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Abstract. We deliver a short overview of different centrality measures
and influence concepts in social networks, and present the relation-algebraic
approach to the concepts of power and influence. First, we briefly discuss
four kinds of measures of centrality: the ones based on degree, closeness,
betweenness, and the eigenvector-related measures. We consider central-
ity of a node and of a network. Moreover, we give a classification of the
centrality measures based on a topology of network flows. Furthermore,
we present a certain model of influence in a social network and discuss
some applications of relation algebra and RelView to this model.
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1 Introduction

Social networks play a central role in our activities, in social phenomena, in
economic and political life. It is therefore crucial to provide an exhaustive anal-
ysis of social network structures and to study the impact they may have on
human’s behavior. Many scholars are particularly interested in measures that
allow to compare networks. Also measures that compare nodes (representing
agents) within a network and show how a node relates to the network are of
interest. The question appears how central a node is and what its position and
prestige in a network are. The concept of centrality as applied to human commu-
nication was introduced already in the late 1940’s, and since then many different
measures of centrality have been developed. They usually capture complemen-
tary aspects of a node’s position, any hence a particular measure can be more
appropriate for some applications and less for others.

One of the aims of this paper is to deliver a brief overview of the main central-
ity measures. Four kinds of measures are presented: degree centrality, closeness
centrality, betweenness centrality, Katz prestige and Bonacich centrality. We
also briefly discuss a categorization of centrality measures based on a topology
of network flows.
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Social networks are particularly important in studying all kinds of influence
phenomena. They are very useful for analyzing the diffusion of information and
the formation of opinions and beliefs. It is therefore not surprising that there
are numerous works in different scientific fields on the ‘network approach’ to
interaction and influence.

One of the leading dynamic models on information transmission, opinion and
consensus formation in networks is introduced by DeGroot [14]. Individuals start
with initial opinions on a subject and put some weights on the current beliefs
of other agents in forming their own beliefs for the next period. These beliefs
are updated over time. Several variations and generalizations of the DeGroot
model are presented e.g. in [15, 20, 21, 22, 36]. Surveys of models of influence
and different approaches to this phenomenon can be found e.g. in [27, 29, 36, 38].

Another framework of influence in networks is introduced in [33]. In the
original one-step model, agents have to make their acceptance-rejection decision
on a specific issue. Each agent has an inclination to say either ‘yes’ or ‘no’,
but due to possible influence of the other agents, his final decision (‘yes’ or
‘no’) may be different from his initial inclination. This framework is extensively
investigated e.g. in [24, 25, 26, 28, 29, 30, 39].

Relation algebra is used very successfully for formal problem specification,
prototyping, and algorithm development. For details on relations and relational
algebra, see e.g. [13, 16, 17, 40]. RelView is a BDD-based tool for the visu-
alization and manipulation of relations and for prototyping and relational pro-
gramming. It has been developed at Kiel University. The tool is written in the
C programming language and makes full use of the X-windows graphical user
interface. Details and applications can be found e.g. in [3, 4, 9].

Several of our works are devoted to applications of relation algebra and Rel-
View to Game Theory and Social Choice Theory. In [5] we present such an
application to coalition formation, where with the help of relation algebra and
RelView the set of all feasible stable governments is determined. A stable gov-
ernment is by definition not dominated by any other government. In [6] we deal
with the case where all governments are dominated. By using notions from rela-
tion algebra, graph theory and social choice theory, and by using RelView we
can compute a government that is as close as possible to being non-dominated.
In [7] we apply relation algebra and RelView to networks, i.e., to compute some
measures of agents’ strength in a network, like power, success, and influence. In
[8] we present relation-algebraic models of simple games and develop relational
specifications for solving some basic game-theoretic problems. We test funda-
mental properties of simple games, compute specific players and coalitions, and
apply relation algebra to determine power indices.

In this paper we also aim at presenting a relation-algebraic approach to the
concepts of influence in a social network. We recapitulate relation-algebraic spec-
ifications (presented in [7]) of the following concepts of the model of influence
([25, 33, 39]): the inclination and decision vectors, the group decision, the Hoede-
Bakker index, the inclination vectors of potential and observed influence, and
the set of followers.
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The paper is structured as follows. In Section 2 the basic concepts in net-
work theory are recalled. In Section 3 we discuss the main centrality measures.
Section 4 concerns the model of influence in a social network. In Section 5
the relation-algebraic preliminaries are presented. Section 6 is devoted to the
relation-algebraic approach to the concepts of influence. In Section 7 we present
some concluding remarks.

