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Abstract

Individual-based models of self-propelled particles (SPPs) are a popular and

promising approach to explain features of the collective motion of animal

aggregations. Many models that capture some features of group motion

have been suggested but a common framework has yet to emerge. Key to

all of these models is the inclusion of “noise” or stochastic errors in the

individual behaviour of the SPPs. Here, we present a fully stochastic SPP

model in one dimension that demonstrates a new way of introducing noise

into SPP models whilst preserving emergent behaviours of previous models

such as coherent groups and spontaneous direction switching. This purely

individual-to-individual, local model is related to previous models in the

literature and can easily be extended to higher dimensions. Its coarse-grained

behaviour qualitatively reproduces recently reported locust movement data.
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We suggest that our approach offers an alternative to current reasoning about

model construction and has the potential to offer mechanistic explanations

for emergent properties of animal groups in nature.

Keywords: swarming, noise, coarse-graining, locusts, SPP model

1. Introduction1

Modelling the collective motion of animals remains a tantalising problem2

for scientists of a host of different disciplines. Both visually attractive and3

scientifically challenging, the concept remains useful because of its applicabil-4

ity to both animation (Reynolds, 1987) and control systems (Liu et al., 2003;5

Tanner et al., 2007) as well as the fundamental ecological understanding it6

brings (Sumpter, 2006). Many individual-based models have emerged in the7

last few decades that exploit advances in computational power to describe8

features seen in collective animal motion including group decision making9

(Couzin et al., 2005; Conradt and Roper, 2007), information flow (Sumpter10

et al., 2008) and response to predation (Wood and Ackland, 2007). This11

article focuses on the development of one-dimensional models that seek to12

describe some of the simplest observed features in collective motion. Such13

models are now known collectively as 1D self-propelled particle (SPP) mod-14

els.15

In recent years the biological relevance of these models has been demon-16

strated as a result of the development of novel, approximately one-dimensional,17

experimental systems. By constraining marching bands of locust nymphs to18

a specially constructed annular arena Buhl et al. (2006), and more recently19

Yates et al. (2009), have shown that these insects do indeed behave in a20
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manner that is qualitatively comparable to one-dimensional SPP models.21

In particular this work demonstrated that SPP models capture the sponta-22

neous turns of the locust bands, where the entire group reverses its direction23

of motion without external input. It is believed that the origin of these ob-24

servations lies in internal, or intrinsic, stochastic effects or “noise” which may25

or may not correspond to inaccuracy of the individual movements (e.g Buhl26

et al. (2006); Couzin et al. (2005)).27

Recently, the coarse-grained behaviour of 1D SPP models has been com-28

pared to locust movement in a more systematic way. From their study Yates29

et al. (2009) suggested that the insects respond to a decrease of group align-30

ment by increasing the noise in their movement. The importance of this31

finding is that the addition of simple noise terms is not necessarily sufficient32

to describe and explain collective motion in animals. However, despite its33

great importance the origin of this stochasticity is far from clear.34

In this research we focus exclusively on a simple one-dimensional SPP35

model, and show how a combination of an asynchronous updating scheme36

and a novel implementation of particle interactions can produce a coarse-37

grained behaviour which reproduces findings by Yates et al. (2009) in locust38

movement data. The novelty of our research lies in the fact that all noise in39

the system emerges from the algorithmic implementation of our model rather40

than being added to the movement of particles. We therefore work towards41

explaining the origin of stochasticity in animal collective motion using our42

modelling approach.43

First we give an overview of selected 1D SPP models described in previ-44

ous work and the results that they give. Second we introduce our modelling45
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approach. We then show that our model can produce stable groups and46

spontaneous direction switching and study the coarse-grained behaviour of47

our model via an equation-free approach using numerical simulations. We48

conclude by commenting on the potential of our modelling approach for inte-49

grating individual-level characteristics and describing motion in dimensions50

greater than one.51

2. SPP Models52

The first 1D SPP model simulated particles with a local aligning be-53

haviour on a continuous line with periodic boundary conditions (Czirók et al.,54

1999). In this model the individual and continuous velocities and positions55

are updated sequentially and simultaneously for all individuals. Particles56

tend to align with the average velocity of all particles within a fixed distance57

