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Abstract

Background

Throughout evolution, mutations in particular regions of some protein structures have
resulted in extra covalent bonds that increase the overall robustness of the fold:
disulfide bonds. The two strategically placed cysteines can also have a more direct role
in protein function, either by assisting thiol or disulfide exchange, or through allosteric
effects. In this work, we verified how the structural similarities between disulfides can
reflect functional and evolutionary relationships between different proteins. We
analyzed the conformational patterns of the disulfide bonds in a set of disulfide-rich
proteins that included twelve SCOP superfamilies: thioredoxin-like and eleven
superfamilies containing small disulfide-rich proteins (SDP).

Results

The twenty conformations considered in the present study were characterized by both
structural and energetic parameters. The corresponding frequencies present diverse
patterns for the different superfamilies. The least-strained conformations are more
abundant for the SDP superfamilies, while the “catalytic” +/-RHook is dominant for the
thioredoxin-like superfamily. The “allosteric” —RHSaple is moderately abundant for BBI,
Crisp and thioredoxin-like superfamilies and less frequent for the remaining
superfamilies. Using a hierarchical clustering analysis we found that the twelve
superfamilies were grouped in biologically significant clusters.

Conclusions

In this work, we carried out an extensive statistical analysis of the conformational

motifs for the disulfide bonds present in a set of disulfide-rich proteins. We show that



the conformational patterns observed in disulfide bonds are sufficient to group
proteins that share both functional and structural patterns and can therefore be used

as a criterion for protein classification.

Keywords: Disulfide bond, conformer, cluster analysis, protein classification.



Introduction

Disulfide bonds are a common motif in Nature. These structural elements have a
significant role in the thermal stability and function of proteins (Bhattacharyya et al.,
2004; Creighton, 1988; Hogg, 2003; Klink et al., 2000; Sardiu et al., 2007). From an
evolutionary perspective, these bonds are a relatively recent addition to protein
structure (Brooks and Fresco, 2002; Brooks et al., 2002; Jordan et al., 2005; Schmidt
and Hogg, 2007) According to the respective functions, the disulfide bonds can then be
classified as structural, catalytic or allosteric (Schmidt et al., 2006; Schmidt and Hogg,
2007). Schmidt et a/ (2006) have performed a thorough analysis of disulfides present in
the X-ray structures of the PDB database, and found that both catalytic and allosteric
disulfides fell into particular structural categories. The two groups had a higher
average potential energy, which reflected their functional role that implied easy bond
breaking (Schmidt et al., 2006).

The disulfide three-dimensional structure is highly conserved in Nature and has been
used for protein clustering (Cheek et al., 2006; Chuang et al., 2003; Harrison and
Sternberg, 1996; Thangudu et al., 2007). Different schemes have been introduced to
classify the disulfide conformers (Harrison and Sternberg, 1996; Hutchinson and
Thornton, 1996; Ozhogina and Bominaar, 2009; Schmidt et al., 2006; Srinivasan et al.,
1990) and in this work we adopted the scheme proposed by Schmidt et al (2006). We
analyzed a sample of disulfide bonds associated with a protein set extracted from
SCOP data base (Andreeva et al., 2004; Andreeva et al., 2008; Murzin et al., 1995). The
protein set included eleven superfamilies of small disulfide-rich proteins (SDP) and the

thioredoxin-like super-family. Each superfamily selected for the protein set had to fit



the following criteria: (i) contain a minimum of thirty disulfide bonds, (ii) have a
minimum of five PDB structures available, (iii) have X-ray structures with a resolution
higher than 2.5 A and (iv) have only uncomplexed structures. In order to understand
whether or not the structure of the disulfides reflected functional or evolutionary
relationships between the different proteins, we grouped the disulfide from the 12
superfamilies in different clusters using a Hierarchical Clustering Analysis (HCA) and a
structural-based distance protocol. The results demonstrate that the clusters’
aggregate superfamilies share both functional and structural patterns, therefore we
conclude that the use of disulfide bonds conformational patterns is a valid protein

classification criterion.

