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Abstract 

Dopamine (DA) neurotransmission in the nucleus accumbens (NAc) is critically involved 

in normal as well as maladaptive motivated behaviours including drug addiction. 

Whether the striatal neuromodulator nitric oxide (NO) influences DA release in NAc is 

unknown. We investigated whether exogenous NO modulates DA transmission in NAc 

core and how this interaction varies depending on frequency of presynaptic activation. 

We detected DA with cyclic voltammetry at carbon-fiber microelectrodes in mouse NAc 

in slices following stimuli spanning a full range of DA neuron firing frequencies (1-100 

Hz).  

NO donors SIN-1 (3-morpholinosydnonimine hydrochloride) or PAPA/NONOate 

(z-1-[N-(3-ammoniopropyl)-N-(n-propyl)amino]diazen-1-ium-1,2-diolate) enhanced DA 

release with increasing stimulus frequency. This NO-mediated enhancement of frequency 

sensitivity of DA release was not prevented by inhibition of soluble guanylyl cyclase 

(sGC), dopamine transporters, or large conductance Ca2+-activated K+ (BK) channels, 

and did not require glutamatergic or GABAergic input. However, experiments to identify 

whether frequency-dependent NO effects were mediated via changes in powerful 

acetylcholine-DA interactions revealed multiple components to NO modulation of DA 

release. In the presence of a nicotinic receptor antagonist (dihydro-β-erythroidine, 

DHβE), NO donors increased DA release in a frequency-independent manner.  

These data suggest that NO in the NAc can modulate DA release through multiple 

GC-independent neuronal mechanisms whose net outcome varies depending on activity 

in DA neurons and accumbal cholinergic interneurons. In the presence of accumbal 

acetylcholine, NO promotes the sensitivity of DA release to presynaptic activation, but 



Hartung et al. 
 

 3

with reduced acetylcholine input, NO will promote DA release in an activity-independent 

manner through a direct action on dopaminergic terminals.  
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Introduction 

The nucleus accumbens (NAc), the major part of the limbic ventral striatum, plays a key 

role in normal goal-directed or motivated behaviours as well as in maladaptive states 

including drug addiction and schizophrenia. Here, inputs from major limbic-associated 

brain regions like the medial prefrontal cortex, basolateral amygdala and ventral 

subiculum of the hippocampus converge (Finch, 1996; French and Totterdell, 2002, 

2003; Groenewegen et al, 1987, 1999; Mulder et al, 1998; O'Donnell et al, 1999; Sesack 

and Grace, 2010; Wright and Groenewegen, 1995), are integrated with thalamic inputs 

(Berendse and Groenewegen, 1990; Smith et al, 2004) and interface with motor loops of 

the basal ganglia (Groenewegen and Trimble, 2007; Groenewegen et al, 1996; Mogenson 

et al, 1980; Sesack and Grace, 2010; Zahm, 2000). These interactions are powerfully 

modulated by dopaminergic innervation from the ventral tegmental area (Ikemoto, 2007; 

Voorn et al, 1986). Dopaminergic neurons signal unpredicted rewards or other salient 

contextual stimuli and their conditioned cues by a shift in firing rates from tonic low 

frequencies to brief bursts at high frequency (Matsumoto and Hikosaka, 2009; Schultz, 

1986, 2002), and corresponding accumbal DA release influences accumbal output and 

long term plasticity (Morris et al, 2010; Reynolds and Wickens, 2002; Schultz, 2010). 

How the release of DA reflects dynamic changes in activity in dopaminergic neurons is 

governed by the local regulation of release probability within the NAc (Cragg, 2003, 

2006). For example, DA release is powerfully modulated by acetylcholine (ACh) arising 

from intrinsic cholinergic interneurons (ChIs) (Cragg, 2006; Exley et al, 2008; Rice and 

Cragg, 2004; Threlfell et al, 2010). Nitric oxide (NO) is another potent neuromodulator 

that is thought to be produced locally by NOS-containing accumbal interneurons (French 



Hartung et al. 
 

 5

et al, 2005; Hidaka and Totterdell, 2001; Kraus and Prast, 2001), but how NO influences 

the dynamic signalling of activity by DA in NAc is currently unknown. 

Interactions between NO and DA have been extensively studied in the dorsal 

striatum where NO modulates the excitability of striatal GABAergic projection neurons 

(West and Grace, 2004), corticostriatal synaptic plasticity (Calabresi et al, 1999a, b) and 

the release of various neurotransmitters including glutamate, GABA, ACh, serotonin and 

DA (Prast et al, 1995, 1998; Prast and Philippu, 2001; Trabace and Kendrick, 2000; West 

and Galloway, 1996, 1997a, b, 1998). However, NO in dorsal striatum is reported either 

to facilitate (Black et al, 1994; Buyukuysal, 1997; Iravani et al, 1998; Liang and 

Kaufman, 1998; Lonart et al, 1993; Stewart et al, 1996; Trabace and Kendrick, 2000; 

West and Galloway, 1996, 1997a, b, 1998; Zhu and Luo, 1992) or inhibit DA release 

(Guevara-Guzman et al, 1994; Segovia and Mora, 1998; Silva et al, 1995, 2003). The 

effector mechanisms have been suggested to include inhibition of DA transporters (for 

review see Kiss and Vizi, 2001) as well as indirect mechanisms that involve NO-

activation of soluble guanylyl cyclase (sGC) in striatal projection neurons, which through 

their projections to the substantia nigra subsequently modify the activity of DA neurons 

(West and Grace, 2000)  and NO-mediated increases in local glutamate levels (Bogdanov 

and Wurtman, 1997; Guevara-Guzman et al, 1994; Trabace and Kendrick, 2000; West 

and Galloway, 1997a, b) which might subsequently modify DA release (for review see 

David et al, 2005).  