from them. This alignment is subject to a stochastic error in the form of uni-58

formly distributed noise which is explicitly added to the particles’ response59

to the average local velocity. An anti-symmetric function G is applied to the60

preferred velocity of individuals and introduces both propulsion and friction61

to the system. The individual velocities ui(t) are therefore updated as,62

ui(t+ 1) = G (〈u(t)〉
i
) + ξi, (1)

where 〈u〉
i
is the local average velocity for particle i and ξi is a random vari-63

able with uniform probability distribution over a finite interval [−η/2, η/2]64

(Czirók et al., 1999). The function G(z) is given by,65

G(z) =
1

2
(z + sgn(z)), (2)
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which sets the average of the individual speeds in the absence of particle66

interactions to magnitude 1 (Czirók et al., 1999). Analysis of the model67

has indicated that the average velocity of all particles undergoes a phase68

transition from an ordered state to a disordered state when the amplitude69

of the noise (η) or the particle density is varied (Czirók et al., 1999). Such70

phase transitions have also been observed for SPP models in two and three71

dimensions which suggests that some features of higher dimensional systems72

are preserved in 1D models (Vicsek et al., 1995; Chaté et al., 2008). For73

certain parameter values the model exhibits a fascinating direction switching74

behaviour - the average velocity of all particles in the system changes sign75

spontaneously and on a short time scale compared to longer intervals of76

sustained high absolute values of the average velocity. Several variants of77

this scheme to introduce noise have been published (Chaté et al., 2008).78

Another approach has been to implement SPP models on a one-dimensional79

lattice with periodic boundary conditions over which particles move with ve-80

locities +1 or −1 (O’Loan and Evans, 1999; Raymond and Evans, 2006). In81

the first model of this type particles align with the velocity of the majority82

of particles around them with a given probability (O’Loan and Evans, 1999).83

The magnitude of this probability is the first source of noise in the model.84

The second source of noise and an important aspect of the model related to85

this research is its asynchronous updating scheme. In each step only the posi-86

tion and velocity of one, randomly chosen particle are updated. Simulations87

of the model showed a phase transition from high to low average particle88

velocities for increasing sizes of the aligning probability. This is qualitatively89

similar to the phase transition exhibited by the model of Czirók et al. (1999).90
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This asynchronous 1D SPP lattice model was subsequently extended sig-91

nificantly by the inclusion of repulsion and attraction into the individual92

behaviour of the particles and the modification of the alignment behaviour93

(Raymond and Evans, 2006). The authors justified their implementation of94

the different behaviours by showing that they correspond qualitatively to95

taking random samples of neighbours (Raymond and Evans, 2006). This96

implementation results in two separate parameters which control the size of97

the error or noise in the reaction of individuals to their surrounding neigh-98

bours. One parameter controls the error arising from stochastically sampling99

the local group to determine the particle’s preferred direction and the other100

parameter introduces uncorrelated errors (Raymond and Evans, 2006).101

In summary, 1D SPP models show a wealth of emergent behaviours which102

have increasingly been compared to real collective animal motion. The way103

stochastic errors have been included into such models can roughly be di-104

vided into three categories. First, adding a random variable to the preferred105

direction of individuals (Czirók et al., 1999). Second, asynchronous and106

probabilistic updates (O’Loan and Evans, 1999; Raymond and Evans, 2006).107

Third, varying the probability and accuracy with which individuals execute108

their behavioural rules (O’Loan and Evans, 1999; Raymond and Evans, 2006).109

In the next section we will introduce our model which takes inspiration from110

the second and third approaches.111

3. Modelling approach112

In our model N individuals are represented by points on a continuous line113

and not by points on a lattice as in some of the models discussed above. The114
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individuals, indexed i, are characterised by their position xi and instanta-115

neous velocity θi and they react to their “neighbours” which are less than a116

distance rA away from them. We assume that each individual reacts with an117

identical stochastic rate to its surroundings. This defines an implicit master118

