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We analyze the dynamics of a valence electron of the buckminsterfullerene molecule (C60) sub-
jected to a circularly polarized laser field by modeling it with the motion of a classical particle in
an annular billiard. We show that the phase space of the billiard model gives rise to three distinct
trajectories: “Whispering gallery orbits”, which only hit the outer billiard wall, “daisy orbits” which
hit both billiard walls (while rotating solely clockwise or counterclockwise for all time), and orbits
which only visit the downfield part of the billiard, as measured relative to the laser term. These
trajectories, in general, maintain their distinct features, even as intensity is increased from 1010 to
1014 W · cm−2. We attribute this robust separation of phase space to the existence of twistless tori.
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I. INTRODUCTION

The electrical and chemical properties of fullerenes,
namely “buckyballs” and nanotubes, remain the focus
of thorough investigations [1]. The Buckminsterfullerene
molecule, C60, is a prototypical nanocluster because of
its stability and nearly spherical shape. In particular,
it is an ideal cage in which to trap so-called endohedral
atoms, resulting in molecular systems with peculiar prop-
erties [2], i.e., enhanced stability with respect to tempera-
ture. In recent years, there has been a significant interest
in subjecting C60 to extreme conditions to probe its elec-
tronic and structural stability properties. A new class of
experiments on C60 driven by strong laser pulses show
that its ionization and fragmentation properties are very
sensitive to the laser intensity and polarization [3]. In
particular, the yields show remarkable changes with the
ellipticity of the laser field.
Motivated by these findings, we consider the motion

of an electron inside the valence shell of C60. The goal
is to understand the electronic dynamics prior to pho-
toionization. In strong linearly polarized laser fields, the
ionized electron can return to the remaining ion by rec-
olliding with the cage [4, 5] when the laser field changes
sign. This collision can lead to additional ionization or
even fragmentation [3] of the molecule.
In particular, we investigate the classical dynamics of a

one-electron model in the shell of fullerene C60 subjected
to a strong circularly polarized laser field. In a circu-
larly polarized field, the dynamics is best visualized in a
frame co-rotating with the laser field where a conserved
quantity emerges, the Jacobi constant [6]. All results pre-
sented in this paper are in the rotating frame in which
the circularly polarized laser becomes a static field with
definite upfield and downfield directions. We restrict the
dynamics to a two-dimensional configuration space (the
plane of polarization) for the valence electron. The va-
lence electron feels an averaged potential, which, as we
later show (Sec. II A), is very close to a spherical square
well potential, where the electron bounces between the
walls like a particle in an annular billiard. We choose

a billiard model for its simplicity both analytically and
numerically and because it serves as a faithful represen-
tation of the full model potential while not allowing ion-
ization to occur.

Annular billiards occur in the literature in at least two
contexts: Fermi acceleration and the study of quantum
chaos by comparison with classical and quantum mechan-
ical computations [7–14]. Chaotic dynamics arises either
from pulsating boundaries or from an off-center inner
wall. In our treatment the two walls are fixed and con-
centric. The main distinction here from other works on
annular billiards is that in the rotating frame the electron
moves along curved paths between successive wall colli-
sions. The introduction of a Coriolis term into the Hamil-
tonian upon the transformation to the rotating frame is,
of course, akin to introducing an effective uniform mag-
netic field (and another frequency, the Larmor frequency)
in which an electron moves on a curved path [15–19]. The
laser wavelength is taken as 780nm (corresponding to a
frequency of 0.0584 a.u.) and its intensity is varied from
zero to 1014 W · cm−2, which are values consistent with
what is routinely performed in experiments on C60 [1].

Our principal finding is that trajectories of the elec-
tron fall into one of three possible types which originate
from specific parts of phase space. We identify various
phase space structures which keep these trajectory types
distinct from one another. Our classification is as fol-
lows: First there are “whispering gallery orbits” (WGO).
These trajectories hit only the outer wall and their di-
rection of travel, either clockwise or counterclockwise, is
determined by which of the two regions in phase space
where they originate. The second type, which we call
“daisies” from their typical shape, hits both walls and
can rotate either clockwise or counterclockwise. Both
daisies and WGOs are called positive or negative based
upon their direction of travel, counterclockwise or clock-
wise, respectively. The third type is mainly influenced by
a very simple elliptic periodic orbit bouncing between the
two walls in the downfield direction. The shape of these
trajectories on the Poincaré section resembles a popular
snack food, the Pringles curved potato chip [20], thus
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their designation as “pringle orbits.”
We show that all the trajectories maintain their dis-

