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Individual-based models of self-propelled particles (SPPs) are a popular and promising approach to explain features of the collective motion of animal aggregations. Many models that capture some features of group motion have been suggested but a common framework has yet to emerge. Key to all of these models is the inclusion of "noise" or stochastic errors in the individual behaviour of the SPPs. Here, we present a fully stochastic SPP model in one dimension that demonstrates a new way of introducing noise into SPP models whilst preserving emergent behaviours of previous models such as coherent groups and spontaneous direction switching. This purely individual-to-individual, local model is related to previous models in the literature and can easily be extended to higher dimensions. Its coarse-grained behaviour qualitatively reproduces recently reported locust movement data.

Introduction

Modelling the collective motion of animals remains a tantalising problem for scientists of a host of different disciplines. Both visually attractive and scientifically challenging, the concept remains useful because of its applicability to both animation [START_REF] Reynolds | Flocks, herds and schools: A distributed behavioral model[END_REF] and control systems [START_REF] Liu | Stability analysis of mdimensional asynchronous swarms with a fixed communication topology[END_REF][START_REF] Tanner | Flocking in fixed and switching networks[END_REF] as well as the fundamental ecological understanding it brings [START_REF] Sumpter | The principles of collective animal behaviour[END_REF]. Many individual-based models have emerged in the last few decades that exploit advances in computational power to describe features seen in collective animal motion including group decision making [START_REF] Couzin | Effective leadership and decision-making in animal groups on the move[END_REF][START_REF] Conradt | Democracy in animals: the evolution of shared group decisions[END_REF], information flow [START_REF] Sumpter | Information transfer in moving animal groups[END_REF] and response to predation [START_REF] Wood | Evolving the selfish herd: emergence of distinct aggregating strategies in an individual-based model[END_REF]. This article focuses on the development of one-dimensional models that seek to describe some of the simplest observed features in collective motion. Such models are now known collectively as 1D self-propelled particle (SPP) models.

In recent years the biological relevance of these models has been demonstrated as a result of the development of novel, approximately one-dimensional, experimental systems. By constraining marching bands of locust nymphs to a specially constructed annular arena Buhl et al. (2006), and more recently [START_REF] Yates | Inherent noise can facilitate coherence in collective swarm motion[END_REF], have shown that these insects do indeed behave in a manner that is qualitatively comparable to one-dimensional SPP models.

In particular this work demonstrated that SPP models capture the spontaneous turns of the locust bands, where the entire group reverses its direction of motion without external input. It is believed that the origin of these observations lies in internal, or intrinsic, stochastic effects or "noise" which may or may not correspond to inaccuracy of the individual movements (e.g Buhl et al. (2006); [START_REF] Couzin | Effective leadership and decision-making in animal groups on the move[END_REF]).

Recently, the coarse-grained behaviour of 1D SPP models has been compared to locust movement in a more systematic way. From their study [START_REF] Yates | Inherent noise can facilitate coherence in collective swarm motion[END_REF] suggested that the insects respond to a decrease of group alignment by increasing the noise in their movement. The importance of this finding is that the addition of simple noise terms is not necessarily sufficient to describe and explain collective motion in animals. However, despite its great importance the origin of this stochasticity is far from clear.

In this research we focus exclusively on a simple one-dimensional SPP model, and show how a combination of an asynchronous updating scheme and a novel implementation of particle interactions can produce a coarsegrained behaviour which reproduces findings by [START_REF] Yates | Inherent noise can facilitate coherence in collective swarm motion[END_REF] in locust movement data. The novelty of our research lies in the fact that all noise in the system emerges from the algorithmic implementation of our model rather than being added to the movement of particles. We therefore work towards explaining the origin of stochasticity in animal collective motion using our modelling approach.

First we give an overview of selected 1D SPP models described in previous work and the results that they give. Second we introduce our modelling approach. We then show that our model can produce stable groups and spontaneous direction switching and study the coarse-grained behaviour of our model via an equation-free approach using numerical simulations. We conclude by commenting on the potential of our modelling approach for integrating individual-level characteristics and describing motion in dimensions greater than one.

