appearance we can use at least
two solutions reviewed in following subsections.

2.4.2 Memorizing when events occurs

First we can memorize when an event occurs. That means we have to store the
logical instants when each visible event occurs. To realize this observer we use
integer variables seen as vectors of bits. Each bit models a “visible” instant1.
This solution requires two operations:

• Firstly, we create a global integer variable tick that ranges in [1, 2k−1] used
to model the tick of visible events; k is the maximal length specified by
the user. After each occurrence of a visible event the variable is multiplied
by 2 i.e the bit encoding the instant is shifted by one position. tick is
initialized to 1.

1This means that, using this implementation, sequences must be bounded by the number of bits
of a computer word (e.g. 32 or 64 bits).

CHAPTER 2. AN OBSERVER BASED ALGORITHM 16

• Then, for each visible event e ∈ EV we create an integer variable ve that
takes its values into the range [0, 2k − 1] and is initialized with 0. To re-
member that e occurs at the current instant we add tick to the current
value of ve. For instance if abac is a sequence of visible events then,
reached configurations should be such that va = 20 + 22 = 5, vb = 21 = 2
and vc = 23 = 8.

Figure 2.3 describes a small system simply composed of two parallel com-
ponents that may fail. Figure 2.4 gives the constraint automaton of this system
decorated with variables as presented above. If for this system we want to
obtain sequences that yield configurations such that c[0].s = nok within 3
visible events, then we get a DD that encodes the relation, given table 2.1 (page
18), over the three variables of the observer (the fourth column indicates the
corresponding sequence – c[i] is used for c[i].failure):

node Component

event

action, repair;

failure : visible;

state

s : { ok, nok };
init

s := ok;

trans

s = ok |- failure -> s := nok;

s = nok |- repair -> s := ok;

s = ok |- action -> ;

edon

node Main

sub

c : Component[2];

edon

Figure 2.3: A simple model composed of two parallel components that

may fail.

Memorizing what is the ith event

The second method consists to memorize what happens at each instant. In
other terms we have to remember the fact that the ith (visible) event was some
visible event e. To implement this solution the observer needs only k variables:

• First we assign to each event e ∈ EV an integer id(e) in the range [1, N]
where N = |EV | is the number of visible events.

• Then, we add k variables p1, . . . , pk, taking their values in the range [0, N]
and initialized with 0. Each pi stores the event that occurs at the ith in-
stant. pi is 0 if there is no ith event. Note that we have to ensure (see
below) that if pi equals 0 then for all j > i, pj also equals 0.

• Finally, for each macro-transition labelled with a visible event e ∈ EV :

CHAPTER 2. AN OBSERVER BASED ALGORITHM 17

node DecoratedMain

state

’c[0].s’ : { ok, nok };
’c[1].s’ : { ok, nok };
tick : [1,4];

’v c[0].failure’ : [0,7];

’v c[1].failure’ : [0,7];

init

’c[1].s’ := ok, ’c[0].s’ := ok,

tick := 1, ’v c[0].failure’ := 0, ’v c[1].failure’ := 0;

event

’c[0].failure’, ’c[1].failure’ : visible;

’c[0].repair’, ’c[1].repair’;

trans

(’c[1].s’ = nok) |- ’c[1].repair’

-> ’c[1].s’ := ok;

(’c[1].s’ = ok) |- ’c[1].failure’

-> ’c[1].s’ := nok,

tick := 2 * tick,

’v c[1].failure’ := ’v c[1].failure’ + tick;

(’c[0].s’ = nok) |- ’c[0].repair’

-> ’c[0].s’ := ok;

(’c[0].s’ = ok) |- ’c[0].failure’

-> ’c[0].s’ := nok,

tick := 2 * tick,

’v c[0].failure’ := ’v c[0].failure’ + tick;

edon

Figure 2.4: The constraint automaton is obtained by flattening the

model given on figure 2.3; then it is decorated to observe up to k =

3 occurrences of events tagged with the visible attribute i.e EV =

{c[0].failure, c[1].failure}. Additional data inserted to model the ob-

server are underlined.

CHAPTER 2. AN OBSERVER BASED ALGORITHM 18

tick ’v c[0].failure’ ’v c[1].failure’ sequence
1 1 0 c[0]

2 1 2 c[0] c[1]

2 2 1 c[1] c[0]

2 3 0 c[0] c[0]

4 1 6 c[0] c[1] c[1]

4 2 5 c[1] c[0] c[1]

4 3 4 c[0] c[0] c[1]

4 4 3 c[1] c[1] c[0]

4 5 2 c[0] c[1] c[0]

4 6 1 c[1] c[0] c[0]

4 7 0 c[0] c[0] c[0]

Table 2.1: Sequences that yield c[0].s = nok. The first column gives

the last value of tick variable. The next two columns give values of vari-

ables that store occurrences of failures when the unexpected configuration

is reached and the last column gives the corresponding sequence of fail-

ures. Grey line for instance indicates that the sequence contains 3 events

(tick = 23−1 = 4). The failure of c[0] occurs at the second position because

’v c[0].failure’ is equal to 2 i.e the bitvector 10. The failure of c[1]

occurs at the first and third visible instant because ’v c[1].failure’ is

equal to 5 i.e the bitvector 101.

– We extend the guard with the condition pk = 0. This means that
after the kth visible event, all visible events are disabled2.

– We add assignments:

∗ p1 := if p1 = 0 then id(e) else p1

∗ p2 := if p1 6= 0 ∧ p2 = 0 then id(e) else p2

∗ . . .

∗ pk := if p1 6= 0∧· · ·∧pk−1 6= 0∧pk = 0 then id(e) else pk

which mean that each pi receives the event encoded by id(e) if and
only if for all visible instant j < i, pj 6= 0 i.e visible events occur
before instant i and no event has been recorded at instant i.

Figure 2.5 (page 19) applies this method on the same system than for the
previous example 2.4. For this observer we obtain the relation, given table 2.2
(page 20), over pis variables (c[0].failure is assigned value 1 and c[1].failure
the value 2).

2A similar disabling condition also exists for the first methods but it is implicit. Actually, since
tick is strictly increasing, it can not be assigned after the k

th visible event

CHAPTER 2. AN OBSERVER BASED ALGORITHM 19

node DecoratedMain

state

’c[0].s’ : { ok, nok };
’c[1].s’ : { ok, nok };
p 1 : [0,2];

p 2 : [0,2];

p 3 : [0,2];

init

’c[1].s’ := ok, ’c[0].s’ := ok, p 1 := 0, p 2 := 0, p 3 := 0;

event

’c[0].failure’, ’c[1].failure’ : visible;

’c[0].repair’, ’c[1].repair’;

trans

(’c[1].s’ = nok) |- ’c[1].repair’ -> ’c[1].s’ := ok;

(’c[1].s’= ok) & (p 1 = 0 | p 2 = 0 | p 3 = 0)

|-’c[1].failure’ ->

’c[1].s’ := nok,

p 1 := if p 1 = 0 then 2 else p 1,

p 2 := if p 1 != 0 & p 2 = 0 then 2 else p 2,

p 3 := if p 1 != 0 & p 2 != 0 & p 3 = 0 then 2 else p 3;

(’c[0].s’ = nok) |- ’c[0].repair’ -> ’c[0].s’ := ok;

(’c[0].s’ = ok) & (p 1 = 0 | p 2 = 0 | p 3 = 0)

|- ’c[0].failure’ -> ’c[0].s’ := nok,

p 1 := if p 1 = 0 then 1 else p 1,

p 2 := if p 1 != 0 & p 2 = 0 then 1 else p 2,

p 3 := if p 1 != 0 & p 2 != 0 & p 3 = 0 then 1 else p 3;

edon

Figure 2.5: Augmented constraint automaton for the same system and

diagnosis objective than previously for example on figure 2.3. This time,

automaton is decorated using variables (pis) that memorize what happens

at the ith visible tick.

CHAPTER 2. AN OBSERVER BASED ALGORITHM 20

p 1 p 2 p 3 sequence
1 0 0 c[0]

1 1 0 c[0] c[0]

1 2 0 c[0] c[1]

2 1 0 c[1] c[0]

1 1 1 c[0] c[0] c[0]

1 1 2 c[0] c[0] c[1]

1 2 1 c[0] c[1] c[0]

1 2 2 c[0] c[1] c[1]

2 1 1 c[1] c[0] c[0]

2 1 2 c[1] c[0] c[1]

2 2 1 c[1] c[1] c[0]

Table 2.2: Sequences that yield c[0].s = nok computed using the sec-

ond encoding. The first three columns give values of pi variables i.e. which

visible event has occurred at the ith position. Last column gives the cor-

responding sequence. Value 0 means no event occurs, 1 means failure of

c[0] and 2 means failure of c[1]. Grey line for instance indicates that the

sequence contains 2 events because the last non-zero pi variable is p2. The

first event is the failure of c[1] (value is 2) and the second event is the failure

of c[0] (value is 1).

Comparison of methods

Both methods have to be used within reachability analysis based on decision
diagrams. Even if observer partially reduces behaviours of the system (oc-
currences of failures are stopped after the kth one), the introduction of new
variables should not reduce the size of computed relations, especially for in-
termediate ones that are known to be larger than the final relation (the one
encoding reachable configurations).

Clearly the first method has the drawback to generate lots of variables. If
we consider the largest model treated during our experiments (cf. chapter
chapter 6), reduced automata can have around 20 and 80 events. The second
method produces only k variables but each variable takes as many values as
there exists visible events and thus the size of computed relations is unpre-
dictable. However decision diagrams implemented in ARC use a compact en-
coding of ranges that should help to keep the size of relations manageable.

Although the second method seems to be the best one it has a second minor
drawback. Up to now, we have considered events of the flattened constraint
automaton; that means the observer memorizes vectors of events and not ele-
mentary events (those specified in nodes). It happens that for models (see 6),
elementary events are not explicitly synchronized so there is a one-to-one cor-
respondence between elementary and global events. The first method is able
to handle both kind of events; it suffices to create a variable for each elemen-
tary event and to assign in transitions each elementary events appearing in the

CHAPTER 2. AN OBSERVER BASED ALGORITHM 21

labelling vector. The second method can handle only global events. It could
be adapted by duplicating pis variables as many time as there is events in the
largest vector but the method would become too costly. In fact the handling of
vectors can be postponed, if actually necessary, to the end of the computation
process.

2.5 Implementation

ARC implements the algorithm that computes cuts and the second algorithm
(section 2.4.2) for sequences. The principle of these implementations is quite
simple; it is based on the symbolic computation of reachable configurations
already implemented in ARC. We illustrate this algorithm on figure 2.6.

1. After the computation of the flat semantics[13], variables of the observer
are added to the constraint automaton equivalent to the original model.

2. ARC symbolically computes the set of reachable configurations of the ob-
served model A × Obs. This set is represented by a Decision Diagram
(DD)[5]. This DD is represented in grey on the figure. For the sake of
clarity we have assumed that variables of the observer are at the bottom
of the diagram but in practice all variables are mixed.