2 The basic concepts in network theory

In this section we present the preliminaries on networks. For textbooks on net-
work theory, see e.g. [23, 36, 44].

Let N = {1, 2, ..., n} be a (finite) set of nodes. By gij ∈ {0, 1} we denote a
relationship between nodes i and j, where

gij =

{
1 if there is a link between i and j
0 otherwise.

(1)

In what follows we only consider undirected links, i.e., we assume that gij = gji.
A network g is defined as a set of nodes N with links between them. Let G

denote the collection of all possible networks on n nodes.
By Ni(g) we denote the neighborhood (the set of neighbors) of node i in

network g, i.e., the set of nodes with which node i has a link:

Ni(g) = {j ∈ N : gij = 1}. (2)

The degree di(g) of a node i in g is the number of i’s neighbors in g, i.e.,

di(g) = |Ni(g)|. (3)

A network g is said to be regular if every node has the same number of neighbors,
i.e., if for some d ∈ {0, 1, ..., n− 1}, di(g) = d for each i ∈ N .

A complete network is a regular network with d = n− 1. The empty network
is a regular network with d = 0.

One of the concerns when analyzing a network is to check how one node may
be reached from another one. We distinguish between the following definitions:

- A walk is a sequence of nodes in which two nodes have a link (they are
neighbors), and a node or a link may appear more than once. Its length is
simply the number of links in the walk.

- A trail is a walk in which all links are distinct.
- A path is a trail in which all nodes are distinct.
- A cycle is a trail with at least 3 nodes in which the initial node and the end

node are the same.
- A geodesic between two nodes is a shortest path between them.

If there is a path between i and j in g, then the geodesic distance d(i, j; g)
between these two nodes i and j is therefore equal to

d(i, j; g) = the number of links in a shortest path between i and j. (4)
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If there is no path between i and j in g, we set d(i, j; g) =∞.
A star is a network in which there exists some node i (referred to as the

center of the star) such that every link in the network involves node i.
Two nodes belong to the same component if and only if there exists a path

between them. A network is connected if there exists a path between any pair of
nodes i, j ∈ N . Consequently, a network is connected if and only if it consists of
a single component.

The adjacency matrix G of a (undirected or directed) network g is defined
as G = [gij ] with gij as in (1). In other words, an entry in the matrix G
corresponding to the pair {i, j} signifies the presence or absence of a link between
i and j. Let Gk denote the kth power of G, i.e., Gk = [gkij ], where gkij measures
the number of walks of length k that exist between i and j in network g. We
have G0 = I, where I is the n× n identity matrix.

3 Different measures of centrality in networks

The concept of centrality captures a kind of prominence of a node in a network.
The economic and sociological literature offers several such concepts. For surveys
of different notions of centrality, see e.g. [19, 23, 36]. In this paper, we recapitulate
several well-known centrality measures. The presentation is based on the three
references mentioned above.

As presented in [36], measures of centrality can be categorized into the fol-
lowing main groups:

(1) Degree centrality
(2) Closeness centrality
(3) Betweenness centrality
(4) Prestige- and eigenvector-related centrality.

3.1 Degree centrality

The degree centrality indicates how well a node is connected in terms of direct
connections, i.e., it keeps track of the degree of the node. This measure can be
seen as an index of the node’s communication activity.

The degree centrality Cd(i; g) of node i in network g is given by

Cd(i; g) =
di(g)

n− 1
=
|Ni(g)|
n− 1

(5)

where Ni(g) and di(g) are defined in (2) and (3). Obviously, 0 ≤ Cd(i; g) ≤ 1.

Let i∗ be a node which attains the highest degree centrality Cd(i
∗; g) in g.

The degree centrality Cd(g) of network g is given by

Cd(g) =

∑n
i=1 [Cd(i

∗; g)− Cd(i; g)]

maxg′∈G [
∑n
i=1 [Cd(i∗; g′)− Cd(i; g′)]]

. (6)
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Since the minimum degree is 1 and the maximum degree is (n− 1), one can

easily see that the denominator of (6) is equal to (n−2)(n−1)
(n−1) , and hence

Cd(g) =

∑n
i=1 [Cd(i

∗; g)− Cd(i; g)]

n− 2
.

Note that Cd(g) = 1 if g is a star, and Cd(g) = 0 if g is a regular network.

3.2 Closeness centrality

The closeness centrality is based on proximity and measures how easily a node
can reach other nodes in a network. It is a kind of a measure of the node’s
independence or efficiency.

