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A new algorithm for the intersection of a line
with the independent set polytope of a matroid.

Alexandre Skoda
Equipe Combinatoire et Optimisation. CNRS et Université Paris 6
France Telecom R&D Sophia Antipolis

Abstract

We present a new algorithm for the problem of determining the
intersection of a half-line A, = {2 |z = A, A > 0,u € R} } with the
independent set polytope of a matroid. We show it can also be used to
compute the strength of a graph and the corresponding partition using
successive contractions. The algorithm is based on the maximization
of successive linear forms on the boundary of the polytope. We prove
it is a polynomial algorithm in probability with average number of ite-
rations in O(n®). Finally, numerical tests reveal that it should only
require O(n?) iterations in practice.

Keywords: Algorithm, graph, strength of a graph, submodular function,
matroid.

1 Introduction

Let M = (E,Z) be a matroid defined on a finite set F = {e1,ea,...,e,},
with the collection of independent sets Z. Let r be the rank function of M.
J. Edmonds [6] showed that the independent set polytope P(M) of M is
fully determined by a family of linear inequalities:

P(M) ={z ¢ R} | z(S) <r(S) for all S C E}.

where z(S) = ;g ;.

When M is a graphic matroid, F becomes the family of edges of a graph
G and 7 is the set of forests of this graph. In this case, we denote P(G) the
independent set polytope of M.

For a given u € IR}, the intersection of the half-line A, = {z |z =
Au, A > 0} with the polytope P(M) is a closed interval [0, Apgz]u. The
upper bound A4, is the solution of the following linear program :

(PL) : max{\ |z € P(M); =z = Au}
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We give a new algorithm solving (PL). Many important problems in
combinatorial optimization can be reduced to the program (PL). For in-
stance, the computation of the strength of a graph and the minimization of
a submodular function. Several efficient algorithms have already been found
to solve (PL) ([4, 5], [8]). Most of them use an auxiliary digraph. Besides
the augmentation at each iteration can be relatively small but sufficient to
guarantee their polynomiality. The new algorithm we propose here is based
on the maximization of appropriate linear forms on the polytope P(M).
The augmentation at each iteration is chosen as large as possible. In this
way, this new algorithm could be faster than the previous ones. Nevertheless
the analysis of the complexity of this algorithm seems to be difficult and at
first we prove the algorithm is polynomial in probability. We now describe
this new algorithm. At each step of the algorithm, a point Au € A, is given
as a convex combination of n linearly independent vertices (X1, Xo, ..., X},)
of P(M). We start with the n elements of F, i.e. X; = e; for all j € [1,n].
At each step, we modify at least one of the X; by "pushing” Au along the
line A, to the boundary of P(M). Of course, the algorithm stops when A\u
meets the boundary. In a preceding paper [7], we chose to progress ”care-
fully” at each step. We had to consider all vertices we can obtain from the
X’s by addition or exchange of an element of E according to the structure
of the matroid. In order to decide which vertex we had to modify, we needed
to construct an auxiliary digraph and to solve problems of arborescences of
shortest paths in this graph. We proved :

Theorem 1.1 This algorithm, which works with additions and exchanges
of elements of E to solve the linear program (PL), ends after at most n®
iterations. Its running time is O(n® +~yn7) where vy is the time for an oracle
call.

In this paper, we make the opposite choice to progress as much as possible
at each step. We look for a new vertex X, ;1 which is as far as possible
above the affine hyperplane generated by the X;’s. It is equivalent to maxi-
mize on the boundary of the polytope P(M) the linear form defining the
equation of the hyperplane. We replace one of the X;’s by the new vertex
X411 and we iterate. It seems more difficult to control the complexity of
this new algorithm because, even if at each step we progress more quickly,
nevertheless we don’t necessarily progress in the right direction of the line
A, but in the direction which is orthogonal to the hyperplane. Of course,
these two directions are in average close one from the other and we’ll prove
here:

Theorem 1.2 This new algorithm which mazimizes appropriate linear forms
on the boundary of the polytope to solve the linear program (PL), is strongly
polynomaal in probability. It ends after an average number of iterations less
or equal to 4n®. Its average running time is less or equal to O(n” + ynb).



These two algorithms are useful to compute the strength of a graph or
of a matroid. Let G = (V, E) be a connected graph. We suppose, for each
edge e of E, a strength u(e) > 0 is given, measuring the cost we have to pay
to delete the edge e from the graph. For S C E, we set u(S) = ), .qu(e)
and we denote k(S) the number of new connected components which arise
when we cancel the set S of edges. We define the strength o(G,u) of the
graph G by :

. u(S)
o(G,u) == min (k(S)’ SCE, k(S)> 0) .
The strength of a graph has been proposed by D. Gusfield [10] as a measure
of network invulnerability. W.H. Cunningham [5] has proposed an algorithm
for computing the strength and finding a minimizing set S. D. Gusfield [11],
H. N. Gabow [9], Cheng and Cunningham [3] and F. Barahona [1, 2] have
proposed other algorithms improving the complexity of W.H. Cunningham’s
strongly polynomial algorithm.