SPP Models

The first 1D SPP model simulated particles with a local aligning behaviour on a continuous line with periodic boundary conditions [START_REF] Czirók | Collective motion of selfpropelled particles: kinetic phase transition in one dimension[END_REF]. In this model the individual and continuous velocities and positions are updated sequentially and simultaneously for all individuals. Particles tend to align with the average velocity of all particles within a fixed distance from them. This alignment is subject to a stochastic error in the form of uniformly distributed noise which is explicitly added to the particles' response to the average local velocity. An anti-symmetric function G is applied to the preferred velocity of individuals and introduces both propulsion and friction to the system. The individual velocities u i (t) are therefore updated as,

u i (t + 1) = G ( u(t) i ) + ξ i , (1) 
where u i is the local average velocity for particle i and ξ i is a random variable with uniform probability distribution over a finite interval [-η/2, η/2] [START_REF] Czirók | Collective motion of selfpropelled particles: kinetic phase transition in one dimension[END_REF]. The function G(z) is given by,

G(z) = 1 2 (z + sgn(z)), (2) 
which sets the average of the individual speeds in the absence of particle interactions to magnitude 1 [START_REF] Czirók | Collective motion of selfpropelled particles: kinetic phase transition in one dimension[END_REF]. Analysis of the model has indicated that the average velocity of all particles undergoes a phase transition from an ordered state to a disordered state when the amplitude of the noise (η) or the particle density is varied [START_REF] Czirók | Collective motion of selfpropelled particles: kinetic phase transition in one dimension[END_REF]. Such phase transitions have also been observed for SPP models in two and three dimensions which suggests that some features of higher dimensional systems are preserved in 1D models [START_REF] Vicsek | Novel type of phase transition in a system of self-driven particles[END_REF][START_REF] Chaté | Collective motion of self-propelled particles interacting without cohesion[END_REF]. For certain parameter values the model exhibits a fascinating direction switching behaviour -the average velocity of all particles in the system changes sign spontaneously and on a short time scale compared to longer intervals of sustained high absolute values of the average velocity. Several variants of this scheme to introduce noise have been published [START_REF] Chaté | Collective motion of self-propelled particles interacting without cohesion[END_REF].

Another approach has been to implement SPP models on a one-dimensional lattice with periodic boundary conditions over which particles move with velocities +1 or -1 (O' Loan and Evans, 1999;[START_REF] Raymond | Flocking regimes in a simple lattice model[END_REF]. In the first model of this type particles align with the velocity of the majority of particles around them with a given probability [START_REF] O'loan | Alternating steady state in onedimensional flocking[END_REF].

The magnitude of this probability is the first source of noise in the model.

The second source of noise and an important aspect of the model related to this research is its asynchronous updating scheme. In each step only the position and velocity of one, randomly chosen particle are updated. Simulations of the model showed a phase transition from high to low average particle velocities for increasing sizes of the aligning probability. This is qualitatively similar to the phase transition exhibited by the model of [START_REF] Czirók | Collective motion of selfpropelled particles: kinetic phase transition in one dimension[END_REF].

This asynchronous 1D SPP lattice model was subsequently extended significantly by the inclusion of repulsion and attraction into the individual behaviour of the particles and the modification of the alignment behaviour [START_REF] Raymond | Flocking regimes in a simple lattice model[END_REF]. The authors justified their implementation of the different behaviours by showing that they correspond qualitatively to taking random samples of neighbours [START_REF] Raymond | Flocking regimes in a simple lattice model[END_REF]. This implementation results in two separate parameters which control the size of the error or noise in the reaction of individuals to their surrounding neighbours. One parameter controls the error arising from stochastically sampling the local group to determine the particle's preferred direction and the other parameter introduces uncorrelated errors [START_REF] Raymond | Flocking regimes in a simple lattice model[END_REF].