3. Then, the set of reachable configuration is intersected with those that sat-
isfy φ. This gives us a new DD depicted in red and green.

4. This second DD is then projected on the observer part i.e., event variables
ve’s for cuts or pis variables for sequences. This is the green DD of the
figure.

5. This last DD contains all data necessary to produce cuts or sequences; it
suffices to translate it into the appropriate format to get the result: either
Boolean formulas or list of sequences.

Obs

A

Figure 2.6: DDs computed by the observer-based algorithms.

CHAPTER 2. AN OBSERVER BASED ALGORITHM 22

Remark about sequences: ARC produces sequences using the second algo-
rithm (section 2.4.2). Generated scenarios are lists of global events. The mini-
mization algorithm (see chapters 3 and 4) is applied on such sequences which
means that:

• it can produce sequences like (〈a, b, c〉, a) where two global events having
common elementary events appear (here the vector 〈a, b, c〉 and a alone).

• if (〈a, b, c〉) and (a) are two generated sequences (i.e that produces the
diagnosis objective), the former is not removed by the minimization al-
gorithm that consider both events as unrelated.

Chapter 3

Residual Language Decision
Diagrams

In this chapter we present a data structure defined in [13] similar to Zero-
suppressed BDDs (ZBDD) introduced by S. Minato[12]. While ZBDDs permit
to store finite sets of subsets, RLDDs encode finite sets of words. This data
structure allows classical operations over sets like union or intersection but
also a minimization operation that computes minimal sequences (for the sub-
word order). Recently this data structure has been studied in the context of
data-mining under the name of SeqBDD [7, 11].

3.1 Residual languages and RLDDs

In the sequel we consider a finite alphabet Σ. A word w is a sequence a1a2 . . . an

of letters ai belonging to Σ. The number of letters in a word is its length; we
denote by ǫ the word of length 0. The set of words over Σ built with n letters is
denoted Σn. The set of all words (ǫ included) over Σ is denoted Σ⋆. A language
over Σ is any subset of Σ⋆.

The concatenation of two words w1, w2 taken in Σ⋆ is denoted w1.w2; ǫ is
the identity element for concatenation. If w ∈ Σ⋆ is a word and L ⊆ Σ⋆ a
language then w.L is the language {w.x | x ∈ L} i.e., the set of words formed
by w followed by any word belonging to L.

For any language L ⊆ Σ⋆ and any letter a ∈ Σ, the residual language of L by
a is the language denoted by a−1L and defined by:

a−1L = {u ∈ Σ⋆ | a.u ∈ L}

The reader should notice that a−1L is not necessarily a subset of L and, as
shown on following example, a.(a−1L) is not always L but the set of residual
languages of L is a partition of L: L = ∪a∈Σa.(a−1L).

23

CHAPTER 3. RESIDUAL LANGUAGE DECISION DIAGRAMS 24

Example 2 Let Σ = {a, b, c, d} and L = {abc, aabc, bac, ca}. Then: a−1L =
{bc, abc}, b−1L = {ac}, c−1L = {a}, d−1L = ∅.

In the sequel we will use the following notations:

• La = a.(a−1L) the subset of L whose words start with letter a.

• La = L \ La the words of L that do not start with a.

La and La is a partition of L i.e La∩La = ∅ and La∪La = L. This decompo-
sition of L is used to defined a data structure to store any finite language L in a
compact way. The previous partitioning plays the same role as the well-known
Shannon decomposition theorem used to build BDDs[2].

We have called this data structure RLDD for Residual Language Decision
Diagram. As other decision diagrams, a RLDD is a directed acyclic graph
(DAG).

Definition 2 (RLDD) A RLDD is a DAG with three kind of nodes:

• either one of the two leaves 0 or 1

• or an intermediate node denoted N = 〈a, N1, N2〉 where a ∈ Σ is the label of
the node and, N1 and N2 are children nodes of N .

Definition 3 (Height) The height H(N) of a RLDD N is defined inductively by:

• H(0) = H(1) = 0

• H(〈a, N1, N2〉) = 1 + max(H(N1), H(N2))

Definition 4 (Semantics) The semantics of a RLDD N is a language denoted JNK ⊆
Σ⋆ defined recursively on the structure of RLDDs:

• J0K = ∅

• J1K = {ǫ}

• J〈a, N1, N2〉K = a.JN1K ∪ JN2K

A RLDD encoding the language L given in example 2 is depicted on fig-
ure 3.1. When represented graphically, the edge between an intermediate node
and its left child is decorated with a black bullet • (to recall concatenation op-
eration).

Depending on letters used to decompose successive residuals the RLDD
encoding a language L is different. For instance the figure 3.2 depicts a RLDD
encoding the same language than the one on figure 3.1. While on the first
figure (3.1) letters were always selected in the order b, a and c, on the second
one, letters were chosen in the order a, b and c.

To ensure canonicity of the representation and to improve efficiency of al-
gorithms we have to enforce the choice of the letter used to decompose a lan-
guage. In the sequel we assume that Σ is an alphabet completely ordered by

CHAPTER 3. RESIDUAL LANGUAGE DECISION DIAGRAMS 25

1{ǫ} 0 ∅

c{c} a {a}

c {ca}

b

{bc}

a

{abc}

b {bc, abc}

a {abc, aabc, ca}

b

{abc, aabc, bac, ca}

a{ac}

•

•

• •

•
•

•
•

•

Figure 3.1: A RLDD encoding L = {abc, aabc, bac, ca}.

some relation <. The letter ρ(L) used to decompose a language L is defined
according to this order as the smallest letter that gives a non-empty residual
language:

Definition 5 (Decomposition letter) For any non-empty language L that is not
the singleton {ǫ}, we define:

ρ(L) = min<({a ∈ Σ | a−1L 6= ∅})

For any finite language L ⊆ Σ⋆, the canonical RLDD representing L, RLDD(L)
is defined by:

• RLDD(L) = 0 if L is empty;

• RLDD(L) = 1 if L is {ǫ};

• RLDD(L) = 〈a, RLDD(a−1L), RLDD(La)〉where a = ρ(L).

Example 3 We come back on the language given in example 2. Now we consider that
Σ is ordered as follows: a < b < c. The canonical RLDD encoding L is given on the
figure 3.2. This RLDD has been built as follows:

• λ0 = RLDD({abc, aabc, bac, ca}) = 〈a, RLDD({bc, abc}), RLDD({bac, ca})〉 =
〈a, λ1, λ2〉

• λ1 = RLDD({bc, abc}) = 〈a, RLDD({bc}), RLDD({bc})〉 = 〈a, λ3, λ3〉

• λ2 = RLDD({bac, ca}) = 〈b, RLDD({ac}), RLDD({ca})〉 = 〈b, λ4, λ5〉

• λ3 = RLDD({bc}) = 〈b, RLDD({c}), ∅〉 = 〈b, λ6,0〉

• λ4 = RLDD({ac}) = 〈a, RLDD({c}), ∅〉 = 〈a, λ6,0〉

CHAPTER 3. RESIDUAL LANGUAGE DECISION DIAGRAMS 26

1 0

cλ6

a
λ7

c λ5

bλ3 a
λ4

a
λ1 b

λ2

a
λ0

•
•

•
•

•

• •

•

Figure 3.2: RLDD encoding the same language that the RLDD on figure

3.1. The order a < b < c is used.

• λ5 = RLDD({ca}) = 〈c, RLDD({c}), ∅〉 = 〈c, λ7,0〉

• λ6 = RLDD({c}) = 〈c, RLDD({ǫ}), ∅〉 = 〈c,1,0〉

• λ7 = RLDD({a}) = 〈a, RLDD({ǫ}), ∅〉 = 〈a,1,0〉

3.2 Basic operations on RLDDs

In this section we present three basic operations that are required to compute
minimal words. These operations, build, union and intersection, are defined
recursively on the structure of their operands. In the sequel, if N = 〈a, N1, N2〉
is a RLDD we denote:

• λ(N) its label a;

• α(N) its left child N1;

• and β(N) its right child N2.

The build operator is used to ensure that left child is not empty.

Build: build : Σ×RLDD ×RLDD −→ RLDD

• build(a,0, Y) = Y for any RLDD Y ;

• build(a, X, Y) = 〈a, X, Y 〉 if X 6= 0

CHAPTER 3. RESIDUAL LANGUAGE DECISION DIAGRAMS 27

Union union : RLDD ×RLDD −→ RLDD

• union(X, X) = X for any RLDD X

• union(0, X) = union(X,0) = X for any RLDD X

• union(1, N) = union(N,1) = 〈λ(N), α(N), union(1, β(N))〉

• union(N1, N2) = 〈a, N, N ′〉where:

– a = min(λ(N1), λ(N2))

– if λ(N1) = λ(N2) then N = union(α(N1), α(N2)) and N ′ = union(β(N1), β(N2))

– if λ(N1) < λ(N2) then N = α(N1) and N ′ = union(β(N1), N2)

– if λ(N1) > λ(N2) then N = α(N2) and N ′ = union(N1, β(N2))

Intersection inter : RLDD ×RLDD −→ RLDD

• inter(X, X) = X for any RLDD X

• inter(0, X) = inter(X,0) = 0 for any RLDD X

• inter(1, N) = inter(N,1) = inter(1, β(N))

• inter(N1, N2) = N where:

– if λ(N1) = λ(N2) then N = build(λ(N1), inter(α(N1), α(N2)), inter(β(N1), β(N2)))

– if λ(N1) < λ(N2) then N = inter(β(N1), N2)

– if λ(N1) > λ(N2) then N = inter(N1, β(N2))

Theorem 1 For any letter a ∈ Σ and any RLDDs X and Y ,

• Jbuild(a, X, Y)K = a.JXK ∪ JY K

• Junion(X, Y)K = JXK ∪ JY K

• Jinter(X, Y)K = JXK ∩ JY K

Proof: By induction on H(X) + H(Y). ♦

3.3 Minimal words

Given a set of words seen as critical scenarios, several criteria can be imagined
to determine which words are the most representatives. In the sequel we will
denote by u ⊑ v the fact that u is more important than v.

The simplest criterion is certainly the length of words but it is too strong.
Of course it selects shortest scenarios so the most important ones, but it com-
pletely ignores qualitative informations of sequences. For instance, if a and

CHAPTER 3. RESIDUAL LANGUAGE DECISION DIAGRAMS 28

bc are two failure sequences that involve separate parts of the system, bc is
rejected.

A second criterion could be the prefix order. We consider that a sequence
u ⊑ v if u starts (or is a prefix of) v. This criterion mixes length and qualitative
informations. Actually if u is a prefix of v, u is more probable than v and taking
countermeasures to prevent u should resolve issues for v. However, the crite-
rion is too weak because it keeps useless sequences. For instance, abc and bc
can not be compared with the prefix order; so both are kept while, clearly, abc
should be forgotten. In this case, a comparison of suffixes should be preferred.

