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Background

Throughout evolution, mutations in particular regions of some protein structures have resulted in extra covalent bonds that increase the overall robustness of the fold: disulfide bonds. The two strategically placed cysteines can also have a more direct role in protein function, either by assisting thiol or disulfide exchange, or through allosteric effects. In this work, we verified how the structural similarities between disulfides can reflect functional and evolutionary relationships between different proteins. We analyzed the conformational patterns of the disulfide bonds in a set of disulfideͲrich proteins that included twelve SCOP superfamilies: thioredoxinͲlike and eleven superfamilies containing small disulfideͲrich proteins (SDP).

Results

The twenty conformations considered in the present study were characterized by both structural and energetic parameters. The corresponding frequencies present diverse patterns for the different superfamilies. The leastͲstrained conformations are more abundant for the SDP superfamilies, while the "catalytic" +/ͲRHook is dominant for the thioredoxinͲlike superfamily. The "allosteric" -RHSaple is moderately abundant for BBI, Crisp and thioredoxinͲlike superfamilies and less frequent for the remaining superfamilies. Using a hierarchical clustering analysis we found that the twelve superfamilies were grouped in biologically significant clusters.

Conclusions

In this work, we carried out an extensive statistical analysis of the conformational motifs for the disulfide bonds present in a set of disulfideͲrich proteins. We show that the conformational patterns observed in disulfide bonds are sufficient to group proteins that share both functional and structural patterns and can therefore be used as a criterion for protein classification.

Introduction

Disulfide bonds are a common motif in Nature. These structural elements have a significant role in the thermal stability and function of proteins [START_REF] Bhattacharyya | Disulfide bonds, their stereospecific environment and conservation in protein structures[END_REF][START_REF] Creighton | Disulfide bonds and protein stability[END_REF][START_REF] Hogg | Disulfide bonds as switches for protein function[END_REF][START_REF] Klink | Contribution of disulfide bonds to the conformational stability and catalytic activity of ribonuclease A[END_REF][START_REF] Sardiu | CysteineͲcysteine contact preference leads to targetͲfocusing in protein folding[END_REF]. From an evolutionary perspective, these bonds are a relatively recent addition to protein structure (Brooks and Fresco, 2002;Brooks et al., 2002;[START_REF] Jordan | A universal trend of amino acid gain and loss in protein evolution[END_REF][START_REF] Schmidt | Search for allosteric disulfide bonds in NMR structures[END_REF] According to the respective functions, the disulfide bonds can then be classified as structural, catalytic or allosteric [START_REF] Schmidt | Allosteric disulfide bonds[END_REF][START_REF] Schmidt | Search for allosteric disulfide bonds in NMR structures[END_REF]. [START_REF] Schmidt | Allosteric disulfide bonds[END_REF] have performed a thorough analysis of disulfides present in the XͲray structures of the PDB database, and found that both catalytic and allosteric disulfides fell into particular structural categories. The two groups had a higher average potential energy, which reflected their functional role that implied easy bond breaking [START_REF] Schmidt | Allosteric disulfide bonds[END_REF].