equation that in principle could be solved with a stochastic simulation algo-119

rithm (Gillespie, 1976). Instead, we exploit the identical rates and a simple120

particle picking approach to simulate the the system (O’Loan and Evans,121

1999). The algorithmic implementation of our model is as follows:122

1. Choose individual i at random, where i = 1, ..., N (equal probabilities,123

with replacement).124

2. If i has neighbours, choose a neighbour k of i at random (equal proba-125

bilities for all individuals within less than rA of i).126

3. Update xi and θi (based on the interaction between k and i or on127

previous θi if i has no neighbours).128

N realisations of steps (1) to (3) constitute one update step of length Δt129

time-steps (see also figure 1). The duration of this update step corresponds130

to the reciprocal value of the algorithmic rate at which individuals update.131

Small values of Δt imply rapid updates, while large values of Δt imply slow132

updates. The output of the model is obtained by recording the positions and133

velocities of all individuals every T = λΔt time-steps, where λ ≥ 1. This134

is analogous to how data of animal motion is obtained empirically where135

individual positions and orientations are sampled according to the frame136

rate of video recordings (Aoki, 1980; Buhl et al., 2006). In our simulations137

we keep T fixed and only vary Δt and therefore also λ.138
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Suppose individual i and a neighbour k of i have been chosen in the139

algorithm described above. The interaction between i and k depends on the140

distance d between the two individuals. If d ≤ rO < rA, i attempts to align141

with k and has desired velocity,142

θdesiredi = G(θk). (3)

If rO < d < rA individual i gets attracted to k and has desired velocity,143

θdesired
i

= G

(
sgn(xk − xi)

(
d− rO
rA − rO

+ 1

))
, (4)

where the fraction term in the argument is motivated by a distance rule such144

that at maximum distance maximal desired velocities are achieved. If i has145

no neighbours (there is no k such that d < rA), θ
desired
i is given by,146

θdesiredi = G(θi). (5)

The function G is given above in equation 2. Once θdesired
i

is determined, θi147

and xi are updated according to,148

new(θi) = θi + (θdesiredi − θi)Δt, (6)

new(xi) = xi + new(θi)Δt. (7)

In our model individuals react deterministically to the positions and mo-149

tion of randomly selected neighbours. In previous work (Huth and Wissel150

, 1992), it has been suggested that interactions with single individuals are151

not able to mimic the properties of animal collective motion in the same152

way as averaging over a number of individuals. However, viewed over time-153

scales larger than Δt, our algorithm is qualitatively equivalent to reacting in154
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a noisy way to a random sample of neighbours and our results below show155

that our simulations are comparable to empirical data. For a more detailed156

discussion on the biological plausibility and interpretation of our model we157

refer the reader to the discussion.158

The instantaneous individual speed in our model tends to be increased159

when particles get attracted to others (see equation 4). Such a dependence of160

the instantaneous speed on the distance between individuals has previously161

been used in models of collective motion for repulsion between individuals162

(Reynolds, 1987; Hemelrijk and Hildenbrandt, 2008). Our assumption of163

higher attraction speeds is based on the hypothesis that individuals need to164

move faster if they are interacting with individuals further away (e.g. to catch165

up with them), but is also necessary for the recovery of realistic distributions166

of individual speeds (Bode et al., 2010).167

To derive this model we use asynchronous updates similar to the ones sug-168

gested by O’Loan and Evans (1999) but we collect particle positions every T169

time-steps and thereby allow for different individual and average update rates170

in real time with an approximately continuous velocity distribution. The im-171

plementation of alignment, friction and propulsion (see G(z)) are inspired172

by Czirók et al. (1999) but our implementation of attraction is new. Our173

random-neighbour-picking approach has parallels to the neighbour-sampling174

argument Raymond and Evans (2006) invoked to justify the implementation175

of their behavioural rules but we have made this sampling explicit and limited176

interactions in our algorithm to pairwise interactions. The effect of varying177

the length of update-steps in algorithms such as ours has been considered178

previously, but not in a biological context (Tsitsiklis et al., 1986). The ratio-179
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nale behind our model is to find a set of microscopic rules that are capable180

of recovering empirical results.181

4. Model analysis182

4.1. Coherence and direction switching183

Here we show that our model preserves the interesting emergent be-184

haviours previous models have found. We do not present a complete analysis185

of the behaviour of our model. Rather, we focus on experiments which illus-186

trate that our model produces coherent groups in which individuals do not187

diffuse over long simulations and that our way of including noise results in188

a phase transition from an ordered to a disordered state of simulated groups189

for increasing noise and therefore that we are recovering previour results.190

Our simulations are performed in the absence of boundary conditions.191

Typically, simulated collective motion is limited by periodic boundary condi-192

tions (Vicsek et al., 1995; Czirók et al., 1999; O’Loan and Evans, 1999; Ray-193

mond and Evans, 2006). This means that individuals crossing one boundary194

are removed and appear at the opposite boundary which results in move-195

ment on a circle in one dimension. The advantage of this approach is that196

simulated groups cannot disperse in space. Boundary conditions can form197

a source of ambiguity in that it may not be clear in how far emergent be-198

haviours are a result of the model or the implementation of the boundary199

conditions.200

Initially, individuals were randomly distributed in an interval of length201

rA to ensure that they were capable of perceiving at least one other parti-202

cle. At the start of our simulations all individuals had velocity θi = +1.203
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Figure 1: Schematic illustration of an example for one update step Δt of our model for