Methodology

The scheme used in this work to classify the disulfide conformers was based on five
relevant torsion angles (Figure 1). The disulfide species were treated as symmetrical. In
this context, only twenty conformational categories had to be considered (Table 1). For
example the -RHHook conformational category can be obtained by either
combinations of torsion angles (-,+,+,-,-) or (-,-,+,+,-). This classification was based on
structural patterns (Schmidt et a/, 2006) that included main, orientational and
peripheral motifs (Table 2).

[Insert Figure 1]

[Insert Table 1]

[Insert Table 2]



Representative structures for the different conformational categories are presented in
Tables 3 to 5.

[Insert Table 3]

[Insert Table 4]

[Insert Table 5]
The protein set under study is characterized in Table 6. We determined the five
relevant torsion angles (x1, X2, %3, %2 and yx1’) for each disulfide bond. Additionally, the
(Co-Co” and Cp-Cg’) distances and the dihedral strain energy (DSE) were also evaluated.

[Insert Table 6]
The DSE quantity was expressed, as a function of the five above-mentioned torsion
angles, by the empirical equation (Katz and Kossiakoff, 1986; Weiner et al., 1984):

DSE(kJmol ™) =8.37(1+cos(3y,))+8.37(1+cos(3x,"))+
4.18(1+cos(3y,))+4.18(1 +cos(3yx,"))+ (1)
14.64(1+cos(2y;))+2.51(1 +cos(3x;))

The DSE quantity provided a useful ranking of the most favored disulfide
conformations. The minimum (2.5 kJ mol™) and the maximum (84.5 kJ mol™) values of
DSE correspond to the torsion angles combinations (602, 602, +832, 602, 602) and (09,
09, 09, 09, 09), respectively (Schmidt et al, 2006). Despite its simplicity, this equation
has been successfully applied for a semi-quantitative evaluation of the strain energy in
disulfide bonds (Schmidt et al., 2006; Schmidt and Hogg, 2007).

Representative conformations of the different types of disulfide bonds (structural,
catalytic or allosteric) are identified in Table 7. We will be referring to bonds with the

conformations +/-RHHook as “catalytic”, and -RHStaple as “allosteric”, because these



two types of bonds were found to be intimately associated with those conformational
categories (Schmidt et al., 2006).
A computer program, designated by Disulph, was developed to perform the
calculations. The disulfide bonds propensity Pry, for a superfamily A with np, PDB
structures, was calculated as,

np 4

Pry z(l/npA)Zlooxnssk/nresk , (2)
k=1

where nss, and nresy were respectively the number of disulfide bonds and the number
of coded residues in the PDB structure k. This quantity evaluates the frequency of the
disulfide bonds within a superfamily. It is calculated as the average frequency

associated with a correspondent sample of PDB structures.

The frequencies associated with all the conformational categories, defined in Table 1,

were then evaluated for each super-family and for the sample. These quantities were
used to build a square Euclidean distances matrix, whose elements (d;, ....(4,B))

were defined as:
20
2 . . 2
43 ctidian(4B) = D (freq(i, 4) = freq(i, B)*; A=1, .., 12 and B=1, ..., 12 (3)
i=1
In equation (3), freq(i,A) and freq(i,B) are respectively the frequency of conformational
category i in the superfamilies A and B. The square Euclidean distances matrix defines
a metric for evaluating the similarities between objects in n-dimensional spaces and

therefore can be used in cluster analysis.



In order to represent this matrix, we adopted the intuitive formalism introduced by
(Xie et al., 2000). The coordinates of the original objects (the twelve superfamiles)

were projected in the 3D Cartesian space by minimizing the square deviation cost

function SD:
12 A-1
SD = Z Z(d(A’B) B dl%uclidian (A’B))z ! (4)
A=1B=1

where d(A,B) was the distance between the projections the superfamilies A and B in
the 3D Cartesian space. We used the Newton method to carry out the iterative
minimization process. The procedure associated with equation (4) was introduced for
visualizing large chemical databases (Xie et al., 2000). The minimization of this
equation provided an appropriate representation of the original high-space of the

chemical descriptors in a low dimensional space (2D or 3D).