The disulfide threeͲdimensional structure is highly conserved in Nature and has been used for protein clustering [START_REF] Cheek | Structural classification of small, disulfideͲ rich protein domains[END_REF][START_REF] Chuang | Relationship between protein structures and disulfide bonding patterns[END_REF][START_REF] Harrison | The disulphide betaͲcross: From cystine geometry and clustering to classification of small disulphideͲrich protein folds[END_REF][START_REF] Thangudu | Analycys: A database for conservation and conformation of disulphide bonds in homologous protein domains[END_REF]. Different schemes have been introduced to classify the disulfide conformers [START_REF] Harrison | The disulphide betaͲcross: From cystine geometry and clustering to classification of small disulphideͲrich protein folds[END_REF][START_REF] Hutchinson | PROMOTIF Ͳ A program to identify and analyze structural motifs in proteins[END_REF][START_REF] Ozhogina | Characterization of the kringle fold and identification of a ubiquitous new class of disulfide rotamers[END_REF][START_REF] Schmidt | Allosteric disulfide bonds[END_REF][START_REF] Srinivasan | Conformations of disulfide bridges in proteins[END_REF] and in this work we adopted the scheme proposed by [START_REF] Schmidt | Allosteric disulfide bonds[END_REF]. We analyzed a sample of disulfide bonds associated with a protein set extracted from SCOP data base [START_REF] Andreeva | SCOP database in 2004: refinements integrate structure and sequence family data[END_REF][START_REF] Andreeva | Data growth and its impact on the SCOP database: new developments[END_REF][START_REF] Murzin | SCOP Ͳ A structural classification of proteins database for the investigation of sequences and structures[END_REF]. The protein set included eleven superfamilies of small disulfideͲrich proteins (SDP) and the thioredoxinͲlike superͲfamily. Each superfamily selected for the protein set had to fit the following criteria: (i) contain a minimum of thirty disulfide bonds, (ii) have a minimum of five PDB structures available, (iii) have XͲray structures with a resolution higher than 2.5 Å and (iv) have only uncomplexed structures. In order to understand whether or not the structure of the disulfides reflected functional or evolutionary relationships between the different proteins, we grouped the disulfide from the 12 superfamilies in different clusters using a Hierarchical Clustering Analysis (HCA) and a structuralͲbased distance protocol. The results demonstrate that the clusters' aggregate superfamilies share both functional and structural patterns, therefore we conclude that the use of disulfide bonds conformational patterns is a valid protein classification criterion.

Methodology

The scheme used in this work to classify the disulfide conformers was based on five relevant torsion angles (Figure 1). The disulfide species were treated as symmetrical. In this context, only twenty conformational categories had to be considered (Table 1). For example the -RHHook conformational category can be obtained by either combinations of torsion angles (Ͳ,+,+,Ͳ,Ͳ) or (Ͳ,Ͳ,+,+,Ͳ). This classification was based on structural patterns [START_REF] Schmidt | Allosteric disulfide bonds[END_REF] that included main, orientational and peripheral motifs (Table 2).

[Insert Figure 1]

[Insert Table 1] [Insert Table 2]
Representative structures for the different conformational categories are presented in Tables 3 to 5.

[Insert Table 3] [Insert Table 4] [Insert Table 5] The protein set under study is characterized in Table 6. We determined the five relevant torsion angles (F 1 , F 2 , F 3 , F 2 ' and F 1 ') for each disulfide bond. Additionally, the (C D ͲC D ' and C E ͲC E ') distances and the dihedral strain energy (DSE) were also evaluated.

[Insert Table 6]

The DSE quantity was expressed, as a function of the five aboveͲmentioned torsion angles, by the empirical equation [START_REF] Katz | The crystallographically determined structures of atypical strained disulfides engineered into subtilisin[END_REF][START_REF] Weiner | A new forceͲfield for molecular mechanical simulation of nucleicͲacids and proteins[END_REF]:
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The DSE quantity provided a useful ranking of the most favored disulfide conformations. The minimum (2.5 kJ mol Ͳ1 ) and the maximum (84.5 kJ mol Ͳ1 ) values of DSE correspond to the torsion angles combinations (60º, 60º, ±83º, 60º, 60º) and (0º, 0º, 0º, 0º, 0º), respectively [START_REF] Schmidt | Allosteric disulfide bonds[END_REF]. Despite its simplicity, this equation has been successfully applied for a semiͲquantitative evaluation of the strain energy in disulfide bonds [START_REF] Schmidt | Allosteric disulfide bonds[END_REF][START_REF] Schmidt | Search for allosteric disulfide bonds in NMR structures[END_REF].

Representative conformations of the different types of disulfide bonds (structural, catalytic or allosteric) are identified in Table 7. We will be referring to bonds with the conformations +/ͲRHHook as "catalytic", and ͲRHStaple as "allosteric", because these two types of bonds were found to be intimately associated with those conformational categories [START_REF] Schmidt | Allosteric disulfide bonds[END_REF].