The closeness centrality Cc(i; g) of node i in network g is defined as

Cc(i; g) =
n− 1∑

j 6=i d(i, j; g)
(7)

where d(i, j; g) is the geodesic distance between i and j as defined in (4), and
(n − 1) is the minimum possible total distance from i to all other nodes in g.
There is a whole family of closeness measures [44] based on different conventions
for dealing with non-connected networks and other possible measures of distance.

Let i∗ be a node which attains the highest closeness centrality Cc(i
∗; g) in g.

The closeness centrality Cc(g) of network g is given by

Cc(g) =

∑n
i=1 [Cc(i

∗; g)− Cc(i; g)]

maxg′∈G [
∑n
i=1 [Cc(i∗; g′)− Cc(i; g′)]]

. (8)

One can show (see e.g. [19]) that

Cc(g) =

∑n
i=1 [Cc(i

∗; g)− Cc(i; g)]

(n− 2)(n− 1)/(2n− 3)
.

Note that Cc(g) = 1 if g is a star, and Cc(g) = 0 if g is a cycle. Obviously,
although Cd(g) = Cc(g) for g being a star or a cycle, in general Cd(g) 6= Cc(g).

3.3 Betweenness centrality

The betweenness centrality (introduced in [18]) is based on how important a node
is in terms of connecting other nodes. It is useful as an index of the potential of
a node for control of communication.

By Pi(kj) and P (kj) we denote the number of geodesics between k and
j containing i /∈ {k, j}, and the total number of geodesics between k and j,
respectively.

The betweenness centrality Cb(i; g) of node i in network g is defined as

Cb(i; g) =
2

(n− 1)(n− 2)

∑
k 6=j:i/∈{k,j}

Pi(kj)

P (kj)
. (9)
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Note that Pi(kj)
P (kj) is the probability that i falls on a randomly selected geodesic

linking k and j, and the number of all pairs of nodes (different from i) is equal

to
(
n−1
2

)
= (n−1)(n−2)

2 . In particular, if g is a star, then Cb(i; g) = 1 for i being
the center and Cb(i; g) = 0 otherwise.

Let i∗ be a node which attains the highest betweenness centrality Cb(i
∗; g)

in g. The betweenness centrality Cb(g) of network g is given by

Cb(g) =

∑n
i=1 [Cb(i

∗; g)− Cb(i; g)]

n− 1
. (10)

3.4 Prestige- and eigenvector-related centrality measures

There exist other measures of centrality that take into account a richer range
of direct and indirect influences in networks. The measures developed e.g. in
[10, 11, 37] are based on the idea that a node’s importance is determined by the
importance of its neighbors.

The Katz prestige PKi (g) of node i in g is defined as

PKi (g) =
∑
j 6=i

gij
PKj (g)

dj(g)
. (11)

This means that the Katz prestige of i is equal to the sum of the prestiges of
i’s neighbors divided by their respective degrees. In other words, the measure
is corrected by the number of neighbors of node j (if j has more relationships,
then i gets less prestige from being connected to j). Note that this definition is
self-referential. (11) can be rewritten as

PK(g) = G′PK(g)

(I−G′)PK(g) = 0

where PK(g) is the n× 1 vector of PKi (g), i ∈ N , I is the n×n identity matrix,
and G′ = [g′ij ] is the normalized adjacency matrix with g′ij =

gij
dj(g)

. In other

words, calculating the Katz prestige is reduced to finding the unit eigenvector
of G′. Obviously, PK(g) is determined up to a scale factor.

Katz [37] introduced another measure of prestige, where the prestige of a
node is a weighted sum of the walks that emanate from it, and a walk of length
k is worth ak, for some parameter 0 < a < 1. The second prestige measure of
Katz is given by

PK2(g, a) = (I− aG)−1aG1 (12)

where 1 is the n× 1 vector of 1s, and a is sufficiently small.

The Bonacich centrality is an extension of the second prestige measure of
Katz and is expressed by

CB(g, a, b) = (I− bG)−1aG1 (13)

where a > 0 and b > 0 are scalars, and b is sufficiently small.
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3.5 Categorizing centrality measures by a topology of network flows

The relation between the major centrality measures and different flow processes
is extensively discussed in [12]. Centrality measures make implicit assumptions
about network flow, and hence they are matched to the kinds of flows they are
appropriate for.

The typology of network flows is based on two dimensions:

– the trajectory dimension - kinds of trajectories that traffic may follow: geode-
sics, paths, trails, walks;

– the transmission dimension - methods of spread: parallel (simultaneous) du-
plication, serial (once at a time) duplication, transfer.

Table 1 classifies different kinds of traffic based on these two dimensions.