The factors can also be used. u ⊑ v if v = x.u.y where x and y are arbitrary
and possibly empty words; u is said to be a factor of v. This criterion gathers
advantages of length, prefixes, suffixes and handles what happens in the “mid-
dle” of sequences. But factors ignore the case where letters of u are dispatched
into v i.e. for instance abc and ac.

Finally a fourth criterion will be used and, intuitively it is very similar to
the one used for cuts (i.e. inclusion). For now on, we consider that u ⊑ v if u is
a sub-word of v. More formally, we define this order as follows.

Definition 6 (Subwords) Let u = u1 . . . un and v = v1 . . . vm be two words of
length n and m respectively. u is a sub-word of v if there exists a mapping σ : [1, n] → [1, m]
such that:

1. σ is strictly increasing i.e. for any 1 ≤ i < j ≤ n, σ(i) < σ(j);

2. ∀i ∈ [1, n], ui = vσ(i)

The above definition simply describes the fact that if u is a subword of v
(u ⊑ v) then letters of u can be dispatched into v with respect of their order in
u.

3.3.1 A decomposition theorem for sub-words

The computation of minimal words of L is based on a simple idea:

1. First, L is split into two disjoint subsets, say X and Y ;

2. Then, we remove from X words that have a sub-word in Y and con-
versely, we remove from Y words that have a sub-word in X .

3. Finally, we join together obtained sets to get minimal words min⊑(L).

For the first step, a partition of language L is obtained easily using residual
languages. If a = ρ(L) then we choose to split L as La and La. The second
step requires the introduction of a new operation over languages; we denote
this operation ÷ (as in [16]). This operation removes from a language X all
words that are not minimal with respect to words of a second language Y .
More formally, ÷ is defined by:

∀X, Y ⊆ Σ⋆, X ÷ Y = {x ∈ X | ∀y ∈ Y, y 6⊑ x}

CHAPTER 3. RESIDUAL LANGUAGE DECISION DIAGRAMS 29

This operation ÷ has the following properties for all subsets X , Y and Z of
Σ⋆ and letters a, b ∈ Σ:

1. X ÷ ∅ = X

2. X ÷ {ǫ} = ∅

3. (X ∪ Y)÷ Z = X ÷ Z ∪ Y ÷ Z

4. X ÷ (Y ∪ Z) = X ÷ Y ∩X ÷ Z

5. a.X ÷ a.Y = a.(X ÷ Y)

6. a 6= b⇒ a.X ÷ b.Y = a.(X ÷ b.Y)

7. X ÷ Y = [(Xa ÷ Ya) ∩ (Xa ÷ Ya)] ∪ (Xa ÷ Y)

Lemma 1 ∀L ⊆ Σ⋆\{ǫ},∀a ∈ Σ,∀w ∈ Σ⋆, a.w ∈ min(L) ⇐⇒ w ∈ min(a−1L)÷
La

Proof: Assume that a.w ∈ min(L). We have w ∈ a−1L. There is no v ∈ a−1L
such that v ⊏ w because we would have a.v ⊏ a.w which refutes a.w ∈ min(L);
thus, w ∈ min(a−1L). If v ∈ La is such that v ⊏ w yields the same contradiction
because, in this case, v ⊏ a.w.

For the converse, let w ∈ min(a−1L) ÷ La and v ∈ L such that v ⊑ a.w.
If v = a.x with x ∈ Σ⋆, we have x ⊏ w which contradicts w ∈ min(a−1L). If
v ∈ La i.e v = b.x with x ∈ Σ⋆, we have b.x ⊏ w but it is impossible because w
would have been removed from min(a−1L) by ÷. ♦

Lemma 2 ∀L ⊆ Σ⋆ \ {ǫ},∀a, b ∈ Σ,∀w ∈ Σ⋆, a 6= b ⇒ (b.w ∈ min(L) ⇐⇒
b.w ∈ min(La)÷ La)

Proof: Let b.w ∈ min(L); clearly b.w ∈ min(La). The hypothesis imposes
that for any a.x ∈ La, a.x 6⊏ b.w; so b.w ∈ min(La) ÷ La. For the converse,
assume b.w ∈ min(La) ÷ La and x ∈ L such that x ⊏ b.w. x can not be in La

because b.w would have been removed from min(La) by ÷. x can neither be in
La because b.w ∈ min(La). We can conclude that for x ∈ L, x 6⊏ b.w and, thus,
b.w ∈ min(L). ♦

Corollary 1 (Decomposition of sets of minimal words)

∀L ⊆ Σ⋆,∀a ∈ Σ, min(L) = a.(min(a−1L)÷ La) ∪ (min(La)÷ La)

The previous theorem shows that computation of minimal words can fol-
lows the structure of languages given by their residual languages. This result
permits us to easily design an algorithm computing min⊑ based on the RLDD
data structure.

CHAPTER 3. RESIDUAL LANGUAGE DECISION DIAGRAMS 30

3.3.2 Application to RLDDs

In order to compute minimal sequences we have to define ÷ and min for
RLDDs. As others, these operations, called respectively div and minimize,
are defined according to the RLDD structure:

Extraction div : RLDD ×RLDD −→ RLDD

• div(0, X) = 0 for any RLDD X

• div(X,0) = X for any RLDD X

• div(X,1) = 0 for any RLDD X

• div(1, N) = div(1, β(N))

• div(N, N ′) = build(λ(N), N1, N2) where:

– if λ(N) = λ(N ′), N1 = inter(div(α(N), α(N ′)), div(α(N), β(N ′))),

– if λ(N) 6= λ(N ′), N1 = div(α(N), N ′)

– N2 = div(β(N), N ′)

Theorem 2 For any RLDDs N , Jdiv(N, N ′)K = JNK÷ JN ′K

Proof: We show the result by induction on n = H(N) + H(N ′). We consider
only the last case. We assume the property satisfied for any k < n. Let N and
N ′, two RLDDs such that H(N) + H(N ′) = n. Let a = λ(N) and a′ = λ(N ′).
We consider the two cases;

a = a
′: By construction we have:

Jdiv(N, N ′)K = a.(Jdiv(α(N), α(N ′))K∩Jdiv(α(N), β(N ′))K)∪Jdiv(β(N), N ′)K

Then, induction hypothesis gives us:

Jdiv(N, N ′)K = a.(Jα(N)K÷ Jα(N ′)K ∩ Jα(N)K÷ Jβ(N ′)K) ∪ (Jβ(N)K÷ JN ′K)
= a.(Jα(N)K÷ Jα(N ′)K) ∩ a.(Jα(N)K÷ Jβ(N ′)K) ∪ (Jβ(N)K÷ JN ′K)

Using properties 5 and 6 of ÷we get:

Jdiv(N, N ′)K = (a.Jα(N)K÷ a.Jα(N ′)K) ∩ (a.Jα(N)K÷ Jβ(N ′)K) ∪ (Jβ(N)K÷ JN ′K)
= (a.Jα(N)K÷ (a.Jα(N ′)K ∪ Jβ(N ′)K)) ∪ (Jβ(N)K÷ JN ′K)
= (a.Jα(N)K÷ JN ′K) ∪ (Jβ(N)K÷ JN ′K)
= (a.Jα(N)K ∪ Jβ(N)K)÷ JN ′K
= JNK÷ JN ′K

CHAPTER 3. RESIDUAL LANGUAGE DECISION DIAGRAMS 31

a 6= a
′: We use the same method but this time we have:

Jdiv(N, N ′)K = a.(Jdiv(α(N), N ′)K) ∪ Jdiv(β(N), N ′)K

Then, induction hypothesis gives us:

Jdiv(N, N ′)K = a.(Jα(N)K÷ JN ′K) ∪ (Jβ(N)K÷ JN ′K)
= (a.Jα(N)K÷ JN ′K) ∪ (Jβ(N)K÷ JN ′K)
= (a.Jα(N)K ∪ Jβ(N)K)÷ JN ′K)
= JNK÷ JN ′K

♦

Minimization minimize : RLDD −→ RLDD

• minimize(0) = 0

• minimize(1) = 1

• minimize(N) = build(λ(N), N1, N2) where:

– N1 = div(minimize(α(N)), β(N))

– N2 = div(minimize(β(N)), build(λ(N), α(N),0))

Theorem 3 For any RLDD N , Jminimize(N)K = min(JNK)

Proof: Straightforwards by induction on the structure of RLDDs. ♦

3.4 Complexity

In above section, algorithms are specified using recursive equations based on
the structure of RLDDs. Applying these algorithms as-is could yield execution
times exponential into the height of diagrams. This exponential cost comes
from multiple recursive calls that visit several times a same path. The well-
known technique of computation caches (e.g. [3]) must be used to reduced the
number of redundant visits of paths.

Unfortunately div operation can yield diagrams with an exponential num-
ber of nodes while its arguments have a polynomial size. This cost can not be
absorbed by cache techniques. For instance, if Σ is an alphabet with n letters,
then

Un = {u ∈ Σn | ∀a ∈ Σ, |u|a = 1}

where |u|a is the number of letters a in u, is a language that requires n2n−1 + 2
nodes to be represented by a RLDD. Un is the set of words composed of n
distinct letters. Un can be obtained by applying ÷ to two languages that are
encoded with a polynomial number of nodes:

CHAPTER 3. RESIDUAL LANGUAGE DECISION DIAGRAMS 32

1. Σn the set of words of length n that requires n2 + 2 nodes;

2. Sqr(Σ) = {a.a | a ∈ Σ} the set of words of length 2 containing twice the
same letter. This language requires 2n + 2 nodes.

We have Un = Σn ÷ Sqr(Σ) because Sqr(Σ) removes from Σn words with
multiple occurrences of same letters. Figures 3.3, 3.4 and 3.5 depict respectively
Σn, Sqr(Σ) and Un for an alphabet Σ containing 3 letters.

The size of Un in terms of RLDD nodes, n2n−1 + 2, has been obtained ex-
perimentally but it can be proved that the same phenomenon also holds for
minimal automata that recognize Σn, Sqr(Σ) and Un which have, respectively,
n + 1, n + 2 and 2n states1.

In practice, in the context of failure scenarios computation, such diagrams
should not be problematic because languages (i.e. sets of scenarios) would con-
tain few (around one hundred words) and short words (less than ten events).

1plus one if we count sink state.

CHAPTER 3. RESIDUAL LANGUAGE DECISION DIAGRAMS 33

1 0

c

b

a c

b

a c

b

a

•

•

•

•

•

•

•

•

•

Figure 3.3: A RLDD encoding

{a, b, c}3

1 0

c

b

a

c

b

a

•

•

•
•

•

•

Figure 3.4: A RLDD for

Sqr({a, b, c}).

a

b

c

a

b

ab

a

c

c

c

b

1 0

• •
•

•

•

• •
••

•

•
•

Figure 3.5: A RLDD encoding U3 = {a, b, c}3 ÷ Sqr({a, b, c})

Chapter 4

Minimal cuts and minimal
sequences

This chapter presents algorithms used to minimize sets of sequences and sets
of cuts computed using algorithms presented in chapter 2.