In summary, 1D SPP models show a wealth of emergent behaviours which have increasingly been compared to real collective animal motion. The way stochastic errors have been included into such models can roughly be divided into three categories. First, adding a random variable to the preferred direction of individuals [START_REF] Czirók | Collective motion of selfpropelled particles: kinetic phase transition in one dimension[END_REF]. Second, asynchronous and probabilistic updates [START_REF] O'loan | Alternating steady state in onedimensional flocking[END_REF][START_REF] Raymond | Flocking regimes in a simple lattice model[END_REF].

Third, varying the probability and accuracy with which individuals execute their behavioural rules [START_REF] O'loan | Alternating steady state in onedimensional flocking[END_REF][START_REF] Raymond | Flocking regimes in a simple lattice model[END_REF].

In the next section we will introduce our model which takes inspiration from the second and third approaches.

Modelling approach

In our model N individuals are represented by points on a continuous line and not by points on a lattice as in some of the models discussed above. The individuals, indexed i, are characterised by their position x i and instantaneous velocity θ i and they react to their "neighbours" which are less than a distance r A away from them. We assume that each individual reacts with an identical stochastic rate to its surroundings. This defines an implicit master equation that in principle could be solved with a stochastic simulation algorithm [START_REF] Gillespie | A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions[END_REF]. Instead, we exploit the identical rates and a simple particle picking approach to simulate the the system (O' Loan and Evans, 1999). The algorithmic implementation of our model is as follows:

1. Choose individual i at random, where i = 1, ..., N (equal probabilities, with replacement).

2. If i has neighbours, choose a neighbour k of i at random (equal probabilities for all individuals within less than r A of i).

3. Update x i and θ i (based on the interaction between k and i or on previous θ i if i has no neighbours).

N realisations of steps (1) to (3) constitute one update step of length Δt time-steps (see also figure 1). The duration of this update step corresponds to the reciprocal value of the algorithmic rate at which individuals update.

Small values of Δt imply rapid updates, while large values of Δt imply slow updates. The output of the model is obtained by recording the positions and velocities of all individuals every T = λΔt time-steps, where λ ≥ 1. This is analogous to how data of animal motion is obtained empirically where individual positions and orientations are sampled according to the frame rate of video recordings [START_REF] Aoki | An analysis of the schooling behavior of fish: internal organization and communication process[END_REF]Buhl et al., 2006). In our simulations we keep T fixed and only vary Δt and therefore also λ.

Suppose individual i and a neighbour k of i have been chosen in the algorithm described above. The interaction between i and k depends on the distance d between the two individuals. If d ≤ r O < r A , i attempts to align

with k and has desired velocity,

θ desired i = G(θ k ). (3) If r O < d < r A individual i gets attracted
to k and has desired velocity,

θ desired i = G sgn(x k -x i ) d -r O r A -r O + 1 , (4) 
where the fraction term in the argument is motivated by a distance rule such that at maximum distance maximal desired velocities are achieved. If i has no neighbours (there is no k such that d < r A ), θ desired i is given by,

θ desired i = G(θ i ). ( 5 
)
The function G is given above in equation 2. Once θ desired i is determined, θ i and x i are updated according to,

new(θ i ) = θ i + (θ desired i -θ i )Δt, (6) new(x i ) = x i + new(θ i )Δt. (7) 
In our model individuals react deterministically to the positions and motion of randomly selected neighbours. In previous work [START_REF] Huth | The Simulation of the Movement of Fish Schools[END_REF], it has been suggested that interactions with single individuals are not able to mimic the properties of animal collective motion in the same way as averaging over a number of individuals. However, viewed over timescales larger than Δt, our algorithm is qualitatively equivalent to reacting in a noisy way to a random sample of neighbours and our results below show that our simulations are comparable to empirical data. For a more detailed discussion on the biological plausibility and interpretation of our model we refer the reader to the discussion.