 We used fast-scan cyclic voltammetry at carbon-fiber microelectrodes in striatal 

slices to identify how exogenous NO modulates endogenous DA release in NAc core 

during a range of evoked activity that spans the frequencies seen for dopaminergic 
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neurons in vivo. We show that the outcome of NO on DA release in NAc varies 

depending on activity in DA axons as well as in other accumbal neurons.  

 

Materials and Methods 

Brain slice preparation and voltammetry 

Coronal striatal slices (300 μm) containing the NAc were prepared from brains of 26-35 g 

CD-1 male mice (Harlan, UK). The sections were cut on a Vibratome (Leica) in ice-cold 

oxygenated HEPES buffered artificial cerebrospinal fluid (HEPES-aCSF) containing 

NaCl (120 mM), NaHCO3 (20 mM), D-glucose (10 mM), HEPES acid (6.7 mM), HEPES 

salt (3.3 mM), KCl (5 mM), CaCl2 (2.4 mM), KH2PO4 (1.25 mM) and MgSO4 (2 mM) 

saturated with 95% O2 / 5% CO2. After maintaining slices for at least an hour in HEPES-

aCSF at room temperature, they were transferred to the recording chamber and allowed to 

equilibrate for another hour with the superfusion medium of the recording chamber, 

namely bicarbonate-buffered aCSF containing NaCl (125 mM), NaHCO3 (26 mM), D-

glucose (10 mM), KCl (3.8 mM), CaCl2 (2.4 mM), KH2PO4 (1.2 mM) and MgSO4 (1.3 

mM) and saturated with 95 % O2 / 5 % CO2. Recordings were done in aCSF at a flow rate 

of 1.3 ml/min and a bath temperature of 32-33 °C.  

Extracellular DA concentration ([DA]o) was monitored and quantified using fast-

scan cyclic voltammetry (FCV) as described previously (Cragg, 2003; Rice and Cragg, 

2004; Threlfell et al, 2010). Briefly, recordings were made with 7-10 μm-diameter carbon 

fibre microelectrodes of tip lengths ~ 50-100 μm that were fabricated in-house. The 

carbon-fibre electrode tip was inserted 100 μm into tissue in the NAc core, ventral to the 
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anterior commissure and voltammetry was performed using a Millar Voltammeter (P.D. 

Systems, UK). The applied voltage was a triangular waveform, with a voltage range of -

0.7 V to +1.3 V and back versus an Ag/AgCl reference electrode at a scan rate of 800 

V/sec and a sampling frequency of 8 Hz.  

All evoked currents were recorded in the faradaic mode, showing currents after an 

electronic subtraction of background currents. These background-subtracted currents 

were monitored and recorded on a computer for analysis using Strathclyde Whole Cell 

Program (University of Strathclyde). The evoked current profiles were attributed to DA 

by comparison of their potentials for peak oxidation and reduction currents with those of 

DA in calibration media (500-600 and -200 mV vs. Ag/AgCl respectively). Profiles of 

[DA]o versus time were obtained by sampling the current at the DA oxidation peak.  

Electrode calibrations 

Electrode sensitivity to DA (nA/μM) in the presence of each added drug compound was 

determined from standard curves for DA oxidation current versus applied DA 

concentration for a physiological range of DA concentrations (1-3 μM) in aCSF in the 

presence of all experimental drugs, singly and in combination as used experimentally. 

Some of the applied drugs decreased absolute electrode sensitivity to DA e.g. electrode 

sensitivity to DA was decreased in the presence of SIN-1 (500 μM) by ~ 63 %, and in the 

presence of PAPA/NONOate (300 μM) by ~ 74 %, and in the presence of ODQ (100 μM) 

by ~40%. We used appropriately modified calibration factors determined from each and 

every drug condition to calibrate the electrodes. Note, we also confirmed that these 

effects of the parent compound on DA sensitivity occurred when electrodes were situated 

in the tissue environment by performing additional calibrations in tissue (data not 
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illustrated; required higher applied DA concentrations and inclusion of a DA uptake 

inhibitor (cocaine)  to allow applied DA in striatum to reach levels approaching low 

micromolar). Importantly, the relationship between [DA]o and oxidation current remained 

linear in all drugs used for the range of [DA]o seen in situ (data not illustrated).   

Local electrical stimulation 

Local stimulations used to evoke DA release were applied by a surface, bipolar 

concentric electrode (25 μm diameter Pt/Ir; FHC, USA). Under a binocular microscope, 

the stimulating electrode was positioned flush with tissue at a distance of ~100 μm from 

the recording electrode. Stimulus pulses of 200 μs duration were generated out-of-phase 

with FCV scans to prevent interference with the voltammetric current and applied at peri-

maximal currents (0.5-0.7 mA). Release evoked with stimulation used here (either a 

single pulse or brief 4-5 pulse trains) is inhibited by tetrodotoxin and is calcium-

dependent (Cragg, 2003) but not modulated by ionotropic glutamate or GABA receptor 

activation (Cragg, 2003; Exley et al, 2008; Threlfell et al, 2010). However, DA release is 

controlled by ACh acting at presynaptic nicotinic acetylcholine receptors on DA axons 

(Exley et al, 2008; Rice and Cragg, 2004; Zhang and Sulzer, 2004; Zhou et al, 2001). 