The rank function is submodular, therefore there exists a unique maximal
set S C E such that o4, = Apmaegu verifies the constraint z(S) = r(S) of
the polytope P(G). We prove, in section 2, the following results :

1)1 S = B, o(G,u) = {5

2) If S C E, we build the contracted graph G’ by replacing the vertices of
G incident to at least one edge of S by a single vertex and deleting S. Let
u’ be the restriction of the vector u to E'\ S. Then we prove :

o(G,u) = o(G'u').

As each contraction removes at least one edge from the graph G, we need
at most n iterations of the algorithm solving (PL) to compute the strength
of G. We more generally define in section 2, the strength of a matroid and
we state for a matroid the results we have claimed for graphs.

In [5], W.H. Cunningham computes the strength of a graph by another
method without any use of (PL). Nevertheless, the schemes of the two
methods are similar. W.H. Cunningham solves at most n linear programs.
For each of them he has to find, for any given z not in the polytope P(G),
the most violated inequality, that is to find S C F maximizing z(S) — r(5).
Our linear program (PL) is equivalent to minimize % and therefore it is
quite different. But W.H. Cunningham has proved in [5], one can solve (PL)
by at most n iterations of the "most violated inequality” problem. We give
here a direct solution of (PL) and we hope the interest of this solution is
also justified by the new methods we use.

At each step of the algorithm, we consider the affine hyperplane H gene-
rated by the n vertices X1, Xo,..., X, of P(G) (or P(M)) and the equation
hof H (h(X;) = 1,1 < j <mn). As in W.H. Cunningham’s article [4],



we build a directed graph G, which classifies all possible additions and ex-
changes of edges. We don’t use this digraph to choose a new vertex X, ;
by addition or exchange of edges as in [7] but to prove that the vertex
Xp+1 which maximizes the linear form h on P(M) is far enough above the
hyperplane H generated by X1, Xo,..., X,,.

The theorem 4.1 in section 4.1 is the decisive result : we prove we progress
at least of the quantity # to the boundary of P(G) at each iteration in the
direction which is orthogonal to the hyperplane H. A convenient proba-
bilistic model using Bernoulli’s scheme allows us to prove in section 4.2 that
the algorithm stops in average after at most 4n° iterations. At the end of
the paper, section 4.4 gives a review of numerical tests. According to the
results of these tests, one can hope the algorithm ends after O(n?) iterations
in the deterministic case. The results of sections 2 and 3 can be extended
to polymatroids. In section 4, the proof of theorem 4.1 doesn’t work for
polymatroids because the augmentation associated with an addition or an
exchange can be very small (for a matroid it is equal to 1) and so our proba-
bilistic approach is restricted to matroids.

2 Strength of a matroid

Similar results arise in papers of S. Fujishige [8] and J. Fonlupt and A. Skoda
[7] but for the sake of completeness we give direct proofs of the results
we need in the general case of a matroid (or even a polymatroid). Let
r: P(E) = Z* (resp. r : P(E) — IR") be a submodular function, that is,
for all A and B C F, we have : r(AUB) +r(ANB) < r(A) +r(B). We
suppose () = 0 and r is nondecreasing (A C B = r(A) < r(B)). Then r is
a rank function (resp. r is a polymatroid function). The polytope associated
with r is defined by :

P, ={z e RE;VA C B,z(A) <r(A)}.

When r is a polymatroid function the polytope P, will be called a polyma-
troid.

We consider a matroid M with basis E and rank function r (or more
generally in this section a polymatroid P, with underlying set £ and poly-
matroid function ). Let u € IR™ be a positive vector. We define the strength
o of the matroid M by:

S u(B)
oM = min, B — D) M

where B = E'\ B. For a given A € IR, let Hy be the hypercube defined by:

Hy:={z|zeR"0<z(e) <Au(e) for all e € E'}. (2)



We consider the linear program (P)), parametrized by A:

z(A) := max {Zx(e) |z € P(M)N HA} . (3)

eck

(respectively x € P, N Hy). z(\) is a nondecreasing function of A. We have
2(0) = 0 and there exists A" > 0 such that YA > X', z(\) = r(E). The
following result is a direct consequence of the theorem of intersection of two
polymatroids.

Proposition 2.1 For each fized \, we have the equality :

z(A) = fr‘ngig[)\u(A) + r(A)]. (4)

In [12] we give a direct proof for a matroid (which is also valid for a polyma-
troid because the proof only uses the submodularity of 7). A similar result
appears in W.H. Cunningham’s article [5].

As consequence of linear parametrized programming, we can prove the
function z(A) is nondecreasing, concave and piecewise linear. We prove more
precisely:

Proposition 2.2 Let \g =0 < A\ < A2 < ... < A, be the values of X for
which the function X — z(X\) is not differentiable (that is the breakpoints of
the curve z(\)).