The instantaneous individual speed in our model tends to be increased when particles get attracted to others (see equation 4). Such a dependence of the instantaneous speed on the distance between individuals has previously been used in models of collective motion for repulsion between individuals [START_REF] Reynolds | Flocks, herds and schools: A distributed behavioral model[END_REF][START_REF] Hemelrijk | Self-organized shape and frontal density of fish schools[END_REF]. Our assumption of higher attraction speeds is based on the hypothesis that individuals need to move faster if they are interacting with individuals further away (e.g. to catch up with them), but is also necessary for the recovery of realistic distributions of individual speeds [START_REF] Bode | How perceived threat increases synchronization in collectively moving animal groups[END_REF].

To derive this model we use asynchronous updates similar to the ones suggested by O'Loan and Evans (1999) but we collect particle positions every T time-steps and thereby allow for different individual and average update rates in real time with an approximately continuous velocity distribution. The implementation of alignment, friction and propulsion (see G(z)) are inspired by [START_REF] Czirók | Collective motion of selfpropelled particles: kinetic phase transition in one dimension[END_REF] but our implementation of attraction is new. Our random-neighbour-picking approach has parallels to the neighbour-sampling argument [START_REF] Raymond | Flocking regimes in a simple lattice model[END_REF] invoked to justify the implementation of their behavioural rules but we have made this sampling explicit and limited interactions in our algorithm to pairwise interactions. The effect of varying the length of update-steps in algorithms such as ours has been considered

previously, but not in a biological context [START_REF] Tsitsiklis | Distributed asynchronous deterministic and stochastic gradient optimization algorithms[END_REF]. The ratio-nale behind our model is to find a set of microscopic rules that are capable of recovering empirical results.

Model analysis

Coherence and direction switching

Here we show that our model preserves the interesting emergent behaviours previous models have found. We do not present a complete analysis of the behaviour of our model. Rather, we focus on experiments which illustrate that our model produces coherent groups in which individuals do not diffuse over long simulations and that our way of including noise results in a phase transition from an ordered to a disordered state of simulated groups for increasing noise and therefore that we are recovering previour results.

Our simulations are performed in the absence of boundary conditions.

Typically, simulated collective motion is limited by periodic boundary conditions [START_REF] Vicsek | Novel type of phase transition in a system of self-driven particles[END_REF][START_REF] Czirók | Collective motion of selfpropelled particles: kinetic phase transition in one dimension[END_REF][START_REF] O'loan | Alternating steady state in onedimensional flocking[END_REF][START_REF] Raymond | Flocking regimes in a simple lattice model[END_REF]. This means that individuals crossing one boundary are removed and appear at the opposite boundary which results in movement on a circle in one dimension. The advantage of this approach is that simulated groups cannot disperse in space. Boundary conditions can form a source of ambiguity in that it may not be clear in how far emergent behaviours are a result of the model or the implementation of the boundary conditions.

Initially, individuals were randomly distributed in an interval of length r A to ensure that they were capable of perceiving at least one other particle. At the start of our simulations all individuals had velocity θ i = +1. In the second panel 3 is chosen and picks 1 to interact with. Since the distance between the two particles is larger than r O , 3 gets attracted to 1. In the third panel 2 is chosen again and chooses to align to individual 3. The last panel shows the positions of 1,2, and 3 after one update step Δt.

More commonly particles are assigned random initial velocities in simulation studies [START_REF] Czirók | Collective motion of selfpropelled particles: kinetic phase transition in one dimension[END_REF][START_REF] O'loan | Alternating steady state in onedimensional flocking[END_REF][START_REF] Raymond | Flocking regimes in a simple lattice model[END_REF]Buhl et al., 2006). We chose our initial conditions to ensure that groups would not fragment within the first few time-steps of the simulations. Long simulated time intervals before recording started (typically 100, 000 time-steps) ensured that no initial transitional data was used in our results.

Figure 2 shows that our model is capable of producing groups which remain coherent over long simulations in absence of boundary conditions. For large values of Δt (here close to T ) and small values of r A the groups tend to fragment. We show results for two particular values of r A for unchanged r O to illustrate that the relative size of the former parameter can be important for the coherence of the simulated groups. Non-zero distances between individuals and their nearest neighbours in our simulations indicate that individuals do not "collapse" onto one position in coherent groups -a potential problem in deterministic simulations (figure 2).