Both algorithms (for sequences and cuts) take as input a Decision Diagram[5]
representing all computed scenarios that yield an unexpected configuration.
Minimization algorithms are based on RLDDs (see chapter 3). However, since
the encoding of scenarios by means of DDs is not the same in both cases, we
have to write two specific translation algorithms.

4.1 A brief introduction to DDs

Decision Diagrams (DD) used by ARC[9] model-checker, are stemmed from the
TOUPIE tool[5]. DDs are diagrams built over non-Boolean variables. Domains
of variables remain finite but they can contain an arbitrary number of elements.
The principle is the same than for BDDs but, instead of taking the decision
according to two values we use N values (if N is the cardinality of the domain
of the variable).

DDs are used in ARC to represent sets of configurations, relation transitions
or more generally relations. Figure 4.1 gives an example of a DD that represents
reachable configuration of an AltaRica node.

In the context of scenarios generation, variables are added to AltaRica nodes
to record occurrences of events. After the computation of reachable configura-
tions, the DD is projected on these additional variables (i.e. all other variables
are removed) to keep only data related to expected scenarios. Depending on
the nature of computed objects, sets or words, resulting DDs have different se-
mantics and different structures. Figure 4.2 depicts DDs that encode the same
scenarios abc, ac and b but in a one case they are viewed as cuts and in the other
case, as sequences.

34

CHAPTER 4. MINIMAL CUTS AND MINIMAL SEQUENCES 35

node A

flow

i, o : [0, 2];

state

s : { ok, nok };

event

fail;

trans

s = ok |- fail -> s := nok;

assert

o = (if s = ok then i else 0);

edon

s

i

oo o i

1 0

0

1

0
1

2

0
10

1..2
1 0

2

0..1
2

Figure 4.1: An AltaRica node and the DD encoding its reachable configu-

rations. Symbolic values ok and nok are encoded by integer values 0 and

1.

4.2 Sequence and minimal sequences

As mentioned in introduction, minimization algorithm is based on RLDDs.
We could design a direct computation of minimal sequences from the DD that
encodes sequences but we have preferred to generate an intermediate structure
that permits to easily manipulate and display the whole set of sequences.

The main issue is thus to translate the DD that encodes computed sequences
into a RLDD and then to apply the minimization operator defined over RLDDs
(see 3.3). This translation step is straightforward if pis variables that memorize
ith events are ordered according to i in the DD. If this is not the case a simple
relabelling of variables is realized. Under the hypothesis of a good ordering of
variables, algorithm 2 (page 37) translates a DD into a RLDD. In the pseudo-
code of algorithm 2 we have use suffixes DD and RL to distinguish trivial
nodes (0 and 1) of DDs and RLDDs.

Due to the encoding of sequences by pi variables, the DD can be viewed
as a classical automaton recognizing words where 1DD is the accepting state,
0DD is a sink state and 0-labelled edges are interpreted as ǫ transitions. The
algorithm recursively visits paths to the accepting state (i.e the leaf node 1DD)
using a depth-first search traversal of the input DD.

As usual a cache C is used (lines 7 and 17) to prevent useless revisit of same
paths of the DD; if the cache does not erase its entries the number of recursive
calls is linear in the number of nodes of the DD.

Figure 4.3 shows the application of algorithm 2 on the DD depicted on the
right side of figure 4.2. Note that, on this example the cache is useless; except
leaves, all DD nodes have only one input edge.

CHAPTER 4. MINIMAL CUTS AND MINIMAL SEQUENCES 36

b

{{b, a, c}, {b, a, c}, {b, a, c}}

a{{a, c}} a {{a, c}, {a, c}}

c{{c}} c {{c}}

1{∅} 0 ∅

0 1

1

0

1 0

1

0

1

0

p1

{abc, ac, b}

p2{bc, c} p2 {ǫ}

p3{c} p3{ǫ} p3 {ǫ}

1{ǫ} 0 ∅

1 (a) 2 (b)

2 (b)
3 (c)

0

3 (c)
0 0

0,3

0,1 1..3

0..2 1..3 1..3

Figure 4.2: Different representations of scenarios abc, ac and b by means

of DDs. On the left hand side, scenarios are considered as cuts (note that

in this case, b and ac are implicit in ac and b). Each variable of the DD

corresponds to an event and are ordered as b < a < c. Edges to leaf

node 0 are drawn in gray. On the right hand side, scenarios are viewed

as sequences where a = 1, b = 2 and c = 3 (recall observer described in

chapter 2). Length of sequences is bound by k = 3. Note that for sequences

with less than k events, scenarios are padded with 0s.

4.3 Minimal cuts

The algorithm is inspired by the one proposed by A. Rauzy in [16]. The origi-
nal algorithm (section C of [16]) computes for a Boolean formula F a ZBDD[12]
that encodes minimal cuts of F according to a set L of significant literals. Lit-
erals can be positive and/or negative occurrences of elementary events. That
means that non-failures could be considered as relevant informations.

In the context of this study we have chosen to ignore these negative infor-
mations and to handle only positive events (i.e actual failures). This hypoth-
esis corresponds to case 2 of Rauzy’s algorithm where, for all failure event e,
e ∈ L and e 6∈ L. Algorithm 3 is an implementation of Rauzy’s algorithm
(case 2) using RLDDs instead of ZBDDs. Remember that DDs that encode cuts
have at most two children nodes because the observer uses only Boolean vari-
ables. The function variable(N) returns the index of the variable labelling
the node. cofactor(N, i) returns the ith child of N .

Figure 4.4 depicts application of algorithm 3 on the DD depicted on the left
side of figure 4.2.

The main difference between Rauzy’s algorithm and algorithm 3 is the use
of rldd-div instead of the similar operation ÷ defined in [8] for ZBDDs. This
replacement can be easily justified by the fact that due to ordering of variables,
cuts are implicitly treated as words. More precisely, if for any cut σ, we denote
by w(σ) the word obtained by concatenating elements of σ according to the

CHAPTER 4. MINIMAL CUTS AND MINIMAL SEQUENCES 37

Algorithm 2 dd-to-rldd (DD N , cache C)

1: RLDD R /* the result */

2: if N = 0DD then
3: R = 0RL

4: else if N = 1DD then
5: R = 1RL

6: else
7: R = cache-find-operation(C,dd-to-rldd, N)
8: if R = NULL then
9: R = 0RL

10: for all outgoing edge N
a
−→ N ′ do

11: RLDD son = dd-to-rldd(N ′, C)
/* a = 0 means that current pi was not assigned i.e the

edge is treated as an ǫ. */

12: if a 6= 0 then
13: son = rldd-build(a, son,0RL)
14: end if
15: R = rldd-union(R, son)
16: end for
17: cache-memorize-operation(C,dd-to-rldd, N, R)
18: end if
19: end if
20: return R

order used to build DDs, then for any cuts σ1 and σ2, σ1 ⊆ σ2 if and only if
w(σ1) is a sub-word of w(σ2).

CHAPTER 4. MINIMAL CUTS AND MINIMAL SEQUENCES 38

p1

{abc, ac, b}

p2{bc, c} p2 {ǫ}

p3{c} p3{ǫ} p3{ǫ}

1

{ǫ}

0

∅

1 2

2
3

0

3
0 0

0,3

0,1 1..3

0..2 1..3 1..3

1

{abc, ac, b}

2

{bc, c}

2 {b}

3

{c}

1

{ǫ}

0

∅

•

•

•

•

Figure 4.3: Application of the dd-to-rldd algorithm onto the DD en-

coding sequences abc, ac and b depicted on figure 4.2. Dashed arrows

show the mapping realized by the algorithm between DD (on the left) and

RLDD nodes (on the right). Remember that letters a, b and c are encoded

respectively by integers 1, 2 and 3. On DDs, letters label edges while on

RLDDs, letters label nodes.

Algorithm 3 dd-to-min-rldd (DD N , cache C)

1: RLDD R /* the result */

2: if N = 0DD then
3: R = 0RL

4: else if N = 1DD then
5: R = 1RL

6: else
7: R = cache-find-operation(C,dd-to-min-rldd, N)
8: if R = NULL then
9: int v = variable(N)

10: DD N0 = cofactor(N, 0)
11: DD N1 = cofactor(N, 1)
12: RLDD son0 = dd-to-min-rldd(N0, C)
13: RLDD son1 = dd-to-min-rldd(N1, C)
14: RLDD tmp = rldd-div(son1, son0)
15: R = rldd-build(v, tmp, son0)
16: cache-memorize-operation(C,dd-to-min-rldd, N, R)
17: end if
18: end if
19: return R

CHAPTER 4. MINIMAL CUTS AND MINIMAL SEQUENCES 39

b

{{b, a, c}, {b, a, c}, {b, a, c}}

a{{a, c}} a {{a, c}, {a, c}}

c{{c}} c {{c}}

1

{∅}

0

∅

0 1

1 0 1 0

1

0

1

0

b

{b, ac}

a {ac}

c

{c}

1

{ǫ}

0

∅

• •

•

Figure 4.4: Application of the dd-to-min-rldd algorithm onto the DD

encoding cuts abc, ac and b depicted on figure 4.2. Dashed arrows show

the mapping realized by the algorithm between DD (on the left) and RLDD

nodes (on the right). Variables are ordered as follows: b < a < c.

Chapter 5

Reduction of models

5.1 Principles of the reduction

The reduction algorithm is applied to the constraint automaton[14] that repre-
sents the model. This automaton, actually an AltaRica node, is obtained using
a rewriting process that removes all hierarchical levels of the model and com-
piles this latter into an equivalent n ode. This process has been called the flat
semantics of the model[13].

Given a constraint automatonA that represents the system we want to eval-
uate a Boolean formula φ built over variables of A. φ will be called target for-
mula. Our goal is to reduce A to its only parts (i.e variables, assertions and
transitions) that are mandatory to evaluate φ all along runs (or behaviours) of
the automaton.

More precisely the restricted automaton, denotedAφ, should satisfy follow-
ing properties:

1. For any configuration σ ofA one can associate its projection σ′ inAφ and
σ satisfies φ iff σ′ satisfies φ.

2. For all executable sequences of macro-transitions of A, its restriction to
macro-transitions belonging to Aφ is actually an executable sequence in
Aφ.

3. Any executable sequence of macro-transitions of Aφ is an executable se-
quence of A.

The main idea that underlies the algorithm is to compute items that may
influence the truth value of φ. Starting from variables appearing in φ, one com-
putes elements ofA related to these variables: flow variables are influenced by
assertions, assertions by flow and state variables, state variables by transitions
and so on. These relations between components of A permit to restrict A to
a subset of its variables; other parts not related to these variables are simply
ignored.

40

CHAPTER 5. REDUCTION OF MODELS 41

5.2 Constraint Automata

If V is a set of variables, T (V) and BF (V) denote, respectively, sets of terms
and sets of Boolean formulae built over a set of variables V . For the sake of
simplicity we shall assume that variables take their values into a unique do-
main D. If e is a term or a Boolean formula, we denote by V ar(e) the set of
variables occurring in e. If f : A → B is a function from A into B, we denote
by Dom(f) ⊆ A its domain. F (A, B) will note the set of functions from A into
B.