(1)  For every open interval |\;, \j+1] there exists a unique subset A; of E

such that z(X\) = Au(4;) + r(A;).
(1) If X=X, there exist two distinct subsets A;_1 and A; such that

2(A) = Au(A;_1) +r(A;i_1) and 2(\) = Au(A;) + r(A4;).

(i) D=Ap C A CAyC...C Ay =F and |A;] > |A;—1| + 1.

As |A;| < n, (iii) implies k < n. Therefore the curve z(\) has at most n
breakpoints.

2(A)




Proof: TLet ) be a value of A such that at least two distinct sets By and
By achieve the minimum z()). Therefore we have z(\) = Au(By) +r(B1) =
u(Bs) 4+ r(B3). Then, by submodularity of the rank function r:
XU,(Bl N BQ) + T(El U EQ) + XU(Bl U Bg) + ’I"(El N Eg)
< \u(By) +7(By) + Mu(Bs) 4+ 7(B3) = 2z()). (5)

On the other hand, we have by definition of z()) :

2(A\) < Mu(By N By) +r(ByUBy) and z(\) < Au(B; U By) +r(B1 N By).

(6)
We deduce from (5) and (6) :

Z(X) = XU(BI N Bg) + T(El UEZ) == Xu(Bl U B2) + ’)”(El QEQ).

In other words, By N By and By U By are also minimizers of z(\). Thus we
can define the smallest set B, and the largest set Bmax such that :

2(A) = Mu(Bmin) + 7 (Bmin) = A(Bmax) + 7(Bmax)-

In addition, for all subset B achieving the minimum z()\) and distinct from
Bhin and Bpax, we have :

w(Bmin) < u(B) < u(Bmax)- (7)

As Mu(B) +r(B) = Mu(B) + r(B) + (A — N)u(B), we have :
Mu(B) 4 r(B) = z(N) + (A — Nu(B). (8)
We obtain, from (7) and (8), for X < X :
2(A) + (A = Nu(Bmin) < Mu(B) +7(B) < 2(A) + (A = A)u(Bmax)-

As Bpin and By, minimize z()), this is equivalent to:

AU(Bmin) + 7(Bmin) < Au(B) + r(B) < Au(Bmax) + 7(Bmax)- 9)
For A < X (i.e. A — X\ < 0), we obtain, in a similar way, from (7) and (8) :
AMu(Bmax) + 7(Bmax) < Au(B) 4+ 7(B) < At(Bmin) + 7(Bmin).  (10)

The inequalities (9) and (10) show that X is one of the values Ao, A1, ..., A
(it corresponds to an angular point in the graph of the function z(\)). For

example, let us suppose A = \;. Then ~we can ghoose A_Z = Bm_in and A;_1 =
Brax. Thus A; C A;—; and therefore A; 1 C A; and |A;| > |4;-1] + 1.

Proposition 2.3 The last value of discontinuity \, determines the strength
of the matroid M:
1 u(Ag—1)

M) = = ) (A ) )




The proof of proposition 2.3 immediately follows from proposition 2.2. More
details can be found in [12].

Theorem 2.1 The contracted matroid M /Ay has the same strength as the
matroid M : )
o(M,u) =a(M/A,u) = v (12)
k
Proof: z()) is solution of the linear program (Py) associated with M (resp.
the polymatroid P,) defined by:

0 <z(e) < Au(e) Ve € E,
(P { (4) < r(4) VACE, (13)
>eer ©(€) = 2(A)(max).

For 0 < A < Ay, Hy C P(M) and the intersection of P(M) with the half-line
A, generated by u is a line-segment [0, A\ju]. Thus A\; corresponds to the
first rank constraint met by A,. In other words, \; is the solution of (PL)
for the polytope P(M). More precisely we have x(A1) = M\ju(Ay) = r(4;).
Then, for all A > XAy, a solution z achieving the maximum of z(\) is such
that z(e) = A\u(e) for e € A;. Thus:

doale) = mle)+ > w(e) = > xz(e) + Mu(dy) = > z(e) +r(4y).

eck e€A; ecA; eEAL ecAy
(14)
On the other hand, from (13), we have VA C Ay, 2(AUA;) = z(A)+x(A4;) <
r(AU A;). Then we have :
z(A) <r(AUA)) —2(A) =r(AU Ay) —r(4y). (15)

We consider the contracted matroid M /Zl with set Fy = A; and rank
function 71 (A) :=r(AU A;) — r(A;) for A C A; (resp. the polymatroid P,
associated with 7y and the set Ay). The linear program (P;())) associated
with M/A; (resp. P,,) is defined by :

0 <z(e) < Aule) Ve € Ay,
(P1r(N) { z(A) < ri(A) VA C Ay, (16)
Deea, 2(€) = z1(A)(max).