A computer program, designated by Disulph, was developed to perform the calculations. The disulfide bonds propensity Pr A , for a superfamily A with np A PDB structures, was calculated as,
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where nss k and nres k were respectively the number of disulfide bonds and the number of coded residues in the PDB structure k. This quantity evaluates the frequency of the disulfide bonds within a superfamily. It is calculated as the average frequency associated with a correspondent sample of PDB structures.

The frequencies associated with all the conformational categories, defined in Table 1, were then evaluated for each superͲfamily and for the sample. These quantities were used to build a square Euclidean distances matrix, whose elements ( ) , (

2 B A d Euclidean )
were defined as:
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In equation ( 3), freq(i,A) and freq(i,B) are respectively the frequency of conformational category i in the superfamilies A and B. The square Euclidean distances matrix defines a metric for evaluating the similarities between objects in nͲdimensional spaces and therefore can be used in cluster analysis.

In order to represent this matrix, we adopted the intuitive formalism introduced by [START_REF] Xie | An efficient projection protocol for chemical databases: Singular value decomposition combined with truncatedͲNewton minimization[END_REF]. The coordinates of the original objects (the twelve superfamiles)

were projected in the 3D Cartesian space by minimizing the square deviation cost
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where d(A,B) was the distance between the projections the superfamilies A and B in the 3D Cartesian space. We used the Newton method to carry out the iterative minimization process. The procedure associated with equation ( 4) was introduced for visualizing large chemical databases [START_REF] Xie | An efficient projection protocol for chemical databases: Singular value decomposition combined with truncatedͲNewton minimization[END_REF]. The minimization of this equation provided an appropriate representation of the original highͲspace of the chemical descriptors in a low dimensional space (2D or 3D).

The square Euclidean distances matrix was then used for a HCA procedure [START_REF] Johnson | Applied Multivariate Statistical Analysis[END_REF], which provided a classification of the superfamilies in different clusters. We evaluated the consistency of the HCA partitioning, by the evaluation of the square Euclidean distances matrix in the cluster space. The elements of this matrix were all the meanͲsquare distances between a cluster C i with i C n superfamilies and a cluster C j with j C n superfamilies ( ) , (
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This matrix was defined according to the mean linkage criterion within the HCA procedure [START_REF] Johnson | Applied Multivariate Statistical Analysis[END_REF]. The dissimilarity between two clusters C i and C j increased with the increasing of the correspondent nonͲdiagonal element ( ) , (

2 j i Euclidean C C MSd
). On the other hand, the similarity within a cluster C i increases with the decreasing of the correspondent diagonal element (
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In this work we used the HCA divisive method which partitioned successively an initial set with n objects into finer clusters. The correspondent algorithm was the following:

(i) Assign the n objects to a single cluster.

(ii) Compute a distance matrix in the cluster space using an appropriate metric.

As was mentioned above, we adopted a square Euclidean metric in this work.

(iii) Find the least similar objects and separate them in different clusters.

(iv) Repeat steps (ii) and (iii) until the diagonal elements of this matrix being significantly smaller than the nonͲdiagonal ones.

Results

The characterization of the disulfide conformational categories found in our sample is presented in Table 7. The -LHSpiral is the most frequently observed category (28.9 %) and has the lowest DSE (11.5 kJ mol Ͳ1 ). Additionally, six least strained categories (Ͳ LHSpiral, +/ͲRHSpiral, +/ͲLHSpiral, ͲRHSpiral, +RHSpiral and Ͳ/+RHHook) are clearly prevalent (63.1 %) relative to the remainder of the most strained categories (36.9 %).

The representative conformations for catalytic (+/ͲRHHook) and allosteric (ͲRHStaple) disulfide bonds have moderate DSE values. We found the d(C D ͲC D ') distances to be more relevant for disulfide conformational specificities than the d(C E ͲC E ') distances (Table 7). The d(C D ͲC D ') distances were quite insensitive to the nature of conformational categories (varies from 3.3 to 4.0 ), while the d(C E ͲC E ') distances had a significant variation over the series (from 4.4 to 6.0 ). For instance, in agreement with [START_REF] Schmidt | Allosteric disulfide bonds[END_REF], the -RHStaple conformation was characterized by significant lower d(C D ͲC D ') distances than the other conformational categories.