Table 1. Topology of flow processes (see [12])

parallel duplication serial duplication transfer
geodesics - mitotic reproduction package delivery

paths internet name-server viral infection mooch
trails e-mail broadcast gossip used goods
walks attitude influencing emotional support money exchange

Table 2 classifies the major centrality measures presented above, based on flow
processes.

Table 2. Flow processes and major centrality measures (see [12])

parallel duplication serial duplication transfer
geodesics closeness closeness

betweenness
paths closeness, degree
trails closeness, degree
walks closeness, degree

Bonacich eigenvector
Katz prestige

Since each centrality measure is appropriate for particular kinds of flows,
applying these measures to other flow processes that they are not designed for
leads to wrong results. For example, one can use the closeness and betweenness
centrality measures for package delivery, but it is inappropriate to use them
to indicate who will receive news early in a gossip. For a discussion on this
classification, see [12].
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4 The model of influence in a social network

In this section we present a framework of influence originally introduced in [33]
and refined in [25, 39].

4.1 The Hoede-Bakker index

We consider a social network with a set of agents (players, actors, voters) denoted
by N := {1, 2, ..., n} who are to make a certain acceptance-rejection decision
on a specific proposal. Each agent k ∈ N has an inclination ik either to say
‘yes’ (denoted by +1) or ‘no’ (denoted by −1). Let i = (i1, i2, ..., in) denote an
inclination vector and I := {−1,+1}n be the set of all inclination vectors.

It is assumed that agents may influence each other, and due to the influences,
the final decision of an agent may be different from his original inclination.
Formally, each inclination vector i ∈ I is transformed into a decision vector
Bi = ((Bi)1, (Bi)2, ..., (Bi)n), where B : I → I, i 7→ Bi is the influence function.
Let B(I) be the set of all decision vectors under B and let B denote the set of
all influence functions.

We also assume a group decision function gd : B(I)→ {−1,+1}, having the
value +1 if the group decision is ‘yes’, and the value −1 if the group decision is
‘no’. The set of all group decision functions will be denoted by G.

In [39] we introduce the following generalized index. Given B ∈ B and gd ∈ G,
the generalized Hoede-Bakker index of player k ∈ N is defined as

GHBk(B, gd) :=
|I++
k | − |I

+−
k |+ |I

−−
k | − |I

−+
k |

2n
(14)

where
I++
k := {i ∈ I | ik = +1 ∧ gd(Bi) = +1}
I+−k := {i ∈ I | ik = +1 ∧ gd(Bi) = −1}
I−−k := {i ∈ I | ik = −1 ∧ gd(Bi) = −1}
I−+k := {i ∈ I | ik = −1 ∧ gd(Bi) = +1}.

Obviously all the four sets depend on (B, gd), which has been skipped for con-
venience of notation.

Note that the generalized Hoede-Bakker index, although defined in the influ-
ence setup, does not measure any influence. As remarked in [39] the GHB index
is a kind of ‘net Success’, i.e., ‘Success - Failure’.

4.2 The influence indices

Measures of influence, the so called influence indices, are defined in [25]. Below
we recall these definitions.

Concerning notation, for convenience we omit braces for sets, e.g., N \ {j}
is written as N \ j. For any S ⊆ N , |S| ≥ 2, we introduce the set IS of all
inclination vectors in which all members of S have the same inclination

IS := {i ∈ I | ∀k, j ∈ S [ik = ij ]} (15)
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and Ik := I, for any k ∈ N . For i ∈ IS we denote by iS the value ik for some
k ∈ S. Let for each S ⊆ N and j ∈ N \ S, IS→j denote the set of all inclination
vectors of potential influence of S on j, that is,

IS→j := {i ∈ IS | ij = −iS}. (16)

Moreover, for each B ∈ B, let I∗S→j(B) denote the set of all inclination vectors
of observed influence of S on j under B ∈ B, that is,

I∗S→j(B) := {i ∈ IS→j | (Bi)j = iS}. (17)

In [25] we introduce the weighted influence indices, whose main idea is to
give a relative importance to the different inclination vectors. For each S ⊆ N ,
j ∈ N \S and i ∈ IS , we introduce a weight αS→ji ∈ [0, 1] of influence of coalition
S on j ∈ N \ S under the inclination vector i ∈ IS . There is no normalization
on the weights, but we assume that for each S ⊆ N and j ∈ N \ S, there exists

i ∈ IS→j such that αS→ji > 0.
Given B ∈ B, for each S ⊆ N , j ∈ N \ S, the weighted influence index of

coalition S on player j is defined as

dα(B,S → j) :=

∑
i∈I∗S→j(B) α

S→j
i∑

i∈IS→j
αS→ji

∈ [0, 1]. (18)

It is the (weighted) proportion of situations of observed influence among all situ-
ations of potential influence. Two particular ways of weighting lead to the possi-
bility influence index d(B,S → j) and the certainty influence index d(B,S → j).
We have for each S ⊆ N , j ∈ N \ S and B ∈ B

d(B,S → j) = dα(B,S → j), where αS→ji = 1 for each i ∈ IS

and
d(B,S → j) = dα(B,S → j), where for each i ∈ IS

αS→ji =

{
1, if ∀p /∈ S ∪ j, ip = −iS
0, otherwise.