In figure 3 we illustrate that simulated groups show spontaneous switches in direction. To do so we measure of Δt (figure 4c). The time which the groups spend travelling in one direction between reversals in direction increases dramatically with decreasing Δt (see figure 5). This trend is qualitatively similar to findings for other SPP models in which reversal times increase for deceasing noise (O'Loan and Evans, 1999; [START_REF] Yates | Inherent noise can facilitate coherence in collective swarm motion[END_REF].

Q = i θ i /N ,
We have seen that the parameters r A and Δt control the stability and state or phase of the simulated groups (ordered/disordered). To obtain a more complete picture of our models' behaviour we performed a systematic scan of the (r A , Δt) parameter space for N = 50 (see figure 6). We used the sign of the skewness of the distribution of |Q| as an indicator of the phase as the change of sign in the skewness provided a clear and easily-defined switching point (see figure 4c). Using the conditions for different phases established above, we divided the parameter space into three regions of distinctive model behaviours: unstable or fragmenting flocks, disordered flocks and ordered flocks. As with all stochastic simulations this phase diagram can only be understood as a an indicative approximation of the model's behaviour. In combination with our initial conditions the case r A = r O leads to a collective which moves in one direction, but diffuses as a result of the asynchronous updating scheme. For larger r A the groups quickly stabilise and show a distinctive divide between an ordered and a disordered phase for small and large values of Δt respectively.

In summary, we have established that our model can produce a qualitatively similar emergent behaviour to previous models. The level of noise in the system is determined by the parameters r A and Δt. Qualitatively similar but quantitatively different phase diagrams for our model could be obtained if particles were allowed to move at instantaneous speeds larger than two (cf equation 4) or if they accelerated faster. The effect of N also leads to a quantitative but not a qualitative change in the behaviour of our model. Our model analysis is an illustration of principle and a more detailed investigation of the effect of different initial conditions including different measures for the stability of the group is beyond the scope of this work.

Coarse-grained behaviour

The coarse-grained behaviour of a system can often be described in terms of a small number or even single "coarse" variables. In some cases it is possible to construct a "coarse-grained" model which accurately captures the temporal development of these variables [START_REF] Erban | Gene regulatory networks: A coarse-grained, equation-free approach to multiscale computation[END_REF][START_REF] Kolpas | Coarse-grained analysis of stochasticity-induced switching between collective motion states[END_REF][START_REF] Yates | Inherent noise can facilitate coherence in collective swarm motion[END_REF].

We adopt the approach pioneered by [START_REF] Yates | Inherent noise can facilitate coherence in collective swarm motion[END_REF] in which they study the coarse-grained behaviour of 1D SPP models in terms of the average particle velocity Q. Yates and co-workers hypothesised that the temporal 0.2 0.4 0.6 0.8 1.0 0.0 0.4 0.8 Δt frac. in largest comp. evolution of Q can be approximately described by the Fokker-Planck equation

(FPE), ∂f N (Q, t) ∂t = ∂ 2 (D(Q)f N ) ∂Q 2 - ∂(F (Q)f N ) ∂Q , (8) 
where the function f N (Q, t) is the time-dependant probability distribution for the random variable Q. D(Q) and F (Q) denote the diffusion and drift coefficients, respectively. These two coefficients can be interpreted as follows:

the drift captures the mean rate of change of Q while the diffusion denotes the magnitude of the randomness in the evolution of Q. Since the explicit form of the FPE is not available, the drift and diffusion coefficients need to be estimated using computer simulations (for details, see [START_REF] Yates | Inherent noise can facilitate coherence in collective swarm motion[END_REF]).

While it is possible to approximate interesting quantities such as the mean switching time from the estimated form of the FPE [START_REF] Erban | Gene regulatory networks: A coarse-grained, equation-free approach to multiscale computation[END_REF]; Yates et al., 2009), we will limit our study to the functional form of the drift and diffusion coefficients as this provides a sufficiently detailed insight into the behaviour of Q.