[Insert Table 7]

[Insert Table 8] [Insert Figure 2]
The frequencies for the different conformational categories, calculated for each superfamily, are presented in Table 8 and Figure 2. From this figure, it is evident that thioredoxinͲlike and SDP superfamilies exhibit very distinct conformational patterns.

The least strained conformations are significantly abundant in SDP superfamilies present significant abundances (from 43.4 % to 86.5 %), but occur at a very low frequency in thioredoxinͲlike superfamily (13.8 %). This is obvious for the most stable conformation (-LHSpiral) for which the SDP superfamilies present frequencies at least four times larger than the thioredoxinͲlike frequency (from 12.1 % to 43.8 % against 3.1 %; Table 8 and Figure 2). Most of the disulfide bonds of thioredoxinͲlike superfamily (50.8 %) are associated with the "catalytic" +/ͲRHHook conformation, whereas this is relatively rare (from 0.0 % to 7.7 %) for the SDP superfamilies (Table 8 and Figure 2). On the other hand, the "allosteric" -RHSaple is moderately abundant for BBI (24.2 %), Crisp (24.1 %) and thioredoxinͲlike (16.9 %) superfamilies and scarce (from 0.0 % to 5.7 %) for the remainder superfamilies.

[Insert Figure 3] Further insight into how the structural similarities between disulfides can reflect relationships between different proteins was obtained with a HCA procedure, whose dendrogram [START_REF] Murtagh | Counting dendrograms Ͳ A survey[END_REF] o Cluster 2 includes the plant protease inhibitors of BBI superfamily, with high disulfide propensities and a dominant E secondary structure.

[Insert Figure 4]

The remainder two clusters reflect divergences from the mentioned motifs:

o Cluster 3 includes Crisp superfamily and is a divergence from cluster 5.

This cluster includes toxin/defense proteins with low disulfide propensities and a dominant D secondary structure.

o Cluster 6 includes BPTIͲlike and KringleͲlike superfamilies. This cluster is the least wellͲcharacterized and includes proteins with small disulfide propensities and different biological functions. The elements of this cluster share more diffuse properties as (i) they are constrained by three disulphide bonds with the same disulfide topology (1Ͳ6, 2Ͳ4 and 3Ͳ5) and

(ii) they are associated with the regulation of similar biological processes (binding mediation, proteolytic activity, blood clotting, etc.).

We represent the Euclidean distances matrix for the cluster space in Table 9. From the analysis of this Table , we can verify that the meanͲsquare distances between the clusters are significant larger than within the clusters. These results strongly indicate that the HCA partitioning is consistent.

[Insert Table 9]

Conclusions

In this work, we carried out an extensive statistical analysis of the conformational motifs for the disulfide bonds found in set of disulfideͲrich proteins from twelve SCOP superfamilies.

The frequencies of the twenty conformational categories provided a nearͲspectral representation of the 12Ͳdimension hyperspace under study. The general trends observed in this sample were quite consistent with the results obtained by other authors [START_REF] Schmidt | Allosteric disulfide bonds[END_REF][START_REF] Schmidt | Search for allosteric disulfide bonds in NMR structures[END_REF] for three different protein sets.

We calculated the root meanͲsquare deviations between our and the previously obtained frequencies. The three values obtained were all lower than 2.6 %.

The HCA partitioning of the data using a square Euclidean distances matrix resulted in a number of clusters, the majority of which aggregates superfamilies sharing both functional and structural patterns. The only exception is cluster 6, whose elements presented more diffuse connections. We therefore suggest the use of disulfide bonds conformational patterns as a criterion in SDP classification, as well as to recognize main divergences between SDP and other disulfideͲrich superfamilies. However, the generalized application of this methodology for protein classification has to be subjected to further investigation. Table 1. Classification of disulphide bonds in conformational categories [START_REF] Schmidt | Allosteric disulfide bonds[END_REF].
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LeftͲhanded oriented; RH: RightͲhanded oriented; Ͳ: Negative value for the respective torsion angle; +: Positive value for the respective torsion angle.