This local cholinergic input results from activity of cholinergic interneurons which have 

been shown to be tonically active in slices as they are in vivo (Aosaki et al, 1994; Bennett 

and Wilson, 1999). ACh evoked by local electrical stimulation does not seem to add to 

already tonic levels generated by high tonic activity of ACh interneurons. DA release 

evoked by remote pathway stimulations was shown to be regulated by striatal ACh 

similarly to release evoked by local stimulations (Exley et al, 2008; Rice and Cragg, 

2004). 
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Experimental design and analysis 

Stimulus protocols were repeated at a minimum of 2-minute intervals, which ensured 

stable, consistent release. To test the effect of frequency on DA release, a range of 

stimulations consisting of either a single pulse (1p) or 4 pulses at a range of frequencies 

spanning 5-100 Hz were applied in randomised order in triplicate at each given recording 

site. These stimulus frequencies include the full range of physiological DA neuron firing 

rates reported in vivo, consisting of tonic firing rates (<10 Hz) and phasic bursts (firing 

rates approx 15-25 Hz or higher) that accompany salient events (Bayer and Glimcher, 

2005; Hyland et al, 2002; Schultz, 1986; Morris et al 2004), and also higher frequencies 

as used previously that are particularly useful for probing for changes in release 

probability. We have established that the peak value of [DA]o for 1 Hz is 

indistinguishable from 1p (data not illustrated) and for simplicity we have used 1p data to 

represent 1 Hz outcome. Single-pulse stimulations were distributed regularly in time 

across each experiment (one 1p stimulation after three consecutive pulse train 

stimulations), to provide a reference value of [DA]o against which [DA]o evoked by other 

stimuli could be compared.  

All data are means ± standard error of the mean (SEM) and the sample size, n is 

number of observations. The number of animals in each data set is ≥ 3. Data are 

expressed as [DA]o normalized to release by a single pulse in control conditions. Mean 

value of mean peak [DA]o for a single pulse across experiments were 0.67 ± 0.06 μM 

(range 0.39-1.7 µM).  Comparisons for differences in means were assessed by Two-Way 

ANOVAs and post-hoc Bonferroni multiple comparison t-tests using GraphPad Prism. 
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Drug application 

NO donors of two different classes were used: 3-morpholinosydnonimine hydrochloride 

(SIN-1), purchased from Tocris Bioscience (UK); and (z)-1-[N-(3-Ammoniopropyl)-N-

(n-propyl)amino] diazen-1-ium-1,2-diolate (PAPA/NONOate), purchased from Alexis 

Biochemical (UK). SIN-1 was prepared fresh immediately prior to use in aCSF and 

protected from light. SIN-1 spontaneously generates NO in aqueous solution by 

decomposition (Feelisch and Noack, 1987) at rates expected to be in the low micromolar 

range/min for 500 μM SIN-1 as inferred by Feelisch et al, 1989 and Hogg et al, 1992. 

PAPA/NONOate was dissolved in 0.01 M NaOH to a stock concentration of 60 mM and 

diluted in aCSF prior to use to the desired final concentration. A concentration of 300 µM 

PAPA/NONOate as used in this study is expected to generate NO bath concentrations in 

the low micromolar range as inferred by Garthwaite et al, 2002.  Resulting tissue NO 

concentrations are likely to be several orders of magnitude lower than bath concentration 

(e.g. Garthwaite et al, 2002) owing to significant consumption of NO by tissue (Hall and 

Garthwaite, 2006). 

D-AP5, bicuculline, dihydro-β-erythroidine (DHβE), GYKI-52466 hydrochloride, 

Iberiotoxin (IbTx), (S)-MCPG, 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and 

saclofen were purchased from Tocris Bioscience (UK) or Ascent Scientific (UK). 

Trolox® was purchased from Merck (UK) and nomifensine was purchased from Sigma 

Aldrich (UK). The drugs were dissolved in water, aqueous acid (GYKI-52466 

hydrochloride, nomifensine), aqueous alkali ((S)-MCPG, saclofen), aqueous DMSO 

(ODQ) or ethanol (Trolox®) and were either prepared fresh or stored as stock aliquots of 
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500-2500 x final concentrations at -20 °C until required. Stock aliquots were diluted with 

oxygenated aCSF to final concentrations immediately before use.  

Each drugs condition involved drug application for approximately 60 minutes to include 

wash-on and a complete set of stimulations (40-45 minutes). Drug effects could be 

observed already 3-7 minutes after drug application and were maximal after 15 minutes. 

Thereafter drug effects remained constant for the whole course of frequency testing.  

 

Results 

NO donors increase evoked DA release in a frequency-dependent manner  

We explored how NO modulates DA release evoked by a range of different frequencies 

(1-100 Hz, 4 pulses) which are in the range of firing rates that DA neurons display in vivo 

but also include higher frequencies as used previously that are particularly useful for 

probing for changes in release probability. Dopaminergic neurons respond to salient 

stimuli by shifting from tonic (approx. 0.5-10 Hz) frequencies to short phasic bursts of 

high frequency firing ( approx. 15-25 Hz or higher, durations <200 ms) (Hyland et al, 

2002; Schultz, 1986). 

In control conditions, evoked [DA]o varied slightly but significantly with stimulus 

frequency in mouse NAc core (Fig. 1) by up to 172 ± 6 % of release by a single pulse, 

according to an inverted U relationship, as described previously (Exley et al, 2008). 

Application of the NO donor SIN-1 (500 μM) significantly increased the dependence of 

evoked [DA]o on stimulus frequency (Fig. 1a-b; Two-way ANOVA, frequency: 

F4,133=72.55, P<0.001; treatment: F2,133=34.49 P<0.001; interaction: F8,133=10.19, 
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P<0.001). Release by lower frequencies (≤ 10 Hz) remained unchanged but release by 

higher frequencies (≥ 25 Hz) was significantly increased compared to control. Maximum 

[DA]o were evoked by 100 Hz (4p; ~ 300 % of release by a single pulse). Drug effects 

were reversible upon washout (Suppl. Fig. S1a) and were concentration-dependent (data 

not illustrated) 

The effects of an alternative NO donor, PAPA/NONOate was also explored. 

PAPA/NONOate (300 μM), like SIN-1, significantly increased [DA]o in an activity-

dependent manner (Fig. 1c-d; Two-way ANOVA, frequency: F4,92=29.59, P<0.001; 

treatment: F1,92=89.09, P<0.001; interaction: F4,92=18.25, P<0.001) which was reversible 

upon washout (Suppl. Fig. S1b). Release evoked by lower frequencies (≤ 5 Hz) remained 

unchanged but release by higher frequencies (≥ 10 Hz) was significantly increased 

compared to control. Greatest [DA]o were evoked by 100 Hz bursts (4p; 364 % of release 

by a single pulse). The similar effects observed with two different NO donors suggests 

that these effects were due to NO rather than any non-specific effects of each donor or 

their different breakdown products. Thus in subsequent experiments, NO action was 

explored using a single example donor only, SIN-1. 