From (14) and (15), it follows (P)) is equivalent for A > Ay to :

z(e) = \u(e) Ve € Ay
0 <z(e) < Aule) Ve € Ay
z(A) <ri(A) VAC Ay

z1(\)(max) + (A1) = z()\) (max)



Therefore z(\) = z1(\) + r(Ay) for A > A\;. The breakpoints Ag, ..., \ are
the same for the curves z(A) and z;(\). Thus i =o(M/A1,u) = o(M,u).

In particular, Ao can be computed by solving (PL) for the polytope
P(M/Ay). In the same way, ;i is solution of (PL) for the polytope
P(M/(A1U---U4;)). Therefore we have :

Theorem 2.2 We can compute the solution z(\) of the linear program Py
by solving the program (PL) at most n times, first for P(M) and after for
at most n — 1 other polytopes associated with matroids, the underlying sets
of which are strictly decreasing.

3 Algorithm using maximization of linear forms

Let r : P(E) — IR be a polymatroid function. We recall the polymatroid
P,, associated with r, is the polytope defined by :

P, ={z € RE;VA C BE,z(A) < r(A)}.

A vertex of P, is an extreme point of P,.. For v € R}, we recall the point
Tmax, defined in the introduction, corresponds to the solution of the linear
program :

(PL) max {\ |z € RY; v € Py 2 = \u}.

We denote X1, Xo,...,X;, the vertices of P,. We associate with each vector
X a variable y; for 1 < j < [. P, is the convex hull of the vectors X},
1 < j <I. We can now write the linear program (PL) as follows :

Amaz = MaAx A

PL) =
( ) Z;j:l ijj = Au
Zj:l yj =1
A subset of columns J is called a feasible basis if |J| = n, if the column

vectors X;,7 € J are linearly independent and if there exists A > 0 such
that the linear system :

vjed yj 20,

2 jes YiXj = Au

ZjEJ yj =1

admits a unique solution. We call A the value of the basis solution of the
system.

Let X be a vertex of the polymatroid. We say the subset A C F is
X-tight if X(A) =r(A). We have the following well known result :



Lemma 3.1 If A and B C E are X -tight, then ANB and AUB are X -tight.

Proof: By submodularity of r, we have:
X(AUB)+ X(ANB) <r(AUB)+4+r(ANB) <r(A)+r(B) = X(A)+ X (B).

So equality must hold thoughout and X (AUB) = r(AUB) and X(ANB) =
r(AN B).

3.1 Definition of an auxiliary digraph G(./) and preliminary
results

When we write \u = E;’Zl y; X, we’ll only consider the coefficients y; > 0.
We call support of the solution y the set Supp J = {j € J | y; > 0}.

We’ll associate with every feasible solution y with support J a directed graph
denoted G(J) = G(E,A). The set E of vertices of the graph G(J) is, on
one hand, the set £ = {ej,e2,...,e,} of the polymatroid and on the other
hand, an auxiliary element eg such that £ = E U {ep}. Let us now describe
the set of oriented arcs of G(.J) (denoted A or A(J)). If a € E, (eg,a) is an
arc if there exists j € Supp J such that X; + a is independent. Then we say
a is a source (associated with X ;). We denote Sy the set of sources. If ¢ and
b e E, (a,b) is an arc if there exists j € SuppJ such that a € X;, b ¢ X},
X;U{b} is dependent and a belongs to the unique circuit of X; U {b} which
contains b. These arcs may be multiple. We denote (eg,a)x; or (a,b)x;
when we have to precise the vertex X; associated with this arc.

If the vertex ey is not a root of the graph G(J), we’ll prove the current
solution y is optimal and \,,,; is the value of the solution y. More precisely,
we have:

Proposition 3.1 If ey is not a root of G(J), the set :
S :={v € E; no path of G(J) connects ey to v}
is Xj-tight for all j € Supp(J). That is, Vj € Supp(J), X;(S) = f(S).

Proof: As ey is not a root of G(J), S is non empty. If v € S, then
Vj € Supp(J), X; + v is a dependent set, otherwise v would be a source.
Then (eg,v)x; would be an arc of G(J) in contradiction with the definition
of S. Let us prove S is X;-tight. For v € S, let us consider the unique circuit
C, of X; + v which contains v. We claim C, is a subset of S. Indeed, if
u ¢ S, ep is connected to u (by definition of S), but if moreover u € Cy, then
(u,v)x; is an arc of G(J) and therefore ey is connected to v, in contradiction
with the assumption v € S. C, is X-tight since X;(C,) = |Cy| —1 = r(C,).
As C, is a subset of S for v € S, S is the union of the X,-tight sets C,.
Therefore S is X;-tight.



Proposition 3.2 If the vertex ey is not a root of the graph G(J), the current
solution y is optimal and Ape. %S the value of the solution y.

Proof: Let us consider the set S defined in proposition 3.1. Therefore we
have Vj € Supp(J), X;(S) = f(S). As du=3"7_, y; X; with 377, y; =1,
we finally have for x = Au :

z(S) = \u(S) = Zijj(S) = Z?/j f(8) = £(S)
j=1 j=1

(yj = 0if j ¢ Supp(J)) and therefore the current solution is optimal.