Consequently, we have

d(B,S → j) =
|I∗S→j(B)|
|IS→j |

∈ [0, 1] (19)

d(B,S → j) =
|{i ∈ I∗S→j(B) | ∀p /∈ S [ip = −iS ]}|

2
∈ {0, 1

2
, 1}. (20)

The possibility influence index gives therefore the fraction of potential influence
situations that happen to be situations of observed influence indeed. The cer-
tainty influence index measures also such a fraction, except that it focuses only
on situations in which the coalition in question is the only one which influences
the agent.
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4.3 Followers and kernel

The key concept of the influence framework is the concept of follower of a given
coalition, that is, an agent who always follows the inclination of that coalition
when all members of the coalition have the same inclination. The follower func-
tion of B ∈ B is a mapping FB : 2N → 2N defined as

FB(S) := {k ∈ N | ∀i ∈ IS , (Bi)k = iS}, ∀S ⊆ N,S 6= ∅ (21)

and FB(∅) := ∅. We say that FB(S) is the set of followers of S under B. The
set of all follower functions is denoted by F . In [25] it is shown that

dα(B,S → j) = 1, ∀j ∈ FB(S) \ S.

Another important concept of the influence model is the concept of kernel
of an influence function, which is the set of ‘truly’ influential coalitions. Assume
FB is not identical to the empty set. The kernel of B is defined as

K(B) := {S ∈ 2N | FB(S) 6= ∅, and S′ ⊂ S ⇒ FB(S′) = ∅}. (22)

In [25] we also define some specific influence functions and study their prop-
erties, e.g., the sets of followers and kernels of these functions.

4.4 Further research on influence

The model of influence presented above, i.e., the model of initial inclinations and
final decisions, is studied extensively in several other works:

– In [26] we generalize the basic yes-no model of influence to a framework in
which every agent has a totally ordered set of possible actions, the same
for each player, and he has an inclination to choose a particular action. We
investigate the generalized influence indices, different influence functions,
and other tools related to the influence in the multi-choice model.

– In [28] we consider the influence model with a continuum of actions. In
this generalized framework we introduce and study measures of positive and
negative influence and other tools for analyzing influence. Also the set of
fixed points under a given influence function is analyzed. Furthermore, we
study linear influence functions.

– The results presented in [24] concern a comparison of the influence model
with the framework of command games [34, 35]. We show that the framework
of influence is more general than the framework of the command games. In
particular, we define several influence functions which capture the command
structure. For some influence functions we define the equivalent command
games.

– In [30] we establish the exact relations between the key concepts of the
influence model and the framework of command games. We deliver sufficient
and necessary conditions for a function to be a follower function, and describe
the structure of the set of all influence functions that lead to a given follower
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function. We also deliver sufficient and necessary conditions for a function to
be a command function, and describe the minimal sets generating a normal
command game. In addition, we study the relation between command games
and influence functions.

– We also study the dynamics of influence. In [29] the yes-no model with a
single step of mutual influence is generalized to a framework with iterated
influence. We analyze the decision process in which the mutual influence
does not stop after one step but iterates, and we study the convergence
of an influence function. In particular, we investigate stochastic influence
functions and apply the theory of Markov chains to the analysis of such
functions. Moreover, we propose a general framework of influence based on
aggregation functions.

5 Relation-algebraic preliminaries

In this section we present the basics of relation algebra.
If X and Y are sets, then a subset R of the Cartesian product X × Y is

called a (binary) relation with domain X and range Y . We denote the set (also
called type) of all relations with domain X and range Y by [X↔Y ] and write
R : X↔Y instead of R ∈ [X↔Y ]. If X and Y are finite sets of size m and n
respectively, then we may consider a relation R : X↔Y as a Boolean matrix
with m rows and n columns and entries from {0, 1}. The Boolean matrix inter-
pretation of relations is used as one of the graphical representations of relations
within the RelView tool. We can speak about rows, columns and entries of a
relation and write Rx,y instead of 〈x, y〉 ∈ R or xR y.