To confirm that the effect of SIN-1 were not due to the concurrent release of 

superoxide anions, the subsequent formation of peroxynitrite and consequent 

modification of striatal DA release (Trabace and Kendrick, 2000), we identified whether 

the effects of SIN-1 were prevented by the peroxynitrite scavenger Trolox® (Edwards and 

Rickard, 2005; Halliwell et al, 1999; Regoli and Winston, 1999). Trolox® alone (200 

μM) did not significantly modify evoked [DA]o compared to control conditions (Fig. 1e-

f). Furthermore, Trolox® (200 μM) did not prevent the subsequent effects of SIN-1 on 
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increasing the activity-dependence of evoked [DA]o (Fig. 1e-f) (Two-way ANOVA, 

frequency: F4,134=50.72, P<0.001; treatment: F2,134=141.9 P<0.001; interaction: 

F8,134=15.74, P<0.001). These data suggest that peroxynitrite did not contribute to the 

effect of SIN-1 on evoked [DA]o .  

NO donors regulate DA transmission via guanylyl cyclase-independent mechanism  

NO is reported to act through a variety of effector mechanisms. One major target of NO 

is sGC (Bellamy et al, 2002; Garthwaite and Boulton, 1995). NO activation of sGC 

generates cyclic guanosine monophosphate (cGMP) which has a variety of downstream 

targets e.g. ion channels, phosphodiesterases, and protein kinases (Garthwaite and 

Boulton, 1995). However, the involvement of sGC in reported facilitatory effects of NO 

on DA levels in the striatum remains controversial. This facilitatory effect of NO on DA 

levels has been shown to be both sGC-dependent (Guevara-Guzman et al, 1994; Trabace 

and Kendrick, 2000) and sGC-independent (Buyukuysal, 1997; Rocchitta et al, 2004; 

Stewart et al, 1996; West and Galloway, 1996). We explored whether the effect of NO 

donors on the frequency-dependent control of DA release identified here in NAc was 

sGC-dependent or -independent. 

The sGC inhibitor ODQ (100 μM) alone did not significantly change evoked 

[DA]o (Fig. 2a-c), and furthermore, ODQ did not prevent the subsequent effects of SIN-1 

(Fig. 2a-c). SIN-1 significantly increased evoked [DA]o in a frequency-dependent manner 

(Two-way ANOVA, frequency: F4,130=44.09, P<0.001; treatment: F2,130=42.98, P<0.001; 

interaction: F8,130=7.71, P<0.001), which was not different to the effect of SIN-1 alone 

(Two-way ANOVA, treatment: F1,84=2.22, P>0.05; interaction: F4,84=1.32, P>0.05). 
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These data suggest that NO-mediated effects on [DA]o observed here were sGC-

independent.  

Another frequently reported action of NO is S-nitrosylation of proteins such as 

ion channels. A commonly used approach to explore whether this mechanism underlies 

actions of NO is to block S-nitrosylation with N-ethylmaleimide (NEM). However, in 

pilot studies, NEM (2 mM) induced stimulus-independent continuous release of DA that 

prevented subsequent evoked DA release (data not illustrated), presumably via disruption 

of the SNARE complex. Thus, NEM is unsuitable as a tool to explore the role of S-

nitrosylation in these experiments. 

Effect of NO on evoked DA release is not mediated by modulation of DA reuptake 

Previous studies have reported that NO–mediated enhancement of extracellular DA levels 

occurs by inhibiting DA reuptake via blockade of the dopamine transporter (DAT) in 

vitro (Buyukuysal, 1997; Lonart and Johnson, 1994; Pogun et al, 1994) and in vivo (Kiss 

et al, 1999; Lin et al, 1995). Our data has sufficiently high temporal resolution to enable 

changes in re-uptake rates to be indicated by changes in the time course of disappearance 

of the evoked extracellular DA signal. We compared the falling phases of the DA 

transients evoked by 100 Hz pulse trains in control conditions versus those obtained 

during application of SIN-1. However, SIN-1 did not modify the decay of the DA signal 

(Fig. 2d; contrast with Fig. 2e, the change in decay of the DA signal seen after re-uptake 

blockade). Comparisons of the time required for peak evoked [DA]o to decay by 50% 

(t50) following 100 Hz pulse trains in control versus during application of SIN-1 did not 

reveal significant differences (control: t50 = 0.61±0.03 s; SIN-1: t50 = 0.62±0.03 s, paired 

t-test, P>0.05, n=9). Furthermore, to ensure that modulation of the function of the DAT 
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was not responsible for the SIN-1-induced changes in the activity-dependence of evoked 

[DA]o, we explored the effect of SIN-1 in the presence of DAT inhibition. Application of 

the DAT inhibitor nomifensine alone (10 µM) enhanced peak evoked [DA]o and 

significantly prolonged the extracellular lifetime of [DA]o (Fig. 2f-g) as previously 

shown (Jones et al, 1995a, b, 1996; Schmitz et al, 2002). Subsequent application of SIN-

1 significantly modified [DA]o in an activity dependent manner, (Fig. 2f-h; Two-way 

ANOVA, frequency: F4,181=16.50, P<0.001; treatment: F2,181=140.5 P<0.001; interaction: 

F8,181=5.75, P<0.001) not different to the effect of SIN-1 alone (see Fig. 2h) suggesting 

that modulation of DA re-uptake is not responsible for these NO-mediated effects on 

[DA]o.  