When a similar technique was applied to long time-series of the alignment (Q in this case) of locust bands marching in an annular arena, the functional form of F (Q) and D(Q) revealed fascinating properties of the evolution of et al., 2009). Previous research had shown that the locusts were highly aligned and marched in one direction for prolonged periods of time before spontaneously switching the direction of their motion within a few minutes and marching in the opposite direction (Buhl et al., 2006). The drift coefficient estimated from this empirical data had a roughly cubic and antisymmetric shape which is consistent with particle motion in aligned states with occasional switches in direction [START_REF] Yates | Inherent noise can facilitate coherence in collective swarm motion[END_REF]. For large positive values of Q, F (Q) took large negative values, and vice-versa. This indicated that for very high average group speeds the group speed was likely to decline over time. There were three points for which F (Q) = 0. These corresponded to one unstable and two stable stationary points of Q(t). The two stable stationary points indicate that groups of locusts had a preferred group speed which was approximately the same in either direction. Interestingly, the diffusion coefficient had a quadratic shape with its maximum at zero alignment [START_REF] Yates | Inherent noise can facilitate coherence in collective swarm motion[END_REF]). An equation-free analysis of a simple 1D SPP model (a variant of Czirók's model [START_REF] Czirók | Collective motion of selfpropelled particles: kinetic phase transition in one dimension[END_REF]) indicated that the approximated diffusion coefficient for the evolution of the average particle velocity We performed an equation-free analysis on our model following the approach by [START_REF] Yates | Inherent noise can facilitate coherence in collective swarm motion[END_REF]. To facilitate a comparison to previous empirical data and models, we restricted the particles to a line of length L with periodic boundary conditions and used the same parameters as Yates and coworkers wherever possible. We found that the estimated drift coefficient for our model had a cubic shape and the diffusion coefficient a roughly quadratic shape with maximum at Q = 0 (see figure 7). The diffusion shows a noticeable increase for large values of |Q|. This phenomenon was not found in the empirical data [START_REF] Yates | Inherent noise can facilitate coherence in collective swarm motion[END_REF] and is a sign that the drift coefficient affects the diffusion coefficient. In other words, the cubic drift is so pronounced or sharp that it impacts on the diffusion. For our model this effect could be explained by the fact that the groups cannot maintain high velocities as a result of the friction implemented in the function G. This cannot happen in the measurements [START_REF] Yates | Inherent noise can facilitate coherence in collective swarm motion[END_REF] made from the locust data since the absolute value of their coarse variable was bounded above by 1.

Q (Yates
These findings indicate that our model produces a coarse-grained behaviour qualitatively similar to the coarse-grained behaviour of bands of marching locusts. The higher noise in the evolution of Q in our simulations emerges from our model which does not assume larger stochastic errors for low values of |Q|. Yates and colleagues noted that the randomness in their models is not necessarily indicative of random decision making in locusts.

They suggest that there may be small-scale detailed interactions between individuals which result in noise in the coarser experimental observations [START_REF] Yates | Inherent noise can facilitate coherence in collective swarm motion[END_REF]. This is precisely what our model achieves.

Discussion

In this work we have introduced a new approach to include noise into 1D SPP models. Our approach yields a good qualitative fit to empirical data and can easily be extended to higher dimensions. It therefore suggests a mechanism whereby small-scale stochastic interactions can produce an emergent behaviour which is comparable to the coarse-grained behaviour of bands of marching locust nymphs. Our model suggests that stochasticity in animal movement could be a result of incomplete information intake (neighbour sampling) and small variations in instantaneous rates of information intake (asynchronous updates). This mechanism is parsimonious as it only relies on asynchronous updating and stochastic neighbour-sampling of individuals.

For our model it is important to maintain a clear separation between algorithmic implementation and biological interpretation. We do not claim that updates in our model translate directly into interactions between individuals.