Let us now suppose the vertex ey is a root of G(J). We’ll prove the
following result:

Proposition 3.3 Ifeg is a root of G(J), we can find for all ej € E, a finite
set Aj and two finite families of vertices of P(M), (Xy)yea, and (X;)'yeA]-;
such that e; can be written:

€j = Z (X',y - Xy)

'yEAj
and such that X, € {X1,Xo,..., X, }.

Proof: We consider an arborescence of shortest paths in G(.J) connecting
eo to any element e € FE. More precisely, for each element e € FE, we
consider the shortest paths connecting eg to e. We denote C' the set of all
these shortest paths when e varies in E. For each element of F, denoted e;,
we choose such a shortest path connecting e to e;. We denote Cy this choice
of shortest paths connecting eg to elements e € F which are the vertices of
G(J). For each fixed element e;, we now consider the path C; in Cy which
starts from a source e; and ends to e; (for a fixed j we choose a specific
numbering of the vertices of C; independent of a given ordering of ). As
the source e; is defined using an addition, there exist vertices X; and X
such that Xi = X + {e1}. Each arc (e;_1,¢;)x, (for i > 2) is associated
with an exchange, so there exists X; and XZ' such that X; = X;+(e;—e;—1).
Then we have :
€] = Xi - X1

and
€ — €1 = XZ’ - X
for 2 <4 <.
Summing all these j equalities, we obtain :
j !
ej =y (X; - Xi). (17)

=1
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We recall that C} is the path going from the auxiliary element ey to the
element e;. We denote by A; the set of arcs of the path C;. We rewrite
formula (17) as follows :

€ = Z (X'Iy - X5) (18)

'yEAj

where, if v = (s,t)x, we have X, := X, X,,y =X+ (t—s). If vy = (eo,t)x,
that is ¢ is a source, we have X, := X, X; =X + {t}.

4 Algorithm based on maximization of linear forms

Let Conv (X7, Xo, ..., X,) denote the convex hull generated by X1, Xo, ..., X,,.
Let S(P,) be the set of vertices of the polytope P,. Let J be a feasible basis
of (PL). Suppose J = {1,2,...,n}. Let us consider the hyperplane H with
equation h(z) = 1, generated by the vectors X; € IR", for j € J. Let X, 44
be a vertex in S(P;)) such that h(X,11) = max,eg(p,)) h(2).
-If h(Xp,41) = 1, the hyperplane corresponds to a facet of the polytope. The
current solution y is optimal.
-If h(Xp41) > 1, the vertex X, 11 lies strictly above the hyperplane. Let
us consider the polytope P := Conv (X, Xs,...,X,, X,11) and let H; de-
note the hyperplane generated by (X1i,...,X;_1,X;41,..., Xy, Xpq1) for
1 < j < n. Let h; be the affine equation h;(z) = 1 of H;. The intersection
of the half-line A, with the polytope P is a line segment (\u,\'u) with
A< X\ is given by :

’ ]_

A= i
i 8., hrﬁg)l<h(u) h; (u)

(19)

u u

because A\u = o) and i) is the intersection of A, with the hyperplane H;.
There is an index 1 < j < nsuch that A'u € Conv(Xy, ..., Xj_1, X1, Xn, Xns1)-

From (19) it follows j is given by :

hi(u) = hy
i) i 5t he(ay<h(u) ()

Let J' denote the multi-index {1,2,...,5 — 1,7 +1...,n,n + 1} and select
the hyperplane H;. Thus we have now a new feasible basis J " with A > A
The principle of our algorithm is to iterate this procedure as long as there
exists a vertex strictly above the current hyperplane.

11



Xn+1

X1

Let < a,z >= 3" | a;z; = 1 be the equation of a selected hyperplane,
then we have to solve the following problem : max < a,x > under the
constraints z(A) < r(A) for all A C E. Let us associate with each ele-
ment e; € E a weight equal to the coefficient a; of the equation of the
hyperplane. Then the researched vertex corresponds to an independent of
maximal weight. It can be found with Edmond’s greedy algorithm [6]. If
max < a,x >= 1, the obtained vertex is not strictly above the hyperplane.
So the algorithm ends.

We give below a more formal description of the algorithm :
Algorithm
Step 1: y = M = Y. | o;X; with )" | &y = 1. Compute the equation
h(z) =37 | a;z; = 1 of the hyperplane H generated by (X1,...,X,). Find
X1 solution of :
{ max < a,r >
>0

VA C E,z(A) < r(A).

If h(X,41) > 1, go to step 2, otherwise go to step 3.

Step 2: Consider all the sets of the form (X,...,X;,..., Xn, Xnt1). For

i #n + 1, compute the linear equation h; such that h;(Xy) =1 for 1 <k <
n+1and k # i. Determine j # n+1 such that h;(u) = max; ¢ p;(w)<n(w) hi(w).
Change X; to X,,41 and X to N = m Go to step 1.