A valuation of variables of V is a mapping belonging to F (V,D). If V ′ ⊆ V
and σ ∈ F (V,D) then we denote by σ[V ′] ∈ F (V ′,D) the restriction of the
valuation σ to variables belonging to V ′. If F ∈ BF (V), we denote by JF K the
set of valuations that satisfy F . If t ∈ T (V), JtK is the function from F (V,D)
into D that evaluates a term w.r.t to a given valuation of variables.

Definition 7 (Constraint Automaton) A constraint automaton A = 〈VS , VF ,
E, T, A, I〉 is a tuple where:

• VS and VF are disjoint sets of variables. Elements of VS (resp. VF) are called
state (resp. flow) variables.

• E is a set of events containing a distinguished event ǫ.

• T ⊆ BF (VS∪VF)×E×F (VS , T (VS∪VF)) is the set of macro-transitions. If
〈g, e, α〉 belongs to T , g is called the guard, e the event and α the assignment of
the transition. α is not necessarily total. We assume that T contains the “don’t
change state” macro-transition 〈true, ǫ, ∅〉.

• A ⊆ BF (VS ∪ VF) contains assertions of the model, i.e., invariants that must
be satisfied by valuations of variables.

• I ⊆ BF (VS) contains initial constraints.

A configuration ofA is a valuation of its variables satisfying A (in the sequel
we do not distinguish A or I and the conjunction of their elements).

If σ1 and σ2 are two configurations of A and if t = 〈g, e, α〉 ∈ T , then we

denote by σ1
t
−→A σ2 the fact that t is enabled in configuration σ1 and change

the configuration of A into σ2; or more formally we have:

• σ1 ∈ JAK, σ2 ∈ JAK

• σ1 ∈ JgK

• ∀v ∈ VS ∩Dom(α), σ2(v) = Jα(v)K(σ1)

• ∀v ∈ VS \Dom(α), σ2(v) = σ1(v)

Words belonging to T ⋆ shall denote sequences of macro-transitions. If w =

t1 . . . tn ∈ T ⋆ then we will write σ0
w
−→A σn if there exist configurations σ1, . . . ,

CHAPTER 5. REDUCTION OF MODELS 42

σn−1 such that σ0
t1−→A σ1

t2−→A . . .
tn−1

−→A σn−1
tn−→A σn. For any sequence

w ∈ T ⋆ and any T ′ ⊆ T , w[T ′] will denote the projection of w on elements in
T ′.

In the following sections, when the context is clear, the subscript A is omit-
ted.

5.3 Dependencies between variables

The semantics of the AltaRica language defines the way variables are assigned
a value. Flow variables are computed according to assertions, and state vari-
ables are changed when a transition is triggered. One can consider that, due to
assertions, the value of a variable v depends on all other variables in the model.
This is true, but some variables may be redundant. So, finding a more precise
set of variables that determines the value of v can help to reduce significantly
the complexity of the model. One can notice that this new set of variables is
not unique: for example consider the assertion (a = (b∧ c))∧ (c 6= d) built with
four Boolean variables. a depends on {b, c, d}; this set can be reduced to {b, c}
but also to {b, d} because c and d are functionally dependent. The following
describes one method to compute such a reduced set of variables.

Given a constraint automaton A = 〈VS , VF , E, T, A, I〉 and φ ∈ BF (VS ∪
VF), we denote by ReqA(φ) the set of variables that influence the truth value of
φ. The set ReqA(φ) is built as follows:

• V ar(φ) ⊆ ReqA(φ)

• ∀a ∈ A ∪ I , V ar(a) ∩ReqA(φ) 6= ∅ ⇒ V ar(a) ⊆ ReqA(φ)

• ∀t = (g, e, α) ∈ T , Dom(α) ∩ ReqA(φ) 6= ∅ ⇒ V ar(t) ⊆ ReqA(φ) where
V ar(t) denotes the set of variables occurring in g and α.

We have to notice that this construction depends on the writing of the asser-
tion A. The goal of this section is to show that the correctness of the reduction
algorithm does not depend on the way the assertion is written. The next sec-
tion explain how to rewrite A in order to obtain better results.

The reduction of A to φ, denoted Aφ, is the restriction of A to variables in
ReqA(φ). The constraint automaton Aφ = 〈V φ

S , V φ
F , Eφ, Tφ, Aφ, Iφ〉 is defined

as follows (tǫ is the macro-transition 〈true, ǫ, ∅〉):

• V φ
S = VS ∩ReqA(φ)

• V φ
F = VF ∩ReqA(φ)

• Tφ = {〈g, e, α〉 ∈ T |Dom(α) ∩ReqA(φ) 6= ∅} ∪ {tǫ}

• Eφ = {e ∈ E|∃(g, e, α) ∈ Tφ}

• Aφ = {a ∈ A|V ar(a) ∩ReqA(φ) 6= ∅}

CHAPTER 5. REDUCTION OF MODELS 43

• Iφ = {i ∈ I|V ar(i) ∩ReqA(φ) 6= ∅}

We now prove thatAφ is sufficient to compute sequences of transitions that
produce a configuration satisfying φ.

In the sequel, for any assignment σ ∈ F (VS ∪ VF ,D) we will denote π(σ)
the restriction σ[ReqA(φ)].

The following property states that each valuation can be decomposed into
two parts; the first one satisfies assertions in Aφ and the second one satisfies
the others.

Property 1 ∀σ ∈ F (VS ∪ VF ,D), σ ∈ JAK ⇐⇒ σ[ReqA(φ)] ∈ JAφK ∧ σ[(VS ∪
VF) \ReqA(φ)] ∈ JA \AφK

The following lemmas are illustrated on the figure 5.1.

Lemma 3 ∀σ0, σ1, σ
′
1 ∈ JAK, ∀t ∈ T , σ0

t
−→ σ1 ∧ σ1

tǫ−→ σ′
1 ⇒ σ0

t
−→ σ′

1

Proof: Direct consequence of AltaRica semantics. ♦

Lemma 4 ∀σ0, σ1 ∈ JAK, ∀t ∈ T \ Tφ, σ0
t
−→ σ1 ⇒ ∃σ

′
0 ∈ JAK, π(σ′

0) = π(σ1) ∧

σ0
tǫ−→ σ′

0

Proof: Let t = 〈g, e, α〉. Since Dom(α) ∩ReqA(φ) = ∅, t does not modify state
variables belonging to ReqA(φ); thus, σ0[VS∩ReqA(φ)] = σ1[VS∩ReqA(φ)]. The
expected σ′

0 is defined by: σ′
0(v) = σ1(v) if v ∈ VF ∩ReqA(φ) and σ′

0(v) = σ0(v)
for other variables. By construction we have π(σ′

0) = π(σ1). Then σ′
0 ∈ JAK

because, since both σ0 and σ1 belong to JAK, we have:

• σ′
0[(VS ∪ VF) \ReqA(φ)] = σ0[(VS ∪ VF) \ReqA(φ)] ∈ JA \AφK

• σ′
0[ReqA(φ)] = σ1[ReqA(φ)] ∈ JAφK

Finally, since σ0[VS] = σ′
0[VS], the semantics gives σ0

tǫ−→ σ′
0. ♦

Lemma 5 ∀σ0, σ1, σ
′
0 ∈ JAK, ∀t ∈ Tφ, σ0

t
−→ σ1 ∧ π(σ0) = π(σ′

0)⇒ ∃σ
′
1 ∈ JAK,

σ′
0

t
−→ σ′

1 ∧ π(σ1) = π(σ′
1)

Proof: We assume hypotheses for some transition t = 〈g, e, α〉. Now, consider
the valuation σ′

1 such that σ′
1 is equal to σ1 for all variables in ReqA(φ) and

is equal to σ′
0 elsewhere. By construction, σ′

1[ReqA(φ)] ∈ JAφK and σ′
1[(VS ∪

VF) \ ReqA(φ)] ∈ JA \ AφK, thus, due to property 1, σ′
1 belongs to JAK. Since

π(σ0) = π(σ′
0), we have σ′

0 ∈ JgK.
Now, let v ∈ Dom(α). Since t ∈ Tφ we have v ∈ ReqA(φ) and thus, σ′

1(v) =
σ1(v) = Jα(v)K(σ0) = Jα(v)K(σ′

0). In the case where v ∈ VS \Dom(α), σ′
1(v) =

σ′
0(v). We can conclude that σ′

0
t
−→ σ′

1. ♦

CHAPTER 5. REDUCTION OF MODELS 44

σ0 σ1

σ′
1

t

t
tǫ

σ0 σ1

σ′
0

t ∈ T \ Tφ

π(σ′
0) = π(σ1)

tǫ

σ′
0 σ′

1

σ0 σ1
t

t

π(σ0) = π(σ′
0) π(σ1) = π(σ′

1)

Lemma 3 Lemma 4 Lemma 5

Figure 5.1: Illustration of the lemmas

Corollary 2 Let n > 1, σ0 ∈ JIK ∩ JAK and for i = 1, . . . , n, σi ∈ JAK and ti ∈ T ,

such that σi−1
ti−→ σi. If j ∈ [1, n] is such that tj ∈ T \ Tφ and for all j < k ≤ n,

tk ∈ Tφ then there exist σ′
i ∈ JAK for i = j, . . . , n such that:

• σ′
i

ti+1

−→ σ′
i+1 for i = j, . . . , n− 1

• π(σi) = π(σ′
i) for i = j, . . . , n

• σj−2
tj−1

−→ σ′
j if j > 1 or σ′

j ∈ JIK if j = 1

Proof: In the case where j = n, lemmas 3 and 4 are sufficient. For cases where
j > 1, after applying 3 and 4 to remove tj , lemma 5 is used to built the sequence
from σ′

j to σ′
n. For the case where tj is the first macro-transition of the sequence

(i.e j = 1), lemma 4 states that σ0
tǫ−→ σ′

1. Due to AltaRica semantics, since σ0

is an initial configuration, any configuration reachable by tǫ is also an initial
configuration. ♦

. . . σj−2 σj−1 σj σj+1 . . . σn

σ′
j σ′

j+1
. . . σ′

n

tj−1

tǫ

tj tj+1 tn

tj−1

tj+1 tn

π(σj)=π(σ′

j) π(σj+1)=π(σ′

j+1) π(σn)=π(σ′

n)

Figure 5.2: Illustration of corollary 2.

Previous corollary is illustrated on figure 5.2. The following theorem, that is
a consequence of corollary 2, states that only sequences of transitions belonging
to Tφ are actually relevant to reach configuration satisfying φ.

Theorem 4 ∀σ0 ∈ JIK, w ∈ T ⋆, σ ∈ JφK, σ0
w
−→ σ ⇒ ∃σ′

0 ∈ JIK, σ′ ∈ JφK,

σ′
0

w[T φ]
−→ σ′.