N = 3 (top to bottom). The grey areas indicate the extent of rO for updating individuals

(in white) and the arrows show the direction of motion of the particles. Particles without

arrows have zero instantaneous velocity. Dotted lines highlight interactions. In the first

panel individual 2 is chosen and randomly picks individual 1 to interact with (alignment).

In the second panel 3 is chosen and picks 1 to interact with. Since the distance between

the two particles is larger than rO, 3 gets attracted to 1. In the third panel 2 is chosen

again and chooses to align to individual 3. The last panel shows the positions of 1,2, and

3 after one update step Δt.
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More commonly particles are assigned random initial velocities in simula-204

tion studies (Czirók et al., 1999; O’Loan and Evans, 1999; Raymond and205

Evans, 2006; Buhl et al., 2006). We chose our initial conditions to ensure206

that groups would not fragment within the first few time-steps of the sim-207

ulations. Long simulated time intervals before recording started (typically208

100, 000 time-steps) ensured that no initial transitional data was used in our209

results.210

Figure 2 shows that our model is capable of producing groups which re-211

main coherent over long simulations in absence of boundary conditions. For212

large values of Δt (here close to T ) and small values of rA the groups tend213

to fragment. We show results for two particular values of rA for unchanged214

rO to illustrate that the relative size of the former parameter can be impor-215

tant for the coherence of the simulated groups. Non-zero distances between216

individuals and their nearest neighbours in our simulations indicate that in-217

dividuals do not “collapse” onto one position in coherent groups - a potential218

problem in deterministic simulations (figure 2).219

In figure 3 we illustrate that simulated groups show spontaneous switches220

in direction. To do so we measure Q =
∑

i
θi/N , the average velocity of indi-221

viduals. To get a feeling for how direction switches of groups can occur in our222

model we refer the reader to figure 1. In this illustration the group initially223

travels on average to the right hand side. After one update step is performed,224

the group travels on average to the left hand side. The quantity 〈|Q|〉 repre-225

sents the mean over a large number of the absolute value of measurements of226

Q and is used to measure the order or alignment in the system. Large values227

indicate high order and low values low order. Our model exhibits a phase228
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transition from an ordered state to a disordered state for increasing values229

of Δt (see figure 3a). In figure 4 we show two examples for the characteristic230

distributions of Q for our model. For low values of Δt the distribution of231

Q peaks at two large values of |Q| which indicates that the group collec-232

tively moves in one direction with occasional and relatively quickly executed233

switches in direction. Higher values of Δt result in a decreased distance be-234

tween the two peaks in the distribution of Q up to the point when the group235

does not move collectively in one direction for prolonged periods of time any236

more. This phase transition is captured by the sign of the skewness of the237

distribution of |Q| which turns from negative to positive for increasing values238

of Δt (figure 4c). The time which the groups spend travelling in one direction239

between reversals in direction increases dramatically with decreasing Δt (see240

figure 5). This trend is qualitatively similar to findings for other SPP models241

in which reversal times increase for deceasing noise (O’Loan and Evans, 1999;242

Yates et al., 2009).243

We have seen that the parameters rA and Δt control the stability and244

state or phase of the simulated groups (ordered/disordered). To obtain a245

more complete picture of our models’ behaviour we performed a systematic246

scan of the (rA,Δt) parameter space for N = 50 (see figure 6). We used the247

sign of the skewness of the distribution of |Q| as an indicator of the phase248

as the change of sign in the skewness provided a clear and easily-defined249

switching point (see figure 4c). Using the conditions for different phases250

established above, we divided the parameter space into three regions of dis-251

tinctive model behaviours: unstable or fragmenting flocks, disordered flocks252

and ordered flocks. As with all stochastic simulations this phase diagram253
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can only be understood as a an indicative approximation of the model’s be-254