Table 2. Characteristic conformational motifs used for disulphide classification.
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Superfamily

o

  is presented in Figure 3. The 3DͲcartesian projection of the respective square Euclidean distances matrix is represented in Figure 4 together with the six clusters identified by this analysis. Four clusters reflect the main structural and functional motifs identified in the sample: o Cluster 1 includes the catalytic proteins of thioredoxinͲlike superfamily, with the lowest disulfide propensities and a dominant D/E secondary structure; Cluster 4 includes most of the metabolic superfamilies (CystineͲKnot, EGFͲLaminin and Plant lectins), with a dominant E secondary structure; o Cluster 5 includes most of the toxin/defense superfamilies (DefensinͲ like, omega toxins, small snake toxins and scorpionsͲlike toxins), with moderate to high disulfide propensities and a dominant E secondary structure;

Figure 1 :

 1 Figure 1: Graphical representation of the five torsion angles used to classify the

Figure 2 :

 2 Figure 2: Frequencies for the disulfide conformational categories.

Figure 3 :

 3 Figure 3: Dendrogram for the hierarchical clustering analysis. The following notation

Figure 4 :

 4 Figure 4: .Projected 3ͲD Cartesian representation of the square Euclidean distances

Table 3 .

 3 Representative structures for the spiral conformational categories.

	-LHSpiral	-RHSpiral
	+LHSpiral	+RHSpiral
	+/-LHSpiral	+/-RHSpiral

Table 4 .

 4 Representative structures for the staple conformational categories.

	-LHStaple	-RHStaple
	+LHStaple	+RHStaple
	+/-LHStaple	+/-RHStaplel

Table 5 .

 5 Representative structures for the hook conformational categories.

	-LHHook	-RHHook
	+LHHook	+RHHook
	+/-LHHook	+/-RHHook
	-/+LHHook	-/+RHHook

Table 6 .

 6 Characterization of the protein set under study. The sample used in the statistical analyses is considered to include all the disulphide bonds identified in this protein set.

Table 7 .

 7 Average parameters for the disulphide bonds conformational categories in the sample under study. Representative conformations for structural (-LHSpiral), catalytic (+/-RHHook) and allosteric (-RHStaple) disulphide bonds are represented in bold.

	Conformational category Frequency DSE/kJ mol -1 d(C D -C D ')/ǖ d(C E -C E ')/ǖ
	-LHSpiral	28.9%	11.5	5.7	3.7
	-RHHook	9.9%	25.0	5.7	4.0
	+/-RHSpiral	8.6%	14.5	5.9	3.8
	+/-LHSpiral	7.9%	17.9	6.0	3.7
	-RHSpiral	7.0%	18.9	6.0	3.8
	+/-RHHook	6.1%	19.4	5.3	3.8
	+RHSpiral	6.0%	12.8	5.8	3.7
	-LHHook	5.2%	37.0	5.7	4.1
	-/+RHHook	4.7%	17.9	5.5	3.9
	-RHStaple	4.0%	21.1	4.4	4.0
	+/-LHHook	2.2%	26.8	5.9	4.0
	-/+LHHook	1.9%	32.7	6.1	4.0
	+/-LHStaple	1.6%	30.3	5.0	3.7
	-LHStaple	1.5%	31.4	5.5	3.9
	+LHSpiral	1.4%	20.8	6.2	3.9
	+LHHook	1.2%	29.3	5.9	3.8
	+RHHook	0.7%	30.7	6.1	4.1
	+/-RHStaple	0.6%	32.3	5.9	4.1
	+LHStaple	0.4%	39.3	5.4	3.3
	+RHStaple	0.1%	24.9	5.9	3.3
	Least strained #	63.1%	15.6	5.8	3.8
	Most strained	36.9%	28.6	5.6	3.9
	# The six conformational categories with the smallest DSE have a grey background.

Table 8 .