The basic operations on relations are RT (transposition, conversion), R
(complement, negation), R ∪ S (union, join), R ∩ S (intersection, meet), RS
(composition, multiplication), and the special relations O (empty relation), L
(universal relation), and I (identity relation). If R is included in S we write
R ⊆ S, and equality of R and S is denoted as R = S.

A membership relation E : X↔ 2X relates x ∈ X and Y ∈ 2X iff x ∈ Y .

The expression syq(R,S) := RT S ∩ R
T
S is by definition the symmetric

quotient syq(R,S) : Y ↔Z of two relations R : X↔Y and S : X↔Z. Many
properties of this construct can be found e.g. in [40]. In particular, for all y ∈ Y
and z ∈ Z the relationship syq(R,S)y,z holds iff for all x ∈ X the equivalence
Rx,y ↔ Sx,z is true, i.e., if the y-column of R and the z-column of S coincide.

Given a Cartesian product X × Y of two sets X and Y , there are two pro-
jection functions which decompose a pair u = (u1, u2) into its first component
u1 and its second component u2. For a relation-algebraic approach it is useful to
consider the corresponding projection relations π : X×Y ↔X and ρ : X×Y ↔Y
such that for all pairs u ∈ X × Y and elements x ∈ X and y ∈ Y we have πu,x
iff u1 = x and ρu,y iff u2 = y.

Projection relations enable us to describe the well-known pairing operation
of functional programming relation-algebraically as follows: For relations R :
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Z↔X and S : Z↔Y we define their pairing (frequently also called fork or
tupling) [R,S] : Z↔X×Y by [R,S] := RπT∩SρT. Then for all z ∈ Z and pairs
u = (u1, u2) ∈ X ×Y a simple reflection shows that [R,S]z,u iff Rz,u1 and Sz,u2 .

Column vectors are relations v with v = vL. As for a column vector the
range is irrelevant, we consider only vectors v : X↔1 with a specific singleton
set 1 := {⊥} as range. A column vector v : X↔1 can be considered as a
Boolean matrix with exactly one column, i.e., as a Boolean column vector, and
it describes the subset {x ∈ X | vx,⊥} of its domain X. If v : X↔1 describes
the subset S of X in the sense above, then the injective mapping inj(v) : S↔X
is obtained from the identity relation I : X↔X by removing all rows which
correspond to a 0-entry in v. Hence, we have inj(v)j,k iff j = k.

A non-empty column vector v is a column point if vvT ⊆ I, i.e., it is injective
in the relational sense. In the Boolean matrix model, a column point v : X↔1
is a Boolean column vector in which exactly one entry is 1.

Vectors also allow to formalize the notions of y-columns and x-rows. For a
relation R : X↔Y and y ∈ Y , the column vector v : X↔1 equals the y-column
of R if for all x ∈ X we have vx,⊥ iff Rx,y.

Row vectors are relations defined as the transposes of column vectors. We
only need row vectors v of the specific type [1↔Y ] that correspond to Boolean
row vectors. Then v describes the subset {y ∈ Y | v⊥,y} of its range Y .

If v : 2M↔1 represents the subset S of 2M and the size of the domain of
w : W ↔1 is at most |M | + 1, then for all X ∈ 2M we have cardfilter(v, w)X,⊥
iff X ∈ S and |X| < |W |. Hence, the complement of cardfilter(L, w) represents
the subset of 2M whose elements have at least size |W |.

6 Applying relation algebra to the model of influence

In this section we deal with the relation-algebraic approach to the model of
influence in a social network. We recall some selected results presented in [7].

6.1 Modeling the inclination and decision vectors

For modeling inclination vectors and decision vectors, we use column vectors.
For modeling subsets of the sets I and B(I), we use row vectors.

We assume a social network with a set N of players. Let D : N↔N be the
relation of the dependency graph of the network. This means that there is an
arc from an agent j ∈ N to an agent k ∈ N iff Dj,k holds. Then the set of the
dependent agents is described relation-algebraically by the column vector

depend(D) := DTL (23)

of type [N↔1], where L has type [N↔1] as well.
The set I of all inclination vectors can immediately be modeled by the

columns of the membership relation E : N↔ 2N . Hence, we regard inclina-
tion vectors and the corresponding decision vectors as relational column vectors
i : N↔1 and Bi : N↔1, respectively.
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We develop a column-wise enumeration of the set B(I) of decision vectors
with relation-algebraic means. The influence function B is given by the rule
‘following only unanimous trend-setters’, which means that an agent follows his
trend setters only if they all have the same inclination. In [7] we prove that:

Theorem 6.1 For each inclination vector i : N↔1, the decision vector Bi :
N↔1 under the rule ‘following only unanimous trend-setters’ is given by

Bi = (i ∩ ( d ∪ (d ∩DTi ∩DT i ))) ∪ (d ∩ DT i ),

where d := depend(D).