CHAPTER 5. REDUCTION OF MODELS 45

Proof: Corollary 2 permits to remove successively from w macro-transitions
that do not belong to Tφ without loosing the reachability of π(σn). ♦

Property 1 and theorem 4 allow us to remove parts ofA that are not related
to ReqA(φ) without loosing relevant sequences yielding configurations in JφK.

Does Aφ produces sequences that are not sequences of A ? As we will
show below, this can not occur if JIK ∩ JAK 6= ∅ i.e A has at least one initial
configuration.

Lemma 6 ∀σ1, σ2 ∈ JAφK, ∀t ∈ Tφ, σ1
t
−→Aφ σ2 ⇒ ∀σ

′
1 ∈ JAK ∩ π−1(σ1),

∃σ′
2 ∈ JAK ∩ π−1(σ2), σ′

1
t
−→A σ′

2.

Proof: If σ′
1 exists it suffices to define σ′

2 as follows: for all v ∈ ReqA(φ),
σ′

2(v) = σ2(v) and if v ∈ (VS ∪ VF) \ReqA(φ), σ′
2[v] = σ′

1(v). By construction σ′
2

belongs to π−1(σ2). σ′
2[ReqA(φ)] = σ2 ∈ JAφK and σ′

2[(VS ∪ VF) \ ReqA(φ)] =
σ′

1[(VS ∪ VF) \ ReqA(φ)] ∈ JA \ AφK thus σ′
2 ∈ JAK. Since t does not modify

variables out of ReqA(φ), σ′
1

t
−→A σ′

2. ♦

By induction one can easily prove that previous lemma can be generalized
to sequences in (Tφ)⋆. This means that if a sequence w ∈ (Tφ)⋆ can be triggered
from a configuration σ0 ofAφ, the non-emptiness of π−1(σ0)∩ JAK ensures that
w can also be executed in A from some configuration in π−1(σ0).

Theorem 5 JIK∩JAK 6= ∅⇒∀σ0, σ ∈ JAφK, ∀w ∈ (Tφ)⋆, (σ0 ∈ JIφK∧σ0
w
−→Aφ σ)

⇒ (∃σ′
0, σ

′ ∈ JAK, σ′
0 ∈ JIK ∧ σ′

0
w
−→A σ′ ∧ π(σ′

0) = σ0 ∧ π(σ′) = σ)

Proof: Since σ0 ∈ JIφK ∩ JAφK and JIK ∩ JAK 6= ∅, there exists σ′
0 ∈ JIK ∩ JAK

such that π(σ′
0) = σ0. Then generalization to sequences of lemma 6 permits to

conclude that w can be triggered from σ′
0 yielding a configuration σ′ belonging

to π−1(σ) ∩ JAK. ♦

5.4 Reduction using functional dependencies

In many cases, all variables of a constraint automaton are mutually dependent
and no gain is obtained with the reduction because ReqA(φ) = VS ∪ VF . How-
ever we can obtain a better result if the system can be actually partitioned into
disconnected parts.

The mutual dependency between variables is due to the semantics of the
AltaRica language that wires variables of components using assertions. From
a formal point of view, assertions define a relation between variables without
any notion of orientation or causality between variables. However, users often
thought assertions as an assignment or, at least, a data flow from one point to
another. As a consequence, many models possess an implicit orientation given
by the way engineers describe systems and, often, many flow variables func-
tionally depend on other variables. These functional dependencies can be used

CHAPTER 5. REDUCTION OF MODELS 46

to remove some assertions and thus reduce connectivity between components
of the automaton.

Section 5.5 gives an algorithm that build two sets C and FD such that:

• C ⊆ BF (VS ∪ VF), FD ⊆ VF × T (VS ∪ VF)

• C∪{v = t ∈ BF (VS ∪VF) | (v, t) ∈ FD} and the original set of assertions
A have the same semantics.

• ∀(v, t), (v′, t′) ∈ FD, v = v′ ⇒ t = t′ i.e each flow variable appears at
most once on the left hand size of FD.

Each of couple (v, f) ∈ FD associates to a flow variable a term f that de-
fines the value of v. Using these functional dependencies, one can reduce fur-
ther the constraint automaton prior the reduction given in the previous section.
Actually, each flow variable appearing on the first component of a couple in
FD can be replaced directly by its associated function. This variable can then
be suppressed from the model. This process has the advantages of reducing
the number of flow variables and remove some dependencies. Of course, the
same substitution has to be applied to the input formulas.

5.5 Computation of functional dependencies

In this section we give the algorithm used to compute functional dependencies
between variables of a constraint automaton. If A is the set of assertions of the
considered automaton, the algorithm creates two new sets:

1. The first one is a set of functional dependencies FD ⊆ VF × T (VS ∪ VF)
that associates to a flow variable v a term t built over (VS ∪VF)\{v}. The
equation v = t is an invariant of the model that is semantically equivalent
to an assertion belonging to A.

2. The second one, C ⊆ BF (VS ∪ VF) is simply assertions for which no
functional dependency has been found.

The main algorithm (compute-functional-dependencies below) is
quite simple. For each assertion c it looks for a functional dependency that
is semantically equivalent (line 4) i.e a variable v ∈ V ar(c) and a term f ∈
T (V ar(c) \ {v}) such that formulae c and v = f have the same solutions. If
such a couple is not obtained the assertion is kept as is and stored into C (lines
5-6). If a dependency is found it is added to FD. In order to prevent the cre-
ation of cycles, we maintain DEP a dependency relation between variables
(lines 8-11); if (v, v′) ∈ DEP then v depends on v′.

CHAPTER 5. REDUCTION OF MODELS 47

Algorithm 4 compute-functional-dependencies (A)

1: FD ← ∅, C ← ∅
2: DEP ← ∅
3: for all c ∈ A do
4: (v, f)← look-for-fd (c, DEP)

5: if (v, f) = (⊥,⊥) then
6: C ← C ∪ {c}
7: else
8: FD ← FD ∪ {(v, f)}
9: for all v′ ∈ V ar(f) do

10: DEP ← DEP ∪ {(v, v′)}
11: end for
12: end if
13: end for
14: return 〈FD,C〉

Algorithm look-for-fd (page 48) checks if there exists a functional de-
pendency in the semantics of an assertion c. The algorithm first simply checks
if the assertion c is an equality between a flow variable x and another term t
(lines 2-3). If this is the case and if variables appearing in t do not depend on x
(line 4) then the couple (x, t) is returned.

If no functional dependency is found syntactically, the search is realized on
the semantics of c (lines 15-21). For each flow variable x appearing in c that
does not depend (w.r.t DEP) on other variables in c, we check if the value of x
is a function of other variables. This test can be realized by a solver.

Line 18, build-funct(x, c) built the term t ∈ T (V ar(c) \ {x}) such that
x = t and c are semantically equivalent.

5.6 Example

In this section we consider a system composed of 4 identical leaf nodes. Such
nodes simply transmit their “input” to their “output” unless a failure occurs in
which case the output is set to false. Nodes are organized into two columns.
On the right column, nodes C01 and C11 receive as input the conjunction of
the output of nodes in the left column (C00 and C10). The system is depicted
on the figure 5.3 and below the figure, quantitative data about the top-level
node (System) are given.

CHAPTER 5. REDUCTION OF MODELS 48

Algorithm 5 look-for-fd (c, DEP)

1: /* syntactic test */

2: if c has the form T1 = T2 then
3: for all x ∈ {T1, T2} ∩ VF do
4: if ∀v ∈ V ar(c) \ {x}, (v, x) 6∈ DEP ⋆ then
5: if x = T1 then
6: return (T1, T2)
7: else
8: return (T2, T1)
9: end if

10: end if
11: end for
12: end if
13:

14: /* semantic test */

15: for all x ∈ V ar(c) ∩ VF do
16: if ∀v ∈ V ar(c) \ {x}, (v, x) 6∈ DEP ⋆ then
17: if ∀(d1, d2) ∈ D

2, d1 6= d2 ⇒ Jc[x/d1]K ∩ Jc[x/d2]K = ∅ then
18: return (x,build-funct (x, c))
19: end if
20: end if
21: end for
22: return (⊥,⊥)

node C

flow i, o : bool

state s : { ok, ko };

init s := ok;

event fail;

trans

s = ok |- fail -> s := ko;

assert

if (s = ok)

then (o = i)

else (o = false);

edon

node Equipment

flow i1, i2, o1, o2 : bool;

sub C00, C01, C10, C11 : C;

assert

i1 = C00.i;

i2 = C10.i;

C01.i = (C00.o & C10.o);

C11.i = (C00.o & C10.o);

C01.o = o1;

C11.o = o2;

edon

node System

sub E : Equipment;

edon

C00

C10

C01

C11

&

&

i i

i

i

ii

i1

i2

o1

o2

i o

o

o

o

=== System ===

statistics:

number of variables : 16

flow variables : 12

state variables : 4

max cardinality : 2

number of events : 5

number of functional dependencies : 10

number of constraints : 0

number of transitions : 5

Figure 5.3:

CHAPTER 5. REDUCTION OF MODELS 49

Now, assume we want to observe the output variable o1. The “reduced”
system generated by the projection described above is given below. One can
remark that this latter does not contain anymore components related to com-
pontent C11. The dependency graphs for this system, before and after the
projection, are depicted on figures 5.5 (page 51) and 5.6 (page 52).

// statistics:

// number of variables : 5

// flow variables : 2

// state variables : 3

// max cardinality : 2

// number of events : 4

// number of functional dependencies : 0

// number of constraints : 0

// number of transitions : 4

node System

flow // 2 flow variables

’E.C00.i’ : bool;

’E.C10.i’ : bool;

state // 3 state variables

’E.C00.s’ : { ok, ko };

’E.C01.s’ : { ok, ko };

’E.C10.s’ : { ok, ko };

init

’E.C10.s’ := ok,

’E.C01.s’ := ok,

’E.C00.s’ := ok;

event // 4 events

’E.C00.fail’;

’E.C01.fail’;

’E.C10.fail’;

trans

(’E.C10.s’ = ok) |- ’E.C10.fail’ -> ’E.C10.s’ := ko;

(’E.C01.s’ = ok) |- ’E.C01.fail’ -> ’E.C01.s’ := ko;

(’E.C00.s’ = ok) |- ’E.C00.fail’ -> ’E.C00.s’ := ko;

edon

Projection of System node for the observation of E.o1.

Now we create a loop into the system of the previous example. The output
of the system o2 is redirected into the input i1. The description of the system
is exactly the same as previously except that the System node contains the
assertion describing the loop (see figure 5.4).

node System

sub E : Equipment;

assert E.o2 = E.i1;

edon

C00

C10

C01

C11

&

&

i i

i

i

ii

i1

i2

o1

o2

i o

o

o

o

Figure 5.4: A feedback loop is added that wires up output o2 to input i1

If we keep the observation of the output variable o1 as our objective, the
reduced system generated by the algorithm is “almost” the whole system. In

CHAPTER 5. REDUCTION OF MODELS 50

fact, even if applying functional dependencies to the model reduce the number
of variables, all behaviours and all actually usefull variables are kept.