 8 frequencies for the different conformational categories.

	35.2%
	-LHSpiral

43.8% 26.4% 46.1% 13.8% 29.0% 27.3% 28.3% 12.1% 28.6% 32.7% 3.1% 28.9%

  

	Sample		9.9%	8.6%	7.9%	7.0%	6.1%	6.0%	5.2%	4.7%	4.0%	2.2%	1.9%	1.6%	1.5%	1.4%	1.2%	0.7%	0.6%	0.4%	0.1%
	12		10.8%	1.5%	6.2%	1.5%		1.5%	1.5%	0.0%	16.9%	3.1%	0.0%	3.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	11		3.8%	3.8%	30.8%	1.9%	0.0%	1.9%	3.8%	15.4%	0.0%	1.9%	0.0%	1.9%	0.0%	0.0%	0.0%	1.9%	0.0%	0.0%	0.0%
	10		4.8%	4.8%	19.0%	4.8%	2.4%	0.0%	2.4%	23.8%	0.0%	0.0%	0.0%	0.0%	9.5%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	9		0.0%	3.0%	0.0%	21.2%	0.0%	0.0%	6.1%	12.1%	24.2%	0.0%	0.0%	6.1%	6.1%	0.0%	6.1%	0.0%	3.0%	0.0%	0.0%
	8		9.3%	12.1%	2.8%	3.2%	7.7%	9.7%	10.1%	4.9%	0.4%	2.0%	2.4%	0.0%	1.6%	1.2%	1.2%	1.2%	0.8%	0.8%	0.0%
	7		6.7%	3.8%	4.3%	17.2%	2.9%	12.9%	5.3%	2.9%	2.4%	2.9%	3.8%	1.4%	1.0%	1.0%	2.4%	0.5%	1.4%	0.0%	0.0%
	6		24.0%	20.0%	22.0%	0.0%	0.0%	4.0%	1.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	5		20.7%	8.0%	2.3%	3.4%	2.3%	4.6%	5.7%	11.5%	4.6%	5.7%	3.4%	10.3%	2.3%	1.1%	0.0%	0.0%	0.0%	0.0%	0.0%
	4		8.7%	5.2%	9.6%	2.6%	3.5%	3.5%	6.1%	1.7%	1.7%	1.7%	0.0%	0.0%	0.9%	0.0%	2.6%	1.7%	0.9%	2.6%	0.9%
	3		18.9%	7.5%	3.8%	3.8%	3.8%	1.9%	7.5%	0.0%	5.7%	9.4%	5.7%	0.0%	3.8%	0.0%	1.9%	0.0%	0.0%	0.0%	0.0%
	2		5.4%	14.3%	4.5%	9.8%	3.6%	3.6%	1.8%	0.0%	0.0%	0.0%	1.8%	0.9%	0.9%	8.9%	0.0%	0.9%	0.0%	0.0%	0.0%
	1		0.0%	7.4%	11.1%	14.8%	0.0%	0.0%	0.0%	5.6%	24.1%	0.0%	0.0%	1.9%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Superfamily	Categorie	-RHHook	+/-RHSpiral	+/-LHSpiral	-RHSpiral	+/-RHHook	+RHSpiral	-LHHook	-/+RHHook	-RHStaple	+/-LHHook	-/+LHHook	+/-LHStaple	-LHStaple	+LHSpiral	+LHHook	+RHHook	+/-RHStaple	+LHStaple	+RHStaple

Table 9 .

 9 Square Euclidian distances matrix for the cluster space.

	Cluster	1	2	3	4	5	6
	1	0.00% 34.89% 40.29% 45.79% 32.03% 44.03%
	2	34.89% 0.00% 8.77% 25.38% 13.42% 21.20%
	3	40.29% 8.77% 0.00% 12.00% 11.24% 12.72%
	4	45.79% 25.38% 12.00% 6.18% 19.99% 24.61%
	5	32.03% 13.42% 11.24% 19.99% 3.98% 19.42%
	6	44.03% 21.20% 12.72% 24.61% 19.42% 1.83%
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