The square Euclidean distances matrix was then used for a HCA procedure (Johnson
and Wichern, 2007), which provided a classification of the superfamilies in different
clusters. We evaluated the consistency of the HCA partitioning, by the evaluation of
the square Euclidean distances matrix in the cluster space. The elements of this matrix

were all the mean-square distances between a cluster C; with ne. superfamilies and a
1

(C,-,Cj) ) and within a cluster G;

cluster C; with nc . superfamilies (MSdlzi'uclidean
J

( MSd> (C))):

Euclidean

e,
ne; ¢y

2 2
MSdEuclidian (&2 Cj) - (1/(nci X an )x Z Z dEuclidian (4,B) (5)
A=1B=1



nCi A-1
2 2
MSA G, tiian (C1) = 2 nc, xne DX D" dp i (4 B) (6)

A=1B=1
This matrix was defined according to the mean linkage criterion within the HCA
procedure (Johnson and Wichern, 2007). The dissimilarity between two clusters C;and

G increased with the increasing of the correspondent non-diagonal element

(MSaf2 (Ci,Cj) ). On the other hand, the similarity within a cluster C; increases

Euclidean

with the decreasing of the correspondent diagonal element (MSdlzfuclidean (C)).

In this work we used the HCA divisive method which partitioned successively an initial

set with n objects into finer clusters. The correspondent algorithm was the following:

(i Assign the n objects to a single cluster.

(ii) Compute a distance matrix in the cluster space using an appropriate metric.
As was mentioned above, we adopted a square Euclidean metric in this
work.

(iii) Find the least similar objects and separate them in different clusters.

(iv) Repeat steps (ii) and (iii) until the diagonal elements of this matrix being

significantly smaller than the non-diagonal ones.

Results

The characterization of the disulfide conformational categories found in our sample is
presented in Table 7. The —LHSpiral is the most frequently observed category (28.9 %)

and has the lowest DSE (11.5 k) mol™). Additionally, six least strained categories (-



LHSpiral, +/-RHSpiral, +/-LHSpiral, -RHSpiral, +RHSpiral and -/+RHHook) are clearly
prevalent (63.1 %) relative to the remainder of the most strained categories (36.9 %).
The representative conformations for catalytic (+/-RHHook) and allosteric (-RHStaple)
disulfide bonds have moderate DSE values. We found the d(C,-C,') distances to be
more relevant for disulfide conformational specificities than the d(Cg-Cg') distances
(Table 7). The d(C4-C,') distances were quite insensitive to the nature of
conformational categories (varies from 3.3 Ato4.0 ,&), while the d(Cp-Cp') distances
had a significant variation over the series (from 4.4 Ato6.0 /f\). For instance, in
agreement with Schmidt et al (2006), the —RHStaple conformation was characterized
by significant lower d(C4-C,') distances than the other conformational categories.

[Insert Table 7]

[Insert Table 8]

[Insert Figure 2]
The frequencies for the different conformational categories, calculated for each
superfamily, are presented in Table 8 and Figure 2. From this figure, it is evident that
thioredoxin-like and SDP superfamilies exhibit very distinct conformational patterns.
The least strained conformations are significantly abundant in SDP superfamilies
present significant abundances (from 43.4 % to 86.5 %), but occur at a very low
frequency in thioredoxin-like superfamily (13.8 %). This is obvious for the most stable
conformation (—LHSpiral) for which the SDP superfamilies present frequencies at least
four times larger than the thioredoxin-like frequency (from 12.1 % to 43.8 % against
3.1 %; Table 8 and Figure 2). Most of the disulfide bonds of thioredoxin-like

superfamily (50.8 %) are associated with the “catalytic” +/-RHHook conformation,



whereas this is relatively rare (from 0.0 % to 7.7 %) for the SDP superfamilies (Table 8
and Figure 2). On the other hand, the “allosteric” —RHSaple is moderately abundant for
BBI (24.2 %), Crisp (24.1 %) and thioredoxin-like (16.9 %) superfamilies and scarce
(from 0.0 % to 5.7 %) for the remainder superfamilies.