Step 3: End, the hyperplane H corresponds to a facet of the polytope.

We can start the algorithm with the vertices corresponding to the elements in
E,thus h(z) =Y  z;and A = ﬁ We now estimate the complexity of
this algorithm. Let P’ be the polytope Conv(X,. .. X1, Xt X, Xng)
we have constructed replacing X; by X,;1, that is P’ = Conv(Xi, e ,X;L)
with X; = X; for ¢ # j and X; := Xp41. We denote by h;- the equation
of the hyperplane generated by Xi, . ,X;_I,X;_H, . ,X;L. P and P’ have
a common facet with equation hj(z) = h;- () = 1. Therefore (by linear
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algebra) there exist real numbers ¢;, 1 < i < n, i # j such that:

{ h; = t;h; + (1 — t;)h; for i # j (20)
The condition h;(XnH) = 1 determines ¢;:
t = hj(Xnp1) — 1 (21)

hj(Xn+1) = hi(Xn41)

Hence it results from (20) and (21) we can compute h; in time O(n) and
all the h;’s in time O(n?) when the h;’s and X,,;; are known. X, which
maximizes h; on P(M) is determined by the greedy algorithm in time yn.
At each step, the running time is O(n?+vn). If N is the number of iterations
in the algorithm, then the total running time is O((n?4yn)N). For a graphic
matroid the running time is O(n?N) (v = O(n) for a graph).

In the next section, we prove that, for a specific probabilistic model, this
algorithm is a polynomial time algorithm.

4.1 Control of the increase in the algorithm

Let g = % S, X; be the barycenter of the vertices X1, Xo,..., X, and let
h denote the homothetic transformation with center g and ratio k with 0 <
k<1and, forl<i<mn,let X; denote E(XZ) Conv(Xi,Xé, . ,X;) is the
image of Conv(X1, Xs,...,X,) by the homothetic transformation k. Thus
it is a subset of Conv(Xy, Xs,...,X,). We have the following elementary
result:

Proposition 4.1 z € Conv(Xi,Xé, e ,X,;) if and only if © can be written
=" 0X; with Y o =1 (Le. z € Conv(Xy,Xo,...,X,)) and, for
1<i<n:

Particularly, if k =1 — %, then a; > 5.

n
In other words, the points in Conv(Xi, e ,X;L) lie at a distance > n—lz from
the boundary of Conv(X1,...,X,).

Proof: The two convex combinations = = Y7 @;X; = S0, X, give
the relation «; = ka; + 1;—]“ a; > 0 is then equivalent to a; > ==

We recall S(P,) denote the set of vertices of the polytope P, associated
with the matroid.

Theorem 4.1 At a given step of the algorithm, let h denote the equation
of the affine hyperplane generated by the set of vertices (X1, Xo,...,X,)
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of the polytope P, and let X, 11 denote a vertex in S(P,) such that M :=
max,cg(p,) h(7) = h(Xni1). Then :

1 1
n| X, 1| = n?
Proof: We have h(X,41) > 1 (If A(Xp,4+1) = 1, the algorithm stops). We
use the shortest paths associated with G(J) in section 3.1. We have shown

(cf. Proposition 3.3) that each element e; of the set £ of the matroid M
can be expressed as a sum of the following form :

ej= > (X, —X,) (22)

YEA;

M—-1>

where A; is the set of arcs of a shortest path C; from ey to e; in G(J). X,
is one of the vertices X;’s and X; is a vertex of P(M). The vertex X,
such that h(X,1) = M can be expressed as :

Xny1 = Z Bje; (23)

where 3; = 0 or 1. By (22) and (23) and because h(X,) = 1, we have:

n

h(Xnp) => | D Bilh(

j=1 ’)/EAJ'

M. (24)

As M > h(X)), (24) implies:

Zﬁjmﬂ :Z Zﬁj + 1.
j=1

J=1 \Y€A;

We can rewrite this last inequality :

M-1) [ S B141-1) 21 o0 (M-1)> 21—
j=1 >0 BilAzl-1

As a shortest path of G(J) has at most n—1 arcs, we have |4;] < n. 377, B;
is the size of X1 denoted |X,,1+1]. As |Xp4+1| < n, we have finally :

1

—-

M-1>—F—
n|Xpi1| — n

This result does not always allow to control the increase A" — X since X' u can
be too much close to the face generated by X,..., X, (cf the figure page 11).
Actually, as it exists j such that X\'u € Conv(X7, ... X, Xy Xng1), we
have \'u = E?jl{#j a; X; with Z?Ill’#j a; =1, ;>0 and o, ; can be as
small as possible. On the other hand, we can establish the following result :
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Lemma 4.1 If X'u = Z?Ill’#j o, X;, then :
A : :
X 1ol ) — 1] = 1+ iy (M~ D).