haviour. In combination with our initial conditions the case rA = rO leads255

to a collective which moves in one direction, but diffuses as a result of the256

asynchronous updating scheme. For larger rA the groups quickly stabilise257

and show a distinctive divide between an ordered and a disordered phase for258

small and large values of Δt respectively.259

In summary, we have established that our model can produce a qualita-260

tively similar emergent behaviour to previous models. The level of noise in261

the system is determined by the parameters rA and Δt. Qualitatively similar262

but quantitatively different phase diagrams for our model could be obtained263

if particles were allowed to move at instantaneous speeds larger than two264

(cf equation 4) or if they accelerated faster. The effect of N also leads to a265

quantitative but not a qualitative change in the behaviour of our model. Our266

model analysis is an illustration of principle and a more detailed investigation267

of the effect of different initial conditions including different measures for the268

stability of the group is beyond the scope of this work.269

4.2. Coarse-grained behaviour270

The coarse-grained behaviour of a system can often be described in terms271

of a small number or even single “coarse” variables. In some cases it is272

possible to construct a “coarse-grained” model which accurately captures the273

temporal development of these variables (Erban et al., 2006; Kolpas et al.,274

2007; Yates et al., 2009).275

We adopt the approach pioneered by Yates et al. (2009) in which they276

study the coarse-grained behaviour of 1D SPP models in terms of the average277

particle velocity Q. Yates and co-workers hypothesised that the temporal278
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Figure 2: Coherence of simulated groups. Individuals within rA of each other are consid-

ered to be connected. Components are defined as sets of individuals which are connected

to each other either directly or via other individuals. If there is one component, all indi-

viduals are in the same group. (a) the fraction of the total number of individuals within

the largest component. (b) the median of individual’s distance to their nearest neigh-

bour (NNDs). We show the average over 1000 equally spaced sampling points during the

last 200, 000 time-steps of a simulation over 300, 000 time-steps (5 replicas). Error bars

show one standard deviation from the mean. For larger values of Δt the groups did not

maintain coherence which led to a low average proportion of individuals within the largest

component. For larger rA the groups maintained coherence over the simulation, even for

large values of Δt. The NNDs increased with increasing values of Δt. For Δt > 0.6 and

rA = 6 the groups did not maintain cohesion over the length of the simulation which led

to very large NNDs. Parameters: N = 100, rO = 5 and T = 1.
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Figure 3: (a) 〈|Q|〉 as a function of Δt (mean over 5 replicas, error bars are smaller than

the symbols). Parameters are as in figure 1 but N = 50 and rA = 50. (b)-(d) illustrate

direction switching in the simulations of our model, where Δt = 0.1 (b), Δt = 0.6 (c) and

Δt = 1.0 (d). The groups remained coherent for the duration of the simulations (compare

to figure 1). Simulations lasted for 1, 600, 000 time-steps and output started after 100, 000

time-steps.
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Figure 4: Distribution of Q for different values of Δt over 400,000 time-steps (T ) at the

end of 10 million time-steps. (a) Δt = 0.6, the particles switch direction occasionally and

the group is mostly well aligned (high values of Q). (b) Δt = 0.9), the group is not well

aligned and Q fluctuates about zero. N = 50, rA = 50, rO = 5, T = 1. (c) Skewness of

the distribution of |Q| against Δt extracted from simulations of 400,000 time-steps at the

end of a 10 million time-step simulation. The sign of the skewness switches from negative

to positive for increasing values of Δt. N = 50, rA = 9, rO = 5, T = 1.

evolution ofQ can be approximately described by the Fokker-Planck equation279

(FPE),280

∂fN (Q, t)

∂t
=

∂2(D(Q)fN)

∂Q2
−

∂(F (Q)fN )

∂Q
, (8)

where the function fN (Q, t) is the time-dependant probability distribution281

for the random variable Q. D(Q) and F (Q) denote the diffusion and drift282

coefficients, respectively. These two coefficients can be interpreted as follows:283

the drift captures the mean rate of change of Q while the diffusion denotes284

the magnitude of the randomness in the evolution of Q. Since the explicit285

form of the FPE is not available, the drift and diffusion coefficients need to286

be estimated using computer simulations (for details, see Yates et al. (2009)).287

While it is possible to approximate interesting quantities such as the mean288

switching time from the estimated form of the FPE (Erban et al., 2006; Yates289
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Figure 5: Average reversal times for simulated flocks for varying Δt. The quantity 〈τ〉 is

the average time for which sgn(Q) remains unchanged. We collected 1000 values of τ for

10 replicas of each parameter combination. Error bars show one standard deviation from

the mean. For smaller values of Δt the sign of Q remained unchanged over a simulation

of 100 million time-steps. Note the log-scale on the y-axis. rA = 50, rO = 5, T = 1.
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Figure 6: Phase diagram for simulations over 10 million time-steps. Groups were consid-

ered to be unstable if at some stage during the simulation at least one particles had no

neighbours (i.e. no particles within rA). The ordered state was defined by a negatively

skewed distribution of |Q|. The behaviour of the model was robust over five replicates.