The relation-algebraic expression (i∩ ( d ∪ (d∩DTi∩DT i )))∪ (d∩ DT i ) is
built from i using unions, intersections, complements and left-compositions with
constants only. If we replace the column vector i : N↔1 by the membership
relation E : N↔ 2N that column-wisely enumerates all inclination vectors and
adapt simultaneously the type [N↔1] of d to the type [N↔ 2N ] of E by a
right-composition with the universal row vector L : 1↔ 2N , we get the relation

Dvec(D) := (E ∩ ( dL ∪ (dL ∩DTE ∩DT E ))) ∪ (dL ∩ DT E ) (24)

of type [N↔ 2N ] that column-wisely enumerates the set B(I) of decision vectors.

6.2 Computing the group decisions

Next, we deliver a relation-algebraic specification of the group decisions under
majority as decision rule via a row vector.

We assume that a row vector m : 1↔ 2N is available such that for all X ∈ 2N

we have m⊥,X iff |X| ≥ [ |N |2 ] + 1. In RelView such a vector can be easily
obtained with the help of the base operation cardfilter as

m := cardfilter(L, w)
T
, (25)

where the first argument L : 2N↔1 describes the entire powerset 2N , and the
second argument w : W ↔1 determines the threshold for majority by its length,

i.e., fulfills |W | = [ |N |2 ] + 1. In [7] we show the following result:

Theorem 6.2 Let, based on the specifications (24) and (25), the row vector
gdv(D) of type [1↔ 2N ] be defined by

gdv(D) := m syq(E,Dvec(D)),

where E : N↔ 2N is the membership relation. Then we have for all X ∈ 2N : If
the decision vector Bi : N↔1 equals the X-column of Dvec(D), then gdv(D)⊥,X
holds iff the number of 1-entries in Bi is at least [ |N |2 ] + 1.
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6.3 Computing the Hoede-Bakker index

We assume that the player k ∈ N , on which the sets I++
k , I+−k , I−+k and I−−k

depend, is described by a column point p : N↔1 in the relational sense. As the
definitions of the sets use the values gd(Bi) for i ∈ I, we assume that the group
decision row vector g := gdv(D) is at hand. In [7] we prove the following:

Theorem 6.3 Let, depending on the column point p : N↔1 and the row vector
g : 1↔ 2N , the four vectors ipp(p, g), ipm(p, g), imp(p, g) and imm(p, g) of type
[1↔ 2N ] be defined as follows, where E : N↔ 2N is the membership relation:

ipp(p, g) := pTE ∩ g ipm(p, g) := pTE ∩ g
imp(p, g) := pT E ∩ g imm(p, g) := pT E ∩ g

Then we have for all X ∈ 2N : If the X-column of E equals the inclination vector
i : N↔1, then we have that ipp(p, g)⊥,X holds iff i ∈ I++

k , ipm(p, g)⊥,X holds
iff i ∈ I+−k , imp(p, g)⊥,X holds iff i ∈ I−+k , and imm(p, g)⊥,X holds iff i ∈ I−−k .

In other words, the row vector ipp(p, g) precisely designates those columns of
the membership relation E which belong to the set I++

k , and the remaining three
row vectors do the same for the sets I+−k , I−+k and I−−k , respectively.

6.4 Computing the influence indices

We assume a coalition S of agents to be described by a column vector s : N↔1,
and an agent j ∈ N to be described by a column point p : N↔1. We compute
the possibility influence index of S on j. Since it is defined by means of the sizes
of the sets IS→j and I∗S→j(B), we need to describe these sets within relation
algebra. IS→j and I∗S→j(B) are subsets of IS . In [7] the following is shown:

Theorem 6.4 Assume s : N↔1 to be a description of the coalition S ⊆ N and
the row vector is(s) of type [1↔ 2N ] to be defined as

is(s) := [sT, sT] (πE ∪ ρE) ∩ ( ρE ∪ πE) ,

where E : N↔ 2N is the membership relation, and π : N×N↔N and ρ :
N×N↔N are the projection relations. Then we have for all X ∈ 2N : If the
X-column of E equals the inclination vector i : N↔1, then is(s)⊥,X holds iff
i ∈ IS.