// statistics:

// number of variables : 6

// flow variables : 2

// state variables : 4

// max cardinality : 2

// number of events : 5

// number of functional dependencies : 0

// number of constraints : 1

// number of transitions : 5

node System

flow // 2 flow variables

’E.C00.i’ : bool;

’E.C10.i’ : bool;

state // 4 state variables

’E.C00.s’ : { ok, ko };

’E.C01.s’ : { ok, ko };

’E.C10.s’ : { ok, ko };

’E.C11.s’ : { ok, ko };

init

’E.C11.s’ := ok,

’E.C10.s’ := ok,

’E.C01.s’ := ok,

’E.C00.s’ := ok;

event // 5 events

’E.C00.fail’;

’E.C01.fail’;

’E.C10.fail’;

’E.C11.fail’;

assert // 1 actual constraints

(((’E.C11.s’ = ok) and (((’E.C00.s’ = ok) and ’E.C00.i’) and ((’E.C10.s’ = ok)

and ’E.C10.i’))) = ’E.C00.i’);

trans

(’E.C11.s’ = ok) |- ’E.C11.fail’ -> ’E.C11.s’ := ko;

(’E.C10.s’ = ok) |- ’E.C10.fail’ -> ’E.C10.s’ := ko;

(’E.C01.s’ = ok) |- ’E.C01.fail’ -> ’E.C01.s’ := ko;

(’E.C00.s’ = ok) |- ’E.C00.fail’ -> ’E.C00.s’ := ko;

edon

The dependency graphs for this new system, before and after the projection,
are depicted on figures 5.7 (page 53) and 5.8 (page 54).

C
H

A
P

T
E

R
5.

R
E

D
U

C
T

IO
N

O
F

M
O

D
E

L
S

51

E.C00.o

assign[(if (E.C00.s = ok) then E.C00.i else false)]

E.C00.s

init[ok](E.C00.s = ok) |- E.C00.fail -> E.C00.s := ko

E.o1

assign[E.C01.o] event[]

(E.C11.s = ok) |- E.C11.fail -> E.C11.s := ko

E.C11.s

event[E.C11.fail]

assign[(if (E.C11.s = ok) then E.C11.i else false)]

E.C11.i

event[E.C10.fail]

assign[E.C11.o]

assign[(if (E.C01.s = ok) then E.C01.i else false)]

E.C01.sE.C01.i

E.i1

assign[E.C00.i]

assign[(E.C00.o and E.C10.o)]

E.C10.o

(E.C01.s = ok) |- E.C01.fail -> E.C01.s := ko

event[E.C01.fail]

E.i2

assign[E.C10.i]

(E.C10.s = ok) |- E.C10.fail -> E.C10.s := ko

E.C10.s

E.o2

assign[(if (E.C10.s = ok) then E.C10.i else false)]

true |- ->

event[E.C00.fail]

Figure 5.5: Dependency graph of the acyclic system.

C
H

A
P

T
E

R
5.

R
E

D
U

C
T

IO
N

O
F

M
O

D
E

L
S

52

event[E.C00.fail]

(E.C10.s = ok) |- E.C10.fail -> E.C10.s := ko

E.C10.s

event[E.C10.fail]

init[ok]

E.C00.i true |- ->

event[]E.C00.s

(E.C00.s = ok) |- E.C00.fail -> E.C00.s := ko E.C10.i

event[E.C01.fail]

E.C01.s

(E.C01.s = ok) |- E.C01.fail -> E.C01.s := ko

Figure 5.6: Dependency graph of the acyclic system after the projection.

C
H

A
P

T
E

R
5.

R
E

D
U

C
T

IO
N

O
F

M
O

D
E

L
S

53

E.i1

assign[E.C00.i]

assert[(E.o2 = E.i1)]

assign[(E.C00.o and E.C10.o)]

E.C11.iE.C01.i E.C10.o

E.C00.o

assign[(if (E.C00.s = ok) then E.C00.i else false)]

E.i2

assign[E.C10.i]

assign[(if (E.C10.s = ok) then E.C10.i else false)]

E.C10.s

init[ok] (E.C10.s = ok) |- E.C10.fail -> E.C10.s := ko

true |- ->

event[]

event[E.C01.fail]

E.C01.o

assign[(if (E.C01.s = ok) then E.C01.i else false)]

E.o1

assign[(if (E.C11.s = ok) then E.C11.i else false)]

E.o2

E.C11.o

E.C00.s

(E.C00.s = ok) |- E.C00.fail -> E.C00.s := ko

event[E.C00.fail]

E.C01.s

(E.C01.s = ok) |- E.C01.fail -> E.C01.s := ko

event[E.C11.fail]

E.C11.s

(E.C11.s = ok) |- E.C11.fail -> E.C11.s := ko

event[E.C10.fail]

Figure 5.7: Dependency graph of the system with a loop.

C
H

A
P

T
E

R
5.

R
E

D
U

C
T

IO
N

O
F

M
O

D
E

L
S

54

init[ok]

event[E.C10.fail]

(E.C10.s = ok) |- E.C10.fail -> E.C10.s := ko

E.C10.s

E.C00.s

assert[(((E.C11.s = ok) and (((E.C00.s = ok) and E.C00.i) and ((E.C10.s = ok) and E.C10.i))) = E.C00.i)] (E.C00.s = ok) |- E.C00.fail -> E.C00.s := ko

E.C11.s E.C00.i E.C10.i

event[E.C01.fail]

E.C01.s

(E.C01.s = ok) |- E.C01.fail -> E.C01.s := ko

true |- ->

event[]

event[E.C00.fail]

event[E.C11.fail]

(E.C11.s = ok) |- E.C11.fail -> E.C11.s := ko

Figure 5.8: Dependency graph of the system with a loop after the projection.

Chapter 6

Experiments

6.1 The cuts command

Computations of sequences, cuts and minimization are accessible in ARC using
the cuts command using the following syntax:

cuts [options] nodeid acceptance-condition

where options are:

--visible-tags=vt1,...,vtn

--disabled-tags=dt1,...,dtm

--min

--ordered=k

This command1 permits to compute sets of scenarios that lead the model
described by nodeid into a configuration satisfying the formula acceptance −
condition. The formula acceptance − condition can be any Boolean formula
over all variables of nodeid.

The command returns a Boolean formula that encodes cuts yielding the
expected configurations. The formula is given using the syntax of the ARA-
LIA tool[8]. Literals that compose cuts are elementary events of the model that
have been specified as visible by the user. By default, the set of visible events
is empty; thus, the result of the command is 0 (false) or 1 (true) depending
on the existence or not expected configurations.

The following session shows an example of cuts computation. The studied
node is a simple counter from 0 to 10. The counter can be incremented by
one unit using inc event or by two units using inc2 event. The first event
is labelled with event attr1 and the second one with attr2. As explained
above the result given by cuts is a Boolean constant (here 1 because expected
states are reachable from initial state).

1Paragraphs of this section have been extracted from ARC handbook.

55

CHAPTER 6. EXPERIMENTS 56

$ cat cuts-example.alt

node Counter

state count : [0,10]; init count := 0;

event inc : attr1;

inc2 : attr2;

trans true |- inc -> count := count + 1;

true |- inc2 -> count := count + 2;

edon

$ arc -qb cuts-example.alt -c ’cuts Counter "count>=3"’

N0 := 1;

root := N0;

If we request ARC to compute scenarios but considering that inc and inc2

must appear in the result we obtain a Boolean formula that encodes two se-
quences:

$ arc -qb cuts-example.alt -c ’cuts --visible-tags=attr1,attr2 \

Counter "count>=3"’

N2 := 1;

N1 := (‘inc2’ ? -N2 : N2);

N0 := (‘inc’ ? -N2 : N1);

root := -N0;

Now if only event inc2 is observed we obtain yet the Boolean constant 1.

$ arc -qb cuts-example.alt -c ’cuts --visible-tags=attr2 \

Counter "count>=3"’

N0 := 1;

root := N0;

Why do we obtain 1? Because, event inc2 is implicitly simplified. Actually,
non-observed events are replaced by 1 in the formula obtained when all events
are observed. In our example the formula is inc or inc2; thus when inc is
assigned the constant 1 the formula is simplified into 1.

The option --disabled-tags=dt1,... permits to indicate that events
labelled with one of the tags dtis are forbidden in scenarios:

$ arc -qb cuts-example.alt -c ’cuts --visible-tags=attr2 \

--disabled-tags=attr1 Counter "count>=3"’

N1 := 1;

N0 := (‘inc2’ ? -N1 : N1);

root := -N0;

By default, the command computes sets of events. The option --ordered=k
indicates that the command has to compute ordered sequences of events and
moreover, each sequence can not contain more than k visible events. If we
come back on previous example and limit the number of visible events to 3.
Note that ordered sequences are not given as Boolean formulas.

CHAPTER 6. EXPERIMENTS 57

$ arc -qb cuts-example.alt -c ’cuts --visible-tags=attr1,attr2 \

--ordered=3 Counter "count>=3"’

(inc2, inc2)

(inc2, inc)

(inc, inc2)

(inc, inc, inc2)

(inc, inc, inc)

Finally the option --min can be used to filter sets to minimal elements; it
can be used for both cuts and sequences. If cuts are computed the minimality
criterion is the inclusion. In the case of ordered sequences, sub-sequences are
considered.

$ arc -qb cuts-example.alt -c ’cuts --visible-tags=attr1,attr2 \

--ordered=3 --min Counter "count>=3"’

(inc2, inc2)

(inc2, inc)

(inc, inc2)

(inc, inc, inc)

6.2 Experimental results

6.2.1 Industrial model

Following tables summarize results of experiments on an industrial model. Ta-
ble 6.1 gives sizes of the model in terms of its number of variables and events.
The number of objectives is number of formulas specifying unwanted configu-
rations. The table also gives execution times of ARC for the 2388 computations
of minimal cuts and sequences up to order 3. Experiments were conducted on
a standard laptop computer (Intel Centrino 2 - 2.53GHz) with processes limited
to 2.5 Gb of memory. Times are expressed in CPU time.

state # flow # events # objectives Mincuts Sequences (k ≤ 3)

1349 7713 2268 2388 1775 4989

Table 6.1: Sizes of the model and computation times in CPU seconds

We can consider that each formula that specify a set of unexpected configu-
rations is treated in less than one second; however there exists an incompress-
ible amount of time due to the computation of the flat semantics of the model.
This preprocessing time takes around 20 seconds for this model.

6.2.2 Model-checking models

We have experimented proposed algorithms on models stemmed from the
model-checking community plus another model mainly used for benchmark-

CHAPTER 6. EXPERIMENTS 58

ing purpose. Table 6.2 gathers results of these experiments; the first column
gives the name of the model and its parameter(s).