Dashed lines are for guidance of the eye only. N = 50, rO = 5, T = 1.
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et al., 2009), we will limit our study to the functional form of the drift and290

diffusion coefficients as this provides a sufficiently detailed insight into the291

behaviour of Q.292

When a similar technique was applied to long time-series of the alignment293

(Q in this case) of locust bands marching in an annular arena, the functional294

form of F (Q) and D(Q) revealed fascinating properties of the evolution of295

Q (Yates et al., 2009). Previous research had shown that the locusts were296

highly aligned and marched in one direction for prolonged periods of time297

before spontaneously switching the direction of their motion within a few298

minutes and marching in the opposite direction (Buhl et al., 2006). The drift299

coefficient estimated from this empirical data had a roughly cubic and anti-300

symmetric shape which is consistent with particle motion in aligned states301

with occasional switches in direction (Yates et al., 2009). For large positive302

values of Q, F (Q) took large negative values, and vice-versa. This indicated303

that for very high average group speeds the group speed was likely to decline304

over time. There were three points for which F (Q) = 0. These corresponded305

to one unstable and two stable stationary points of Q(t). The two stable306

stationary points indicate that groups of locusts had a preferred group speed307

which was approximately the same in either direction. Interestingly, the dif-308

fusion coefficient had a quadratic shape with its maximum at zero alignment309

(Yates et al., 2009). An equation-free analysis of a simple 1D SPP model (a310

variant of Czirók’s model (Czirók et al., 1999)) indicated that the approxi-311

mated diffusion coefficient for the evolution of the average particle velocity312

in this model was roughly constant for different values of Q, while F (Q) had313

the same antisymmetric cubic shape as found in the locust data. Yates et al.314
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(2009) hypothesised that the quadratic shape of D(Q) for the empirical data315

could be a result of locusts responding to “low group alignment by increas-316

ing the noisiness of their motion”. The authors tested their hypothesis by317

refining their original model. In the new model the stochastic error added to318

the preferred direction of individuals was increased if individuals perceived a319

low local group alignment around them. This model produced a better fit to320

the empirical data and its equation-free analysis confirmed that the estimate321

for D(Q) now had a quadratic form.322

We performed an equation-free analysis on our model following the ap-323

proach by Yates et al. (2009). To facilitate a comparison to previous empir-324

ical data and models, we restricted the particles to a line of length L with325

periodic boundary conditions and used the same parameters as Yates and co-326

workers wherever possible. We found that the estimated drift coefficient for327

our model had a cubic shape and the diffusion coefficient a roughly quadratic328

shape with maximum at Q = 0 (see figure 7). The diffusion shows a notice-329

able increase for large values of |Q|. This phenomenon was not found in the330

empirical data (Yates et al., 2009) and is a sign that the drift coefficient af-331

fects the diffusion coefficient. In other words, the cubic drift is so pronounced332

or sharp that it impacts on the diffusion. For our model this effect could be333

explained by the fact that the groups cannot maintain high velocities as a334

result of the friction implemented in the function G. This cannot happen in335

the measurements Yates et al. (2009) made from the locust data since the336

absolute value of their coarse variable was bounded above by 1.337

These findings indicate that our model produces a coarse-grained be-338

haviour qualitatively similar to the coarse-grained behaviour of bands of339
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marching locusts. The higher noise in the evolution of Q in our simulations340