[Insert Figure 3]
Further insight into how the structural similarities between disulfides can reflect
relationships between different proteins was obtained with a HCA procedure, whose
dendrogram (Murtagh, 1984) is presented in Figure 3. The 3D-cartesian projection of
the respective square Euclidean distances matrix is represented in Figure 4 together
with the six clusters identified by this analysis. Four clusters reflect the main structural
and functional motifs identified in the sample:

o Cluster 1 includes the catalytic proteins of thioredoxin-like superfamily,
with the lowest disulfide propensities and a dominant o/} secondary
structure;

o Cluster 4 includes most of the metabolic superfamilies (Cystine-Knot,
EGF-Laminin and Plant lectins), with a dominant B secondary structure;

o Cluster 5 includes most of the toxin/defense superfamilies (Defensin-
like, omega toxins, small snake toxins and scorpions-like toxins), with
moderate to high disulfide propensities and a dominant 3 secondary
structure;

o Cluster 2 includes the plant protease inhibitors of BBI superfamily, with
high disulfide propensities and a dominant 3 secondary structure.

[Insert Figure 4]



The remainder two clusters reflect divergences from the mentioned motifs:

o Cluster 3 includes Crisp superfamily and is a divergence from cluster 5.
This cluster includes toxin/defense proteins with low disulfide
propensities and a dominant o secondary structure.

o Cluster 6 includes BPTI-like and Kringle-like superfamilies. This cluster is
the least well-characterized and includes proteins with small disulfide
propensities and different biological functions. The elements of this
cluster share more diffuse properties as (i) they are constrained by three
disulphide bonds with the same disulfide topology (1-6, 2-4 and 3-5) and
(ii) they are associated with the regulation of similar biological processes

(binding mediation, proteolytic activity, blood clotting, etc.).

We represent the Euclidean distances matrix for the cluster space in Table 9. From the
analysis of this Table, we can verify that the mean-square distances between the
clusters are significant larger than within the clusters. These results strongly indicate
that the HCA partitioning is consistent.

[Insert Table 9]

Conclusions

In this work, we carried out an extensive statistical analysis of the conformational
motifs for the disulfide bonds found in set of disulfide-rich proteins from twelve SCOP

superfamilies.



The frequencies of the twenty conformational categories provided a near-spectral
representation of the 12-dimension hyperspace under study. The general trends
observed in this sample were quite consistent with the results obtained by other
authors (Schmidt et al., 2006; Schmidt and Hogg, 2007) for three different protein sets.
We calculated the root mean-square deviations between our and the previously

obtained frequencies. The three values obtained were all lower than 2.6 %.

The HCA partitioning of the data using a square Euclidean distances matrix resulted in
a number of clusters, the majority of which aggregates superfamilies sharing both
functional and structural patterns. The only exception is cluster 6, whose elements
presented more diffuse connections. We therefore suggest the use of disulfide bonds
conformational patterns as a criterion in SDP classification, as well as to recognize
main divergences between SDP and other disulfide-rich superfamilies. However, the
generalized application of this methodology for protein classification has to be

subjected to further investigation.
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Figures captions

Figure 1: Graphical representation of the five torsion angles used to classify the

disulphide conformers.

Figure 2: Frequencies for the disulfide conformational categories.

Figure 3: Dendrogram for the hierarchical clustering analysis. The following notation
was adopted: (1) Crisp, (2) Cystine-Knot, (3) Defensin-like, (4) EGF-Laminin, (5) Omega
toxins, (6) Plant lectins, (7) Small snake toxins, (8) Scorpion-like toxins, (9) BBI, (10)

BPTI-like, (11) Kringle-like and (12) Thioredoxin-like.

Figure 4: .Projected 3-D Cartesian representation of the square Euclidean distances
matrix and clusters obtained by the hierarchical clustering analysis. The following
notation was adopted: (1) Crisp, (2) Cystine-Knot, (3) Defensin-like, (4) EGF-Laminin, (5)
Omega toxins, (6) Plant lectins, (7) Small snake toxins, (8) Scorpion-like toxins, (9) BBI,

(10) BPTI-like, (11) Kringle-like and (12) Thioredoxin-like.