Particularly, if O‘;z+1 > #, then € — N — ) > %

Proof: Let z =Au= 3, o;X; with Z?Zl a; = 1 such that h(z) =1 and

! ! ! v
T =Au= Z?:Jrll,i# o, X; with Z?:Jrll,i# a; = 1. We then have :
n n
h(z) = Z o;h(X;) + a1 M(Xng1) = Z o + ot 1 h(Xn 1)
— —

as h(X;) =1 for 1 <4 <n. This implies (as >3, . a; + O‘;z+1 =1):
h(z') = Nh(u) = 1+ ag oy [W(Xnp1) = 1]
On the other hand h(xz) = Ah(u) = 1. It follows :

!

A ,
== g () = 11 (25)
As we always have X' > ), the value of )\ increases at each step. At the
beginning of the algorithm, A\ = m > ﬁ > % Thus we always
have A\ > % If we also have a;H_l > #, we obtain )‘7 > 1+ n—14, then

! 1
N =A> 2> L

4.2 Probabilistic approach

If we always had o/n 11> #, lemma 4.1 would imply the algorithm requires
at most n° iterations. In this section we show it is effectively true in an
appropriate probabilistic model. Let us consider a Bernoulli distribution
such that, at each iteration, the increase A — X is null or greater than %
More precisely, either a;l 112 n—lz and Xu lies far from the boundary of the
face of the polytope with probability p (we’ll precise it afterwards) and the
increase is at least #, or aln g < # with probability ¢ = 1 — p and the
increase is null. Let z be such that :

n
T =A\u= ZaiXi
i=1

where a; > 0for 1 <i<mnand ) o =1
Let p denote the probability that x belongs to the set :

n n
’ ! ]._k
Conv(Xl,...,Xn):{g a; X; g a;=1,a; > }
n
=1 =1
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A reasonable value for p is defined by :

_ Volume{>7 | o X; : >0y = 1, > L}
Volume{} " o, X;: Y0 oy =1,05 > 0}

where volumes are in the (n—1)-dimensional space. Then p is equal to the ra-

tio of the volume of h(Conv(X1, X, ..., X,)) to the volume of Conv (X1, Xo, . ..

where h is the homothetic transformation with center g and ratio & :

~ Volume(h(Conv (X1, Xa,...,X,)))

— knfl‘
Volume(Conv (X1, Xo,...,X,))

At a given step of the algorithm, let us consider there are only two possibi-
lities excluding each other. The first possibility is the event 1 such that :

n n
1—-k
Auzg aiXi,g a; =1 and o; > for1 <i<n
n

with probability p. In this case, we’ll say A, lies far enough from the
boundary of the facet (X1, Xo,...,X,). The second possibility is the event
0 such that :

1—-k

n n
Au = ZaiXi, Zai = 1,; > 0 and 37 such that «; < -

=1 =1

with probability ¢ =1 — p.
Let N denote the number of iterations of the algorithm. Thus the proba-
bilistic space we consider is {0,1}". We define an event w by a finite family
w = (w,wy, ..., wy) where w; = 0 or 1. If w; =1 for [ values of j, then
the probability of w is :

P({w}) = p'g™ .
The random variable w; (coordinate j of w), corresponds to the j-th poly-
tope in the algorithm and is equal to 1 if {Au} lies far enough from the
boundary of the face (a; > 1;—’“ for 1 <7 < n) and is equal to 0 otherwise.
We suppose the random variables w; are independent. Now we consider
the expected value of increase. At each step j, if w; = 1 ( that is A, lies
far enough from the edges of the selected facet of the j-th polytope) we
progress of at least € with probability p (we’ll chose later € = %), otherwise
we progress of 0 with probability ¢ = 1 — p. Let Y (w) denote the general
increase during the event w (that is we have built N successive polytopes).
We have :

Y(w) > le

if during the event w, w; = 1 for [ steps and w; = 0 for the N — [ other
steps. The expected value of total increase after N steps is then :

N N
EY) > Zlepqu*l = ZleCﬁVpqu*l = eZlCﬁVpqu*l.
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C]lv is the number of events such that there has been exactly [ real in-
creases. We are in the classical Bernoulli scheme and it is easy to compute
the expected value. Differentiating the binomial identity Efi 0 CﬁvxlyN -l =
(z + y)N with respect to z, we obtain, for + = p and y = ¢ = 1 — p the
classical result :

N
E(Y) >e) 1Cxp'q" ' =eNp(p+q)" ' = Npe.
=0

The algorithm will end after N steps in average when E(Y) > 1, in other
words the average number N of steps of the algorithm verifies :

N<l

pe
Let us consider for example & = 1 — %, then we have p = (1 — %)”*1 and
(according to lemma 4.1) € > % As (1 — 1)" is a nondecreasing function,
we have (1 — 2)" > (1 —1)2 =

i. The average number of steps is then
bounded by:

’I’L5

5
Ns g <4

n
Theorem 4.2 This algorithm based on mazimization of linears forms on
the matroid polytope will end on average after a number of steps less than
or equal to 4n®. Its average running time is less or equal to O(n” + ynb).