emerges from our model which does not assume larger stochastic errors for341

low values of |Q|. Yates and colleagues noted that the randomness in their342

models is not necessarily indicative of random decision making in locusts.343

They suggest that there may be small-scale detailed interactions between344

individuals which result in noise in the coarser experimental observations345

(Yates et al., 2009). This is precisely what our model achieves.346

5. Discussion347

In this work we have introduced a new approach to include noise into 1D348

SPP models. Our approach yields a good qualitative fit to empirical data349

and can easily be extended to higher dimensions. It therefore suggests a350

mechanism whereby small-scale stochastic interactions can produce an emer-351

gent behaviour which is comparable to the coarse-grained behaviour of bands352

of marching locust nymphs. Our model suggests that stochasticity in ani-353

mal movement could be a result of incomplete information intake (neighbour354

sampling) and small variations in instantaneous rates of information intake355

(asynchronous updates). This mechanism is parsimonious as it only relies on356

asynchronous updating and stochastic neighbour-sampling of individuals.357

For our model it is important to maintain a clear separation between algo-358

rithmic implementation and biological interpretation. We do not claim that359

updates in our model translate directly into interactions between individuals.360

The length of update-steps, encoded in the size of Δt, does not explicitly re-361

late to biological or neurological reaction times of animals. Furthermore, the362

instantaneous positions and movement of individuals on time-scales close to363
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Figure 7: Equation-free analysis of our model. L = 90, N = 30, rA = 6, rO = 5,

T = 1 and Δt = 0.5. All parameter values were chosen as close as possible to the

ones by Yates and coworkers and otherwise to produce a similar coarse-grained behaviour

to the locust data (Yates et al., 2009). (a) The drift coefficient shows a characteristic

antisymmetric cubic shape. (b) The diffusion coefficient has a roughly quadratic shape

with maximum approximately at Q = 0. Notice the “ears” in D(Q) for large values of

|Q|. The estimates for drift and diffusion were obtained from long time series of model

simulations in agreement with the analysis of empirical data.
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Δt have no direct physical meaning. We merely record the response of indi-364

viduals to their surroundings averaged over multiple updates (model output365

every T time-steps). Therefore, it is the average behaviour of individuals in366

our model at time-scales larger than Δt that should be considered in a bio-367

logical interpretation of our model. The importance and impact of variable368

update rates in our model opens up questions regarding the length of and dif-369

ference between reaction and decision times in animals and their individual370

information processing capabilities.371

We aim to hint at under-explored possibilities in formulating SPP mod-372

els. Most SPP models implement interactions in a deterministic way and373

then add stochastic errors (e.g. Vicsek et al. (1995); Czirók et al. (1999)).374

Absence of noise terms in such models would result in accurate interactions375

of individuals in perfect knowledge of each other. In contrast, in our ap-376

proach the algorithmic implementation of interactions itself leads to noisy377

interactions. We feel this is an important difference with the potential of378

improving our understanding of collective animal motion by suggesting pos-379

sible mechanisms for seemingly imperfect or erratic animal interactions. We380

have previously demonstrated, for example, that an asynchronous updating381

scheme coupled with varied updating rates provides a mechanism that could382

explain both continuous speed distributions of collectively moving individu-383

als and the way in which these distributions change in response to external384

stimuli (Bode et al., 2010). This work has also suggested that the length of385

update steps in algorithms such as the one presented here could be related386

to the level of threat animals perceive. The length of the update steps is one387

of the parameters that controls the level of noise in our model. Therefore,388
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our model suggests a meaningful explanation and mechanism for different389

levels of noise in a biological system and makes testable predictions as to390

when and why phase transitions might occur in this system. Furthermore,391

a mechanism based on stochastic sampling of individal’s sensory zones as392

in our model also offers a potential explanation for the anisotropy observed393

in the internal structure of large starling flocks (Ballerini et al., 2008; Bode394

et al., in press).395

SPP models commonly assume that all individuals are identical. How-396

ever, this does not necessarily hold in nature. Research has begun to inves-397

tigate the effect of individual features of gregarious animals onto collective398

behaviour (Couzin et al., 2005; Leblond and Reebs, 2006). Our framework399

facilitates the inclusion of individual characteristics. One could, for exam-400

ple, consider different updating rates for individuals, possibly related to their401

individual state of agitation (Bode et al., 2010). These individual updating402

rates could vary over time in response to environmental stimuli or simply403

the number and updating rates of neighbouring individuals. The advantage404

of our modelling approach, with a detailed microscopic description, is that405

additional features such as decision making and information transfer can be406

incorporated into the framework that we propose in the future.407

In conclusion, we suggest that noise in models for collective motion of408

animals should not be considered as a necessary error to account for imper-409

fect interactions but as an opportunity to find out more about how animals410

function within collective aggregations.411
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