The length of update-steps, encoded in the size of Δt, does not explicitly re- Δt have no direct physical meaning. We merely record the response of individuals to their surroundings averaged over multiple updates (model output every T time-steps). Therefore, it is the average behaviour of individuals in our model at time-scales larger than Δt that should be considered in a biological interpretation of our model. The importance and impact of variable update rates in our model opens up questions regarding the length of and difference between reaction and decision times in animals and their individual information processing capabilities.

We aim to hint at under-explored possibilities in formulating SPP models. Most SPP models implement interactions in a deterministic way and then add stochastic errors (e.g. [START_REF] Vicsek | Novel type of phase transition in a system of self-driven particles[END_REF]; [START_REF] Czirók | Collective motion of selfpropelled particles: kinetic phase transition in one dimension[END_REF]).

Absence of noise terms in such models would result in accurate interactions of individuals in perfect knowledge of each other. In contrast, in our approach the algorithmic implementation of interactions itself leads to noisy interactions. We feel this is an important difference with the potential of improving our understanding of collective animal motion by suggesting possible mechanisms for seemingly imperfect or erratic animal interactions. We have previously demonstrated, for example, that an asynchronous updating scheme coupled with varied updating rates provides a mechanism that could explain both continuous speed distributions of collectively moving individuals and the way in which these distributions change in response to external stimuli [START_REF] Bode | How perceived threat increases synchronization in collectively moving animal groups[END_REF]. This work has also suggested that the length of update steps in algorithms such as the one presented here could be related to the level of threat animals perceive. The length of the update steps is one of the parameters that controls the level of noise in our model. Therefore, our model suggests a meaningful explanation and mechanism for different levels of noise in a biological system and makes testable predictions as to when and why phase transitions might occur in this system. Furthermore, a mechanism based on stochastic sampling of individal's sensory zones as in our model also offers a potential explanation for the anisotropy observed in the internal structure of large starling flocks [START_REF] Ballerini | Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study[END_REF]Bode et al., in press).

SPP models commonly assume that all individuals are identical. However, this does not necessarily hold in nature. Research has begun to investigate the effect of individual features of gregarious animals onto collective behaviour [START_REF] Couzin | Effective leadership and decision-making in animal groups on the move[END_REF][START_REF] Leblond | Individual leadership and boldness in shoals of golden shiners (Notemigonus crysoleucas)[END_REF]. Our framework facilitates the inclusion of individual characteristics. One could, for example, consider different updating rates for individuals, possibly related to their individual state of agitation [START_REF] Bode | How perceived threat increases synchronization in collectively moving animal groups[END_REF]. These individual updating rates could vary over time in response to environmental stimuli or simply the number and updating rates of neighbouring individuals. The advantage of our modelling approach, with a detailed microscopic description, is that additional features such as decision making and information transfer can be incorporated into the framework that we propose in the future.

In conclusion, we suggest that noise in models for collective motion of animals should not be considered as a necessary error to account for imperfect interactions but as an opportunity to find out more about how animals function within collective aggregations.
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 1 Figure 1: Schematic illustration of an example for one update step Δt of our model for N = 3 (top to bottom). The grey areas indicate the extent of r O for updating individuals (in white) and the arrows show the direction of motion of the particles. Particles without arrows have zero instantaneous velocity. Dotted lines highlight interactions. In the first panel individual 2 is chosen and randomly picks individual 1 to interact with (alignment).