When the most likely situation is not realized, A, must be in a very specific
position with regard to the boundary of the current convex set. So we may
hope the algorithm is also polynomial in this case.

4.3 Case of a cycle and a tree

We have been able to entirely describe the progress of the algorithm in the
cases of a tree and a cycle for which it requires O(n) iterations and in the
case of a tree and a cycle having a common vertex. In this last situation,
the algorithm requires also O(n) iterations when the edge of smallest weight
belongs to the cycle. But in the reverse situation, it seems to require already
O(n?) iterations and to present the difficulties of the general case. The study
of these particular cases gives insight into a constructive method to describe
all the steps of the algorithm in the case of a general graph. It consists
in computing explicitly the equations of the linear forms h;(z) = 1 of the
different facets (X1,...,Xi,..., Xn, Xnt1) of the polytope P with vertices
(X1,...,Xpn, Xnt1) using Gaussian elimination to compute the inverse of
a matrix. We show that, at each step, the vertex X; we have to delete
corresponds to the maximizer j in :

hj(u) = hi(u).

max
i such that h;(X;)<1
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We have observed that these equations stay apparently quite simple, pre-
serving a particular structure during the running time of this algorithm. At
the moment, the number and the variety of all cases we have to consider
prevent us from providing a complete classification of the equations h; and
so limit this method. All the proofs are in [12].

4.4 Numerical tests

We have made some numerical tests with this algorithm in the case of a
graphic matroid. The results indicate the algorithm ought to be polynomial
with a number of iterations in O(n?). We have studied the number of
iterations and the size of the tight set corresponding to the rank constraint
obtained with the algorithm. We have also researched how these values are
affected by the strengths of the edges and the graph density (the density
of a graph G(V, E) is equal to %) We remind we can compute the
strength of a graph by successive contractions of tight sets according to
theorem 2.1. Therefore the sizes of the successive tight sets supplied by
the algorithm have an influence on the speed of such a method. We have
made five sequences of tests with different strengths. For each sequence, we
have dealt with 2000 random graphs with expected number of edges varying
between |V| — 1 and w In the following table, we give the average
values obtained with three different sequences. |S| represents the size of the
tight set, niz the number of iterations.

strengths | density | V| | [E| [ |S|| & | ni |ni<|B? | ni<ZE
low 74| 85 | 3 | 4% | 1265 | 100% 94%
<10 intermediary | 58 | 114 | 43 | 38% | 5081 100% 38%
high 12 | 62 | 59 | 96% | 1073 | 100% 93%
low 75 | 87 | 3 | 4% | 1852 | 100% 90%
<100 | intermediary | 58 | 114 | 43 | 38% | 5441 | 100% 33%
high 12 | 59 | 58 | 97% | 1032 | 100% 89%
low 70 | 81 | 3 | 4% | 1591 | 100% 92%
<1000 | intermediary | 57 | 113 | 44 | 39% | 5399 |  100% 34%
high 12 | 61 | 59 | 97% | 1159 | 100% 82%

The number of iterations ni was sometimes very high but it always remained
lower than |E|%2. In average, the number of iterations for low or high den-
sity graphs is inferior of almost five times the number of iterations required
for intermediary density graphs. In average we contract 32% of the edges
of the graph in the continuation of the algorithm. For low density graphs,
we contract only 4% of the edges of the graph in average whereas, for high
density graphs we contract more than 95% of the edges. Therefore the gene-
ral algorithm for computing the strength will require few iterations of the
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algorithm for a high density graph. On the other hand, it will probably
require many iterations for a low density graph. Nevertheless, the compu-
tation time should stay acceptable since our results indicate the algorithm
runs fast for low density graphs. When all the strength are equal to 1 the

Figure 1:
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problem is in practice really easier to solve. In the graph of the figure 1, we
see the number of iterations is quite lower than n? and algorithm 2 seems to
be linear. It is also the case for low or high density graphs. More detailed
comments can be found in [12].

5 Conclusion

We have been motivated in the study of the intersection of a half-line and
the independent set polytope of a matroid by problems in the Telecommuni-
cation industry, suggested by Jérome Galtier and Alexandre Laugier, where
the strength of a network is a useful parameter. In this paper, we have
proposed a new geometrical and very simple algorithm for this problem. We
proved this algorithm requires in probability at most 4n® iterations. We
have established the progression is at least n—lz in the "normal” direction at
each iteration of the algorithm. We would like to prove that this algorithm is
polynomial and that, as it is suggested by our numerical tests, it has a good
complexity. The polynomiality (in average) of this algorithm is essentially
due to the particular structure of the considered polytopes. Thus one can
hope to improve the complexity of this algorithm or to find alternative al-
gorithms using the specificities of such polytopes. For instance, considering
the importance of matchings in graph theory, it would be natural to study
this algorithm for the matching polytope. The main result of this paper
is a part of my thesis defended at Paris 6 University. I am grateful to my

advisor Professor J. Fonlupt for valuable discussions and comments.
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