Major component of effect of NO on DA release is BK channel-independent 

One candidate sGC-independent mechanism through which NO has been reported to 

influence cellular excitability is via modulation of large conductance Ca2+-activated K+ 

(BK) channels. The BK current has been shown to be directly modulated by NO through 

S-nitrosylation of cysteine residues (and indirectly by activation of sGC depending on 

local NO concentrations) (Ahern et al, 2002). We explored whether BK channels might 

mediate NO effects on DA transmission. Blockade of BK channels with Iberiotoxin (100 

nM, IbTx) significantly increased the inverted U-dependence of the relationship between 

evoked [DA]o and frequency. IbTx significantly increased [DA]o evoked by 10 and 25 Hz 

compared to control (Fig. 2i-j) (Two-way ANOVA, post-hoc Bonferroni t-tests, 10 Hz: 

P<0.05, n=9; 25 Hz: P<0.01, n=9). The presence of IbTx however, did not prevent SIN-1 

effects. SIN-1 (500 µM) significantly increased evoked [DA]o in an activity-dependent 

manner with greatest effect at highest frequencies (Fig. 2i-k) (Two-way ANOVA, 
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frequency: F4,119=208.1, P<0.001; treatment: F2,119=312.0, P<0.001; interaction: 

F8,119=22.29, P<0.001). IbTx did however slightly change the effect of SIN-1. In the 

presence of IbTx, SIN-1 appeared to more generally increase evoked [DA]o throughout 

the range of stimulation frequencies applied, compared to the effects of SIN-1 in the 

absence of IbTx (Fig. 2k; compare solid versus dotted line). This apparent shift in the 

actions of SIN-1 may be due to a small component of NO action being via, or being 

shunted due to, a change in BK channel function. Nonetheless, a major activity-

dependent component of NO action was independent of BK channels. 

NO modulation of DA release is multifactorial 

We explored whether the effects of NO on DA release reported here are mediated directly 

by an action on DA axons, or indirectly via regulation of an intermediary 

neurotransmitter(s). Accumbal glutamate and GABA do not normally play significant 

roles in regulating DA release probability during discrete subsecond stimuli (Cragg, 

2003; Exley et al, 2008; Threlfell et al, 2010). However, since GABAergic and 

glutamatergic transmission can be modulated by NO in vivo (Bogdanov and Wurtman, 

1997; Guevara-Guzman et al, 1994; Trabace and Kendrick, 2000; West and Galloway, 

1997a) we investigated whether a potential change of the local glutamatergic or 

GABAergic tone by NO contributed to the SIN-1 effect on DA release. Application of a 

cocktail of antagonists for glutamate (NMDA: D-AP5, 50 μM; AMPA: GYKI-52466, 10 

μM; mGluR: (S)-MCPG, 200 μM) and GABA receptors (GABAA: bicuculline, 10 μM; 

GABAB: saclofen, 50 μM) did not significantly modulate evoked [DA]o at any frequency 

applied compared to control (Fig. 3a-c) as shown previously (Cragg, 2003; Exley et al, 

2008; Threlfell et al, 2010). Furthermore, glutamate and GABA receptor blockade did 
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not prevent the activity-dependent effect of subsequent SIN-1 application (Fig. 3a-c, 

Two-way ANOVA, frequency: F4,136=35.22, P<0.001; treatment: F2,136=68.30, P<0.001; 

interaction: F8,136=9.72, P<0.001) suggesting that the effect of NO on [DA]o is not via 

modulation of local glutamatergic or GABAergic tone.  

Accumbal nicotinic acetylcholine receptors (nAChRs) on dopaminergic terminals 

have a powerful control over DA release in the NAc (Exley et al, 2008; Rice and Cragg, 

2004). Normally, endogenous accumbal ACh released by tonically active cholinergic 

interneurons (ChIs) maintains ACh tone at accumbal nAChRs located on DA axons. This 

ACh tone ensures that initial DA release probability by a single stimulus pulse is high 

(Rice and Cragg, 2004; Zhou et al, 2001), that short-term depression of DA re-release at 

subsequent stimuli is prominent, and that sensitivity of DA release to frequency of 

activation is consequently limited (Cragg, 2003; Rice and Cragg, 2004). Changes in 

nAChR activation in turn modify the frequency sensitivity of DA transmission. We 

explored whether NO effects on DA transmission were mediated wholly or in part via an 

action involving ChIs/ACh. Application of the nicotinic receptor antagonist, DHβE (1 

μM) to block cholinergic input significantly modified evoked DA release in an activity-

dependent manner (Fig. 3d-e, Two-way ANOVA, frequency: F4,134=463.9, P<0.001; 

treatment: F2,134=602.4, P<0.001; interaction: F8,134=127.1, P<0.001), by reducing release 

by lower frequencies and enhancing release by higher frequencies as shown previously 

(Exley et al, 2008; Rice and Cragg, 2004). In the presence of DHβE, subsequent 

application of SIN-1 (500 μM) only slightly modified further the activity-dependence of 

evoked [DA]o (Fig. 3f, Two-way ANOVA, frequency: F4,134=463.9, P<0.001; treatment: 

F2,134=602.4, P<0.001; interaction: F8,134=127.1, P<0.001), but moreover, resulted in a 
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significant increase (63-89%) in [DA]o evoked by all frequencies compared to DHβE 

alone (Fig. 3f, Two-way ANOVA, frequency: F4,134=463.9, P<0.001; treatment: 

F2,134=602.4, P<0.001; interaction: F8,134=127.1, P<0.001). 

These data suggest a combination of both direct and indirect effects of NO on DA 

release. In the absence of cholinergic input to DA terminals (i.e. in the presence of 

nAChR antagonist DHβE), NO seems to act directly at the level of DA terminals to 

enhance release in a manner independent of stimulation frequency. However, in the 

presence of cholinergic input (i.e. in the absence of nAChR antagonist DHβE), these 

direct effects of NO at the level of the dopamine terminal to increase release at all 

frequencies appear to be set against an indirect action via the cholinergic system, with a 

net outcome to increase the sensitivity of DA release to frequency (Fig. 4).  