Hence, the row vector is(s) precisely designates those columns of the mem-
bership relation E which belong to the set IS . Next, we deliver the relation-
algebraic specification of the set IS→j , where j ∈ N is described by the column
point p : N↔1. In [7] we prove the following theorem:



Social Networks: Prestige, Centrality, and Influence 15

Theorem 6.5 Assume s : N↔1 describes the coalition S ⊆ N , the column
point p : N↔1 describes agent j ∈ N , the column point q ⊆ s describes agent
k ∈ S, and the row vector potinf (s, p) of type [1↔ 2N ] is defined by

potinf (s, p) := ((r ∪ r′) ∩ r ∩ r′ ) inj(is(s)
T

),

where r := pTE inj(is(s)
T

)
T

and r′ := qTE inj(is(s)
T

)
T

with E : N↔ 2N as
membership relation. Then we have for all X ∈ 2N : If the X-column of E equals
the inclination vector i : N↔1, then potinf (s, p)⊥,X holds iff i ∈ IS→j.

Hence, we relation-algebraically specify a row vector that precisely designates
those columns of E which are inclination vectors of potential influence of S on j.

To obtain a row vector inf (s, p,D) of type [1↔ 2N ] that precisely designates
those columns of the membership relation E : N↔ 2N which are inclination
vectors of influence of S on j, i.e., members of I∗S→j(B), we use the equation

I∗S→j(B) = IS→j ∩ {i ∈ IS | (Bi)j = iS}.

The relation-algebraic specification of I∗S→j(B) is given by the row vector

inf (s, p,D) := potinf (s, p) ∩ (r ∪ r′) ∩ r ∩ r′ inj(is(s)
T

) (26)

with r and r′ given by r := pTDvec(D) inj(is(s)
T

)
T

and r′ := qTE inj(is(s)
T

)
T

.

6.5 Computing the sets of followers

For modeling sets of followers we use column vectors. The relations R and Q
column-wisely enumerate IS and B(IS), respectively, and the column point q is
used for specifying for i ∈ IS the specific Boolean value iS . In [7] we show that:

Theorem 6.6 Assume s : N↔1 to describe the coalition S ⊆ N , and the
column point q ⊆ s to describe some player k ∈ S. Furthermore, let E : N↔ 2N

be the membership relation. If the column vector follow(D, s) of type [N↔1] is
defined as

follow(D, s) := syq(QT, RTq)

with relations R := E inj(is(s)
T

)
T

and Q := Dvec(D) inj(is(s)
T

)
T

, then for all
j ∈ N we have follow(D, s)j,⊥ iff j ∈ FB(S).

7 Concluding remarks

We have presented different measures of centrality that capture complementary
aspects of a node’s position in a network. As remarked in [19], the measures based
on degree, closeness, and betweenness imply different “theories” of how central-
ity might affect group processes: centrality as activity, as independence, and as
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control. Despite this fact, all centrality measures should have some features in
common, e.g., they should rank highest the most central node. As concluded in
[19] all the three measures of network centrality agree in assigning the maxi-
mum centrality score to the star, and the minimum centrality score to a cycle
and complete networks. Between these extremes, the three measures of network
centrality may differ significantly in their rankings of networks. In a given ap-
plication, one centrality measure or a combination of some measures might be
more appropriate than another measure or a combination of measures.

Many centrality measures have not been discussed in this paper. A very in-
teresting work is e.g., [1], where the intercentrality of a node in a network is
investigated. Roughly speaking, it is the sum of the node’s Bonacich centrality
and its contribution to Bonacich centrality of other nodes. Apart from several
sociological contributions to measuring centrality in social networks, also a game
theoretic approach to centrality concepts is presented in the literature. For ex-
ample, in [31] the authors propose a new definition of degree of centrality based
on some extension of the Banzhaf index [2]. Also many works by Van den Brink
and his co-authors deliver game theoretic measures of centrality in networks; see
e.g. [32, 41, 42, 43].

Despite the existence of numerous centrality measures, as remarked in [12]
most of the sociologically interesting processes are not covered by the major
measures. For instance, there are no measures appropriate for infection and
gossip processes. It seems therefore important to investigate centrality measures
that could fill that gap.

It has been proved by numerous works (see e.g. [5, 6, 7, 8]) that the relation-
algebraic approach to game theoretic problems is very appropriate and useful.
There are still many more possibilities for combining relation algebra and Rel-
View to investigate and solve problems from Game Theory and Social Choice
Theory. One of them might be an application of the tools in question to some
centrality measures.
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