  the average velocity of individuals. To get a feeling for how direction switches of groups can occur in our model we refer the reader to figure 1. In this illustration the group initially travels on average to the right hand side. After one update step is performed, the group travels on average to the left hand side. The quantity |Q| represents the mean over a large number of the absolute value of measurements of Q and is used to measure the order or alignment in the system. Large values indicate high order and low values low order. Our model exhibits a phase transition from an ordered state to a disordered state for increasing values of Δt (see figure3a). In figure4we show two examples for the characteristic distributions of Q for our model. For low values of Δt the distribution of Q peaks at two large values of |Q| which indicates that the group collectively moves in one direction with occasional and relatively quickly executed switches in direction. Higher values of Δt result in a decreased distance between the two peaks in the distribution of Q up to the point when the group does not move collectively in one direction for prolonged periods of time any more. This phase transition is captured by the sign of the skewness of the distribution of |Q| which turns from negative to positive for increasing values
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 23 Figure 2: Coherence of simulated groups. Individuals within r A of each other are considered to be connected. Components are defined as sets of individuals which are connected to each other either directly or via other individuals. If there is one component, all individuals are in the same group. (a) the fraction of the total number of individuals within the largest component. (b) the median of individual's distance to their nearest neighbour (NNDs). We show the average over 1000 equally spaced sampling points during the last 200, 000 time-steps of a simulation over 300, 000 time-steps (5 replicas). Error bars show one standard deviation from the mean. For larger values of Δt the groups did not maintain coherence which led to a low average proportion of individuals within the largest component. For larger r A the groups maintained coherence over the simulation, even for large values of Δt. The NNDs increased with increasing values of Δt. For Δt > 0.6 and r A = 6 the groups did not maintain cohesion over the length of the simulation which led to very large NNDs. Parameters: N = 100, r O = 5 and T = 1.

Figure 4 :

 4 Figure 4: Distribution of Q for different values of Δt over 400,000 time-steps (T ) at the end of 10 million time-steps. (a) Δt = 0.6, the particles switch direction occasionally and the group is mostly well aligned (high values of Q). (b) Δt = 0.9), the group is not well aligned and Q fluctuates about zero. N = 50, r A = 50, r O = 5, T = 1. (c) Skewness of the distribution of |Q| against Δt extracted from simulations of 400,000 time-steps at the end of a 10 million time-step simulation. The sign of the skewness switches from negative to positive for increasing values of Δt. N = 50, r A = 9, r O = 5, T = 1.

Figure 5 :

 5 Figure 5: Average reversal times for simulated flocks for varying Δt. The quantity τ is the average time for which sgn(Q) remains unchanged. We collected 1000 values of τ for 10 replicas of each parameter combination. Error bars show one standard deviation from the mean. For smaller values of Δt the sign of Q remained unchanged over a simulation of 100 million time-steps. Note the log-scale on the y-axis. r A = 50, r O = 5, T = 1.

Figure 6 :

 6 Figure 6: Phase diagram for simulations over 10 million time-steps. Groups were considered to be unstable if at some stage during the simulation at least one particles had no neighbours (i.e. no particles within r A ). The ordered state was defined by a negatively skewed distribution of |Q|. The behaviour of the model was robust over five replicates. Dashed lines are for guidance of the eye only. N = 50, r O = 5, T = 1.

  in this model was roughly constant for different values of Q, while F (Q) had the same antisymmetric cubic shape as found in the locust data.[START_REF] Yates | Inherent noise can facilitate coherence in collective swarm motion[END_REF] hypothesised that the quadratic shape of D(Q) for the empirical data could be a result of locusts responding to "low group alignment by increasing the noisiness of their motion". The authors tested their hypothesis by refining their original model. In the new model the stochastic error added to the preferred direction of individuals was increased if individuals perceived a low local group alignment around them. This model produced a better fit to the empirical data and its equation-free analysis confirmed that the estimate for D(Q) now had a quadratic form.

Figure 7 :

 7 Figure 7: Equation-free analysis of our model. L = 90, N = 30, r A = 6, r O = 5, T = 1 and Δt = 0.5. All parameter values were chosen as close as possible to the ones by Yates and coworkers and otherwise to produce a similar coarse-grained behaviour to the locust data (Yates et al., 2009). (a) The drift coefficient shows a characteristic antisymmetric cubic shape. (b) The diffusion coefficient has a roughly quadratic shape with maximum approximately at Q = 0. Notice the "ears" in D(Q) for large values of |Q|. The estimates for drift and diffusion were obtained from long time series of model simulations in agreement with the analysis of empirical data.
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