 

 
Discussion 
 
This study reveals that exogenous NO can powerfully and variably modulate DA release 

in the NAc core, and enhance the frequency-dependence of DA release. These NO-

mediated effects are independent of sGC activation, and largely independent of two other 

candidate NO targets, DATs and BK channels. Furthermore, this frequency-dependent 

modulation of DA release by NO appears to be multifactorial, involving an indirect 

action via (or interaction with) ACh released from ChIs, as well as a direct action on DA 

axons. These data reveal a variable neuromodulatory influence of local NO on DA in the 

NAc that depends on activity in DA neurons as well as local accumbal circuits. Given the 

central role of DA neurotransmission in the NAc on motivated behaviours, interactions 
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between NO, ACh and DA may be important for regulating these behaviours in normal as 

well as pathological states. 

 

NO increases the contrast of DA signals released by phasic versus tonic frequencies 

of activity via GC-independent mechanism(s) 

Two separate NO donors, SIN-1 and PAPA/NONOate increased evoked [DA]o and 

enhanced the frequency sensitivity of DA release. Thus NO donors enhanced the contrast 

between [DA]o evoked by phasic versus tonic frequencies of activation. Donors were 

used at concentrations that are those typically used to produce effects of NO that are 

thought to be physiologically relevant (Bon and Garthwaite, 2001; East et al, 1991; 

Garthwaite et al, 2002; Luchowski and Urbanska, 2007; Yang and Cox, 2008). Here, the 

similar effects on DA release of these two different NO donors suggests that their 

outcomes are due to their common property to generate NO with physiological 

consequences rather than any non-specific effects or other breakdown products of each 

compound.  

The concentrations of NO that are physiological are still debated (Hall and Garthwaite, 

2009). Current estimates of NO concentrations found during normal tissue functioning 

are in the range of hundreds of picomolar to low nanomolar (i.e. 10-10 - 10-8 M) (Hall and 

Garthwaite, 2009; Sammut et al, 2006) and are a function of the rates of NO production, 

diffusion and consumption. Tissue concentrations of NO that result from the NO donors 

applied here, will depend on the NO concentrations generated in solution (100- to 1000-

fold lower than the donor itself, e.g. Feelisch et al, 1989; Garthwaite et al, 2002; Hogg et 

al, 1999) and also on tissue penetration by NO. The high rate of consumption of NO by 
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tissue is thought to result in a substantial concentration difference between NO applied in 

solution and the limited NO reaching tissue (estimated to be 1,000-10,000-fold lower in 

tissue; Hall and Garthwaite, 2006, 2009). Thus, taking these different ‘dilution’ factors 

into account in the current study, the NO concentrations in tissue resulting from the donor 

concentrations applied in solution (10-4 M) may be between 105 and 107-times lower, i.e. 

in the range of 10-9 to 10-11 M. These picomolar to low nanomolar estimates are very 

similar to estimates of NO concentrations found physiologically. Indeed, the effects here 

were consistent with physiological and not pathological effects because they were 

completely reversible within minutes of washout. Furthermore, previous studies using 

isolated rat optic nerve preparations found no signs of nervous tissue damage after 2-hour 

exposure to 300 µM PAPA/NONOate or a 4-hour exposure to concentrations of SIN-1 (2 

mM) an order of magnitude higher than those used here (Garthwaite et al, 2002). In 

addition, NO donor effects persisted in the presence of the peroxynitrite scavenger 

Trolox®, indicating that they did not depend on a pathological conversion to 

peroxynitrite. 

The enzyme sGC is an effector mechanism for some actions of NO. In dorsal 

striatum, the sGC-dependence of facilitatory effects of NO on DA levels remains debated 

and has been shown to be sGC-dependent in vivo (Guevara-Guzman et al, 1994; Trabace 

and Kendrick, 2000) but also sGC independent both in vitro (Buyukuysal, 1997; Stewart 

et al, 1996) and in vivo (Rocchitta et al, 2004; West and Galloway, 1996) . In our study in 

NAc, the effects of NO on dynamic DA signalling were not prevented by an inhibitor of 

sGC, indicating that they are sGC-independent. This is in line with previous in vitro 
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studies in dorsal striatum revealing sGC-independent effects of NO on DA release 

(Buyukuysal, 1997; Stewart et al, 1996).  

Many target molecules have been identified in various systems to mediate the 

many physiological functions of NO. It has been suggested that NO might increase 

extracellular striatal DA levels via inhibition of DATs in some studies (Buyukuysal, 

1997; Lonart et al, 1994; Pogun et al, 1994). However, NO donors modified DA 

transmission in the current study via a mechanism that did not involve any modulation of, 

or dependence on, DA uptake via DAT.  

The conductance of BK channels (amongst other K+-channels) has also been 

reported to be modulated by NO, via both sGC-dependent and -independent mechanisms 

(Ahern et al, 1999; Klyachko et al, 2001). In posterior pituitary nerve terminals, NO has 

been reported to increase BK channel conductance therefore promoting spike 

afterhyperpolarization and Na+-channel recovery from inactivation, and thus reducing 

action potential failures during spike trains (Klyachko et al, 2001). Such a mechanism 

would be expected to give rise to a short-term, frequency-dependent enhancement of 

transmitter release, and was thus an attractive mechanism to explain NO effects on [DA]o 

described here. While BK channel expression/function has to date not been reported in 

DA neurons or axons, BK channels regulate neurotransmitter release from some other 

central neurons (e.g. Xu et al, 2005) and are also present in striatum, e.g. in dorsal striatal 

ChIs where they contribute to action potential repolarization (Bennett et al, 2000). Since 

striatal ACh potently regulates DA transmission in a manner that varies with presynaptic 

activity (Cragg, 2006; Rice and Cragg, 2004; Zhang and Sulzer, 2004), these channels on 

ChIs might in turn modulate DA release. However, while IbTx, a blocker of BK channels, 
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slightly modified evoked [DA]o, it did not prevent significant frequency-dependent 

effects of SIN-1 on DA release in NAc. Together these data suggest that the sGC-

independent effector mechanisms involved in NO-mediated modulation of DA release do 

not require either the DAT or BK channels, and must involve an alternate target(s), of 

which there are numerous candidates e.g. Na+ channels (Hammarstrom and Gage, 1999), 

the ryanodine receptor (Sun et al, 2001; Xu et al, 1998), L-type Ca2+ channel (Campbell 

et al, 1996; Summers et al, 1999), cyclic nucleotide-gated channels (Broillet, 2000; 

Broillet and Firestein, 1996). 