Table 1. Classification of disulphide bonds in conformational categories (Schmidt et al,

2006).

Disulphide category” X1 X2 X3 X2 1
-LHSpiral - - - - -
-RHHook -+ o+ - -
+/-RHSpiral
+/-LHSpiral
-RHSpiral -+
+/-RHHook
+RHSpiral
-LHHook - - -
-/+RHHook - -+
-RHStaple - -+
+/-LHHook + - -
-/+LHHook - - -
+/-LHStaple + o+
-LHStaple -+ -
+LHSpiral +
+LHHook +

+RHHook + o+ o+ -

+ +
T

+ |+

+ |+

+ |+ |+ |+ |+
+

1
+ |+ [+ [+
1

+/-RHStaple

+LHStaple + -+ 4+

+RHStaple S T
*LH: Left-handed oriented; RH: Right-handed oriented; -: Negative
value for the respective torsion angle; +: Positive value for the
respective torsion angle.
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Table 2. Characteristic conformational motifs used for disulphide classification.

Spiral

Staple

Hook




Table 3. Representative structures for the spiral conformational categories.

-LHSpiral -RHSpiral
+LHSpiral +RHSpiral
+/-LHSpiral +/-RHSpiral




Table 4. Representative structures for the staple conformational categories.

-LHStaple

-RHStaple

+LHStaple

+RHStaple

+/-LHStaple

+/-RHStaplel




Table 5. Representative structures for the hook conformational categories.

é E
-LHHook -RHHook
Z, j\
+LHHook +RHHook
Q %
+/-LHHook +/-RHHook
‘{3\ ;
-/+LHHook -/4+RHHook

24
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Table 7. Average parameters for the disulphide bonds conformational categories in the
sample under study. Representative conformations for structural (-LHSpiral), catalytic

(+/-RHHook) and allosteric (-RHStaple) disulphide bonds are represented in bold.

Conformational category ~ Frequency DSE/kJ mol d(Co-Co')/A d(CB-Cﬁ')/A

-LHSpiral 28.9% 11.5 5.7 3.7
-RHHook 9.9% 25.0 5.7 4.0
+/-RHSpiral 8.6% 14.5 5.9 3.8
+/-LHSpiral 7.9% 17.9 6.0 3.7
-RHSpiral 7.0% 18.9 6.0 3.8
+/-RHHook 6.1% 19.4 5.3 3.8
+RHSpiral 6.0% 12.8 5.8 3.7
-LHHook 5.2% 37.0 5.7 4.1
-/+RHHook 4.7% 17.9 5.5 3.9
-RHStaple 4.0% 21.1 4.4 4.0
+/-LHHook 2.2% 26.8 5.9 4.0
-+LHHook 1.9% 32.7 6.1 4.0
+/-LHStaple 1.6% 30.3 5.0 3.7
-LHStaple 1.5% 31.4 5.5 39
+LHSpiral 1.4% 20.8 6.2 3.9
+LHHook 1.2% 29.3 5.9 3.8
+RHHook 0.7% 30.7 6.1 4.1
+/-RHStaple 0.6% 32.3 5.9 4.1
+LHStaple 0.4% 39.3 5.4 3.3
+RHStaple 0.1% 24.9 5.9 33
Least strained” 63.1% 15.6 5.8 3.8
Most strained 36.9% 28.6 5.6 39

"The six conformational categories with the smallest DSE have a grey background.
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Table 9. Square Euclidian distances matrix for the cluster space.

Cluster

1

2

3

4

5

6

1

AN N B W

0.00%
34.89%
40.29%
45.79%
32.03%
44.03%

34.89%
0.00%
8.77%

25.38%
13.42%

21.20%

40.29%
8.77%
0.00%
12.00%
11.24%
12.72%

45.79%
25.38%
12.00%
6.18%
19.99%
24.61%

32.03%
13.42%
11.24%
19.99%
3.98%
19.42%

44.03%
21.20%
12.72%
24.61%
19.42%

1.83%
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