Model name Reachables Mincuts
Ordered # variables # transitions # constraints

with k ≤ 3 before after before after before after

burns 2x2 5729 0.030 0.025 11 11 41 41 0 0
burns 3x1 236088 0.084 0.098 16 16 82 82 0 0
burns 3x2 1032183 0.148 0.106 16 16 82 82 0 0
burns 3x3 2764800 0.207 0.107 16 16 82 82 0 0
lamport 2 1569 0.048 0.026 11 11 53 43 0 0
lamport 3 257704 2.941 0.114 16 16 139 103 0 0
lamport 4 75599953 54.656 0.421 21 21 289 201 0 0
lift 5 14336 1.869 0.068 25 18 25 25 0 0
lift 6 71680 7.776 0.122 29 21 29 29 0 0
lift 7 344064 28.354 0.252 33 24 33 33 0 0
lift 8 1605632 107.308 0.436 37 27 37 37 0 0
lift 9 7340032 aborted 0.863 41 30 41 41 0 0

peterson 2 20 0.004 0.003 14 5 9 9 2 0
peterson 3 417 0.058 0.011 28 8 19 19 3 0
peterson 4 9272 4.294 0.040 46 11 33 33 4 0
peterson 5 223105 145.792 0.102 68 14 51 51 5 0
stress 2 5 0.001 0.000 6 3 3 3 1 1
stress 4 17 0.003 0.004 12 5 5 5 1 1
stress 8 257 0.006 0.013 24 9 9 9 1 1
stress 16 65537 0.015 0.296 48 17 17 17 1 1
stress 32 4294967297 0.055 15.178 96 33 33 33 1 1

Table 6.2: Results of experiments on classic examples from model-checking domain. reach-

ables column gives the number of reachable configurations of the reduced model. mincuts

and ordered with columns gives execution times for the computation of, respectively, mini-

mal cuts and minimal sequences. The last six columns compare sizes (i.e number of variables,

transitions and constraints) of models with their reduced version.

Mutual exclusion models: Burns, Lamport and Peterson are well-known
mutual-exclusion algorithms used to permit read/write accesses to a re-
source shared by N processes. Even if models are quite small in terms
of number of variables, transitions and assertions, their semantics grow
exponentially with respect to the number of processes.

In the context of formal methods, these models are checked against sev-
eral kind of behaviourial properties: absence of deadlocks and livelocks,
fairness and others, including mutual exclusion. The latter property be-
longs to the family of safety properties and can be treated by our algo-
rithms. Thus, in our experiment we have specified as unexpected config-
urations, those for which mutual exclusion is violated.

CHAPTER 6. EXPERIMENTS 59

Lift model: This model is inspired from a system described in [10]. As is in-
dicated by its name, the model describes a lift and its environment. The
model is parameterized by the number of floors. Model-checking meth-
ods are used to check that movements of the cage are correct e.g. each
request at a floor will be satisfied. The safety property used to check our
algorithms is the presence or not of the cage at a floor where doors are
opened.

Stress test model: This last model is a simple circular-pipeline composed of
n ≥ 4 components connected in series with the output of last component
connected to the input of the first one (see figure below). The unexpected
event is the failure of four components fixed in advance. Failures do
not depend on flows; thus, one could remove all flow variables of the
model and keep only the four observed components to study unexpected
states. However, since there exists a loop relating variables, the reduction
algorithm fails to simplify the model.

C1 C2
. . . Cn

The results given in table 6.2 deserve some comments. First of all, except for
stress case, models describe functional behaviours and even algorithms (for
mutual exclusion models); thus, no failure event exists. In order to evaluate
algorithms we had to declare all events as visible ones; otherwise computa-
tion would have been equivalent to simple reachability analysis of unexpected
states.

Second, yet excepting stress case, modeled systems are not faulty which
means that unexpected states are not reachables. Thus, only stress cases
have non empty sets of cuts but results can be easily checked.

Except for lift with more thant 9 floors, all test cases terminate in few
minutes for both mincuts and sequences. Note that comparing mincuts and
sequences computation times has no sense. Actually, since all events are visi-
ble, the algorithm that computes sequences terminates research of unexpected
states after 3 transitions while the one that computes cuts builds the whole set
of reachable configurations.

Efficiency of reduction algorithm can be evaluated with the last six columns.
One can easily notice that the technique is ineffective because all transitions are
preserved. Results for lamport model are misleading; indeed, several macro-
transitions are deliberately made disabled (with false guards). Several con-
straints and variables are removed but this is due to discovery of functional de-
pendencies and not to reduction algorithm (e.g. lift models). Only stress

test case has an actual constraint (due to the loop); other models define only
functional dependencies between state and flow variables. The inefficiency of
reduction is not so surprising because unexpected configurations involve the
whole system.

Chapter 7

Conclusion

In this report we have described algorithms implemented into ARC to com-
pute scenarios that lead an AltaRica model into unwanted configurations. This
process, depicted on figure 7.1 below, can be summarized as follows:

1. As usual the AltaRica model M is translated into a unique constraint
automaton A that describes all behaviours of the system.

2. A preprocessing step is applied to A in order to remove parts of the
model that are not related to configurations specified by the Boolean for-
mula φ (that models unwanted states). This gives a new constraint au-
tomaton Aφ.

3. Then Aφ is augmented with an observer according to the specified set of
visible events V . For the augmented automaton we symbolically com-
pute, using DDs, reachable configurations that intersect φ.

4. Finally the DD that encodes scenarios is translated into a RLDD that en-
codes minimal ones.

We have experimented our algorithms with a large model taken from the
industry and with model-checking test-cases. Results are promising but mod-
els were not good representatives of those that can be found for instance in the
safety assessment domain.

Actually model-checking test-cases are not good candidates to evaluate such
algorithms because models essentially describe systems with no bugs and were
elementary failures does not exist (models represent algorithms). Second, the
large industrial model was not checked against a formula specifying a global
failure but rather small and localized abnormal configurations; this explain
why reduction algorithm (see chapter 5) worked fine.

Future works should aim at determining how formulas that specify un-
wanted configurations can be decomposed in such a way that reduction algo-
rithm can be applied to each sub-formulas and recomposed afterwards.

60

CHAPTER 7. CONCLUSION 61

Preprocessing (chapter 5)

M

AltaRica

Model

Flat

Semantics
A

Constraint

Automaton

Functional

Dependencies
Reduction

φ
Observed

configu-

rations

Observer

based

algorithms

(chapter 2)

V

Visible

events

Aφ

Reduced

Automaton

DD-encoded

scenarios

Cuts/MinCuts

algorithms

(chapter 4 & 3)

RLDD-encoded

minimal cuts/sequences

Figure 7.1: Pipeline used to compute sets of failure scenarios for an Al-

taRica model.

Another important task will be to check our algorithms on more represen-
tative test-cases from the industry.

Bibliography

[1] A. Arnold, A. Griffault, G. Point, and A. Rauzy. The AltaRica formalism
for describing concurrent systems. Fundamenta Informaticae, 40:109–124,
2000.

[2] R.E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, 35:677–691, 1986.

[3] R.E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Trans. Computers, 35(8):677–691, 1986.

[4] E.M. Clarke, D.E. Long, and K.L. McMillan. Compositional model check-
ing. In Logic in Computer Science, 1989. LICS ’89, Proceedings., Fourth Annual
Symposium on, pages 353 –362, jun 1989.

[5] M.-M. Corsini and A. Rauzy. Toupie: The µ-calculus over finite domains
as a constraint language. J. Autom. Reasoning, 19(2):143–171, 1997.

[6] Johan de Kleer, Alan K. Mackworth, and Raymond Reiter. Characteriz-
ing diagnoses. In AAAI’90: Proceedings of the eighth National conference on
Artificial intelligence, pages 324–330. AAAI Press, 1990.

[7] S. Denzumi, R. Yoshinaka, S.-I. Minato, and H. Arimura. Efficient algo-
rithms on sequence binary decision diagrams for manipulating sets of
strings. Technical report, Hokkaido University, April 2011.

[8] Y. Dutuit and A. Rauzy. Exact and truncated computations of prime im-
plicants of coherent and non-coherent fault trees within aralia. Reliability
Engineering and System Safety, (58):127–144, 1997.

[9] A. Griffault, G. Point, and A. Vincent. AltaRica Checker Handbook, a user-
guide to ARC version 1.3. LaBRI/MV/MF, Talence, January 2010.

[10] F. Laroussinie. Logique temporelle avec passé pour la spécification et la
vérification des systèmes réactifs. Thèse de doctorat, Institut National Poly-
technique de Grenoble, France, November 1994.

[11] E .Loekito, J. Bailey, and J. Pei. A binary decision diagram based approach
for mining frequent subsequences. Knowl. Inf. Syst., 24(2):235–268, 2010.

62

BIBLIOGRAPHY 63

[12] S. Minato. Binary Decision Diagrams and Applications for VLSI CAD. Kluwer
Academic Publishers, 1996.

[13] G. Point. AltaRica : Contribution à l’unification des méthodes formelles et de la
sûreté de fonctionnement. PhD thesis, Université Sciences et Technologies -
Bordeaux I, 01 2000. 2198.

[14] G. Point and A. Rauzy. Altarica - constraint automata as a description lan-
guage. European Journal on Automation, 1999. Special issue on the Modelling
of Reactive Systems.

[15] P.J.G. Ramadge and W.M. Wonham. The control of discrete event systems.
Proceedings of the IEEE, 77(1):81 –98, jan 1989.

[16] A. Rauzy. Mathematical foundation of minimal cutsets. IEEE Transactions
on Reliability, 50(4):389–396, 2001.

[17] A. Rauzy. Modes automata and their compilation into fault trees. Reliabil-
ity Engineering and System Safety, (78):1–12, 2002.

[18] R Reiter. A theory of diagnosis from first principles. Artif. Intell., 32(1):57–
95, 1987.

[19] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D.C.
Teneketzis. Failure diagnosis using discrete-event models. IEEE Trans-
actions on Control Systems Technology, 4(2):105–124, March 1996.

[20] Stefan Schwoon. A note on on-the-fly verification algorithms. In In Proc.
of TACAS’05, LNCS, pages 174–190. Springer-Verlag, 2005.

	Introduction
	What is a failure scenario ?
	Failure scenarios of an AltaRica model
	Organization of the paper

	An observer based algorithm
	Principle of an observer
	Visible events
	How visible global events are specified ?
	Global or elementary events ?

	An observer to compute set of cuts
	Observation of sequences
	Description of the algorithm
	Memorizing when events occurs

	Implementation

	Residual Language Decision Diagrams
	Residual languages and RLDDs
	Basic operations on RLDDs
	Minimal words
	A decomposition theorem for sub-words
	Application to RLDDs

	Complexity

	Minimal cuts and minimal sequences
	A brief introduction to DDs
	Sequence and minimal sequences
	Minimal cuts

	Reduction of models
	Principles of the reduction
	Constraint Automata
	Dependencies between variables
	Reduction using functional dependencies
	Computation of functional dependencies
	Example

	Experiments
	The cuts command
	Experimental results
	Industrial model
	Model-checking models

	Conclusion