 

NO modulates DA release via an indirect ACh-dependent mechanism and via direct 

actions on dopaminergic terminals 

To identify which accumbal neuron type(s) mediate NO regulation of DA transmission, 

we explored whether these effects required local accumbal glutamatergic, GABAergic or 

cholinergic inputs (e.g. see Bogdanov and Wurtman, 1997; Guevara-Guzman et al, 1994; 

Trabace and Kendrick, 2000; West and Galloway, 1997a). NO-mediated modulation of 

evoked DA release was independent of glutamate and GABA inputs, consistent with 

previous studies showing that neither glutamate nor GABA modulate DA release evoked 

by single pulses and brief 4-5 pulse trains (Cragg, 2003; Exley et al, 2008; Threlfell et al, 

2010).  

NO has been shown to powerfully modulate the activity of ChIs in dorsal striatum 

(Centonze et al, 2001) as well as release of ACh in dorsal and ventral striatum (Guevara-

Guzman et al, 1994; Prast et al, 1995, 1998; Prast and Philippu, 2001; Trabace and 

Kendrick, 2000). Notably, acetylcholine at nAChRs on DA axons plays a major role in 
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governing the frequency-sensitivity of DA release (Exley et al, 2008; Rice and Cragg, 

2004; Zhang and Sulzer, 2004). In the current study, we reveal that when ACh action at 

nAChRs in NAc is prevented, the frequency-dependent effects of NO on DA 

transmission are also prevented. Without nAChR activity, NO then increases DA release 

independently of frequency of activation. The simplest explanation for these data is that 

NO operates two partly opposing mechanisms that control DA release. One mechanism is 

indirect, involving regulation of ACh input to nAChRs akin to switching nAChRs off. 

Switching nAChRs off is expected to decrease DA release at low frequencies but enhance 

frequency sensitivity of DA release ultimately enabling enhanced DA release at high 

frequencies, and can result from either a decrease in ACh release, or an increase 

sufficiently large to cause nAChR desensitization as seen with nicotine (Rice and Cragg, 

2004; Zhang and Sulzer, 2004). The second mechanism, revealed in the absence of 

nAChR activation, appears to be directly located to DA axons, and increases evoked 

[DA]o uniformly regardless of stimulus frequency. When nAChR tone is intact, these two 

mechanisms acting in concert would be expected at low frequencies to oppose each other 

resulting in no net effect. By contrast, at high frequencies, they would be expected to 

boost DA signals. These outcomes are indeed those observed here, and are summarized 

in a cartoon representation of individual and net effects (Fig. 4).  

 Mechanistically the increase in DA release by both direct and indirect actions of 

NO could be explained by an increase in vesicle fusion events as suggested for 

hippocampal synaptosomes by Meffert et al, (1996, 1994). NO may increase the docking 

and fusion of dopaminergic vesicles at dopaminergic terminals leading to an increase in 

release independent of frequency. In addition, NO may also increase the docking and 
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fusion of cholinergic vesicles at cholinergic terminals leading to an increase in ACh 

release that, as described above, could desensitize nAChRs with the effect of increasing 

DA release at high frequencies. 

An action of NO at multiple neuronal sites with variable outcome would certainly 

be in keeping with the body of literature to date indicating that NO that has diverse target 

molecules and proposed effector mechanisms and various reported outcomes on DA 

release (in dorsal striatum). However, these data do not preclude an alternative 

explanation that NO regulation of DA transmission is via action at a single site, through a 

single mechanism that is in some way shunted at low frequencies in the presence of 

nAChR tone.  

 

Summary and Concluding Remarks 

Whether there are single or multiple effector mechanisms, these effects of NO donors 

suggest that the action of endogenous NO on accumbal DA signaling may be highly 

dynamic, depending on DA axon activity and also on the state of the local ventral striatal 

network, especially ChIs. Our data suggest that during ChI and nAChR activation, 

accumbal NO might enhance how DA release conveys high frequencies of activation. 

This postulated action for NO would be in opposition to those of ACh which limits the 

frequency-dependence of DA signaling (Cragg, 2006). However, in the absence of 

nAChR activation by ACh, when the frequency-dependence of DA signaling is great, NO 

might boost this outcome by promoting all DA signals uniformly. We speculate that NO 

might co-operate in outcome with the pauses in ChIs that signal motivationally 
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significant stimuli (Aosaki et al, 1994; Apicella, 2002; Morris et al, 2004; Ravel et al, 

2001; Shimo and Hikosaka, 2001), when nAChR activation will be minimal.  

The neurons that are the most likely source of endogenous accumbal NO are 

nNOS-expressing, GABAergic interneurons that also contain somatostatin and 

neuropeptide Y (Beal et al, 1986; French et al, 2005; Smith and Parent, 1986) and are 

highly interconnected to form a local nNOS-containing interneuron network (French et 

al, 2005). Knowledge of their functions within the accumbal network is limited but our 

data suggest that they might play a role in promoting transmission by DA of phasic 

versus tonic activity in DA neurons. The outcome of endogenous NO on accumbal DA 

function might vary dynamically with activity within the accumbal neuron network and 

might also impact significantly on the behavioral outcome of activation of limbic basal 

ganglia loops.  
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FIGURE LEGENDS 

Figure 1. NO donors increase evoked DA release in a frequency-dependent manner.  

(a, c, e) Profiles of mean [DA]o ± SEM versus time following stimuli (arrows) of either a 

single pulse (p) or 4p (5-100 Hz) in (a) control conditions (left) and NO donor SIN-1 

(500 μM) (right), (c) control conditions (left) and NO donor PAPA/NONOate (300 μM) 

(right) or (e) control conditions (left), Trolox® (200 µM) (center) and Trolox®+SIN-1 

(right). Data are normalised to peak [DA]o evoked by 1p in controls. (b, d, f) Mean peak 

[DA]o ± SEM versus frequency at 1p or 4p (5-100 Hz) in (b) control conditions (filled 

circles) and NO donor SIN-1 (unfilled) (n=9-15),(d) control conditions (filled circles) and 

NO donor PAPA/NONOate (unfilled), (n=9-17) or (f) control conditions (filled circles), 

Trolox® (unfilled) and Trolox®+SIN-1 (gray fill) (n= 9-14). Data are normalized to peak 

[DA]o evoked by 1p in controls. Asterisks indicate significance level in post-hoc 

Bonferroni t-test for drug treatment versus controls, *P<0.05, ***P<0.001. Crucifixes 

indicate significance level in Bonferroni post-hoc t-tests for Trolox versus Trolox + SIN-

1, †P<0.05, †††P<0.001. 

 

Figure 2. The effect of NO on evoked DA release is independent of sGC or DA re-

uptake modulation and only a small component is dependent on BK channels.  

 (a, f, i) Profiles of mean [DA]o ± SEM versus time following stimuli (arrows) of either 

1p or 4p (5-100 Hz) in control conditions (left), various antagonists (center) (a, ODQ, 

100 µM; f, nomifensine, 10 µM; i, IbTx, 100 nM) and antagonist + SIN-1 (500 µM) 

(right) normalised to peak [DA]o evoked by 1p in controls. (b, g, j) Mean peak [DA]o ± 
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SEM versus frequency during 1p or 4p (5-100 Hz) in control conditions (filled circles), 

antagonist (unfilled) (b, ODQ (n= 8-15); g, nomifensine (n = 12-20); j, IbTx (n=9)) and 

antagonist + SIN-1 (gray fill) normalized to peak [DA]o evoked by 1p in controls. 

Asterisks indicate significance level in post-hoc Bonferroni t-test versus controls, 

*P<0.05, **P<0.01. Crucifixes indicate significance level in Bonferroni post-hoc t-tests 

for antagonist versus antagonist + SIN-1, †† P<0.01, ††† P<0.001. (c, h, k) Mean peak 

[DA]o versus frequency expressed as % of peak [DA]o evoked at that frequency prior to 

SIN-1 cocktail application, to compare the effect of SIN-1 on [DA]o at each applied 

frequency in the presence of (c) ODQ (h) nomifensine or (k) IbTx versus SIN-1 alone 

(dashed line; determined from data in Fig. 1b. Error bars are also percentage of pre-SIN-

1 levels. (k) Although IbTx does not prevent the activity-dependent increase in DA 

release (Two-way ANOVA, P<0.001, n=9) which is still prominent at 100 Hz, the effects 

of SIN-1 may be slightly modified towards a general frequency-independent increase in 

DA release. (d, e) Falling phases of mean [DA]o ± SEM profiles versus time released by 

high-frequency bursts (4 p/ 100 Hz) in control (straight line) and (d) SIN-1 or (e) 

nomifensine (dashed line) normalised to peak [DA]o evoked by 1p in controls.  

 

Figure 3. The effect of NO on DA release is independent of striatal glutamate or 

GABA input but varies with cholinergic input.  

(a, d) Profiles of mean [DA]o ± SEM versus time following stimuli (arrows) of either 1p 

or 4p (5-100 Hz) in control conditions (left), antagonists (center) (a, glu/GABA 

antagonist cocktail (10 μM bicuculline, 50 μM saclofen, 50 μM D-AP5, 10 μM GYKI-

52466, 200 μM (S)-MCPG); d, DHβE, 1 µM) and antagonists + SIN-1 (500 µM) (right) 
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normalised to peak [DA]o evoked by 1p in controls. (b, e) Mean peak [DA]o ± SEM 

versus frequency during 1p or 4p (5-100 Hz) in control conditions (filled circles), 

antagonists (unfilled) (b, glu/ GABA antags, n=9-16; e, DHβE, n=9-16) and antagonists + 

SIN-1 (gray fill) normalized to peak [DA]o evoked by 1p in controls. Asterisks indicate 

significance level in post-hoc Bonferroni t-test versus controls, *** P<0.001. Crucifixes 

indicate significance level in Bonferroni post-hoc t-tests for antagonist versus antagonist 

+ SIN-1, † P<0.05, ††† P<0.001. (c, f) Mean peak [DA]o versus frequency expressed as % 

of peak [DA]o evoked at that frequency prior to SIN-1 cocktail application, to compare 

the effect of SIN-1 on [DA]o at each applied frequency in the presence of (c) Glu/GABA 

antagonists or (f), DHβE, versus SIN-1 alone (dashed line; determined from data in Fig. 

1b). Error bars are also percentage of pre-SIN-1 levels. 

 

Figure 4. Direct and indirect effects of NO on DA release supplement each other at 

high frequency DA neuron activity but cancel out at low frequency. 

Cartoon to explain net outcome of the ‘direct’ and ‘indirect’ effects of NO on DA release 

evoked by varying frequencies of stimulation. ‘Indirect’ modulation of DA release by NO 

involving a net reduction of nAChR control of DA would be expected to reduce DA 

release at low frequencies, but consequently enhance frequency sensitivity and then even 

enhance DA release at high frequencies (see Cragg, 2006; Rice and Cragg, 2004). 

‘Direct’ modulation of DA release by NO (seen in absence of nAChR activation) 

increases [DA]o uniformly regardless of stimulus frequency. When nAChR tone is intact, 

these two mechanisms acting in concert will enhance [DA]o at high frequencies but 

cancel out at low frequencies.  
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