tinct characteristics with changing intensity because of a
special class of invariant tori which do not fulfill the usual
twist hypothesis required by the Kolmogorov-Arnold-
Moser (KAM) theorem. These tori are usually denoted
as “twistless” tori or shearless curves (of the Poincaré
map) or “meandering” curves when they are associated
with separatrix reconnection [21–23]. Numerical studies
show that these tori are very robust against perturba-
tion, and are natural candidates for the partitioning of
phase space into regions where well-defined, qualitatively
distinct trajectories can be found.
The plan of the article is as follows: In Sec. II, we

introduce the model and dynamical rules of the billiard
and its corresponding Hamiltonian and reflection guide-
lines. In Sec. III, we give a qualitative analysis of different
electron trajectories, and then relate them to the organi-
zation of phase space. Next, we analyze the dynamics by
using Poincaré section and frequency map analysis [24]
in order to gain deeper insight into the properties and
organization of phase space when the laser intensity is in-
creased, and in particular concerning the role of twistless
tori in the partitioning of phase space into three principal
regions.

II. DYNAMICAL RULES

A. Hamiltonian Model

A typical electron inside the shell feels the influence
of the electrostatic potential created both by the posi-
tive charges from the nucleus and the electronic density,
combined with the influence of the laser field. The effec-
tive single-particle potential is computed using density
functional theory from a jellium approximation for the
positive charge background [25]. It contains steep walls
in the potential around the radius of fullerene (r0 = 6.69
a.u.) [25–28] with a certain thickness [29]. The Hamilto-
nian expressed in atomic units (a.u.) and in the dipole
approximation, reads

H (x,p, t) =
|p|2
2

+ V (|x|) + x · E (t) (1)

where x = (x, y) is the position of the electron in the
polarization plane, p = (px, py) its canonically conjugate
momenta and |·| denotes the Euclidean norm. The circu-
larly polarized laser field is given byE(t) = E0(ex sinωt+
ey cosωt), where E0 is the electric field amplitude, ω is
the laser frequency, kept fixed at 0.0584 a.u., and ex and
ey are unit vectors along the x and y axes, respectively.
The laser intensity is the time averaged Poynting vector
of our laser field and is related to E0 by the relationship
I = αE2

0 , where α = 7.044× 1016 when laser intensity is
measured in W·cm−2. Figure 1 shows the potential V (r),
where r = |x| as given in Ref. [28]. We note that the po-
tential is very stiff at the boundaries of the shell. This is

FIG. 1: Potential V, felt by a valence electron in fullerene as
given in Ref. [28]. The overhead plane corresponds to the ac-
cessible billiard region (white space) with a sample trajectory
(blue curve).

a common feature of various models for C60 [25–27]. This

property holds for ions Cq+
60 [26] also. An approximate

potential consisting of a spherical square well potential,
where the potential is equal to −V0 for r ∈]r0 − δ, r0 + δ[
and zero elsewhere, has been proposed in Refs. [30, 31].
This model has succeeded in explaining the oscillations
in the photoionization cross-section of C60 [30]. We build
a billiard model along these lines, where the steep walls
of the potential are replaced with infinite walls and the
dynamics in the annular region between the two walls is
given solely by the interaction of the electron with the
electric field, later referred to as the laser-driven dynam-
ics:

H (x,p) =
|p|2
2

+ x ·E (t) , (2)

and reflection rules are applied whenever the trajectory
reaches r = rin or rout, which are 5.14 a.u. and 8.24 a.u.,
respectively in our computations.
First, we perform a canonical change of variables into a

rotating frame (with the laser field). The new coordinates
(

x, y, px, py
)

are given by

(

x
y

)

= Ω (t)

(

x
y

)

, and

(

px
py

)

= Ω (t)

(

px
py

)

,

where

Ω (t) =

(

sinωt cosωt
cosωt − sinωt

)

.

In the new set of variables, the Hamiltonian becomes
time-independent and reads

K (x, y, px, py) =
p2x
2

+
p2y
2

− ω (xpy − ypx) + E0x, (3)

where we have dropped the bars for simplicity. The re-
sulting Hamiltonian has two degrees of freedom and the
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FIG. 2: Section (y = 0) of the zero-velocity surface in the
accessible part of the billiard for I = 1014 W · cm−2 and
ω = 0.0584 a.u. The red arrows show the deformation of
the zero velocity surface as intensity is increased. The dashed
horizontal lines are the Jacobi values used in Fig. 3 and Fig. 8.

value of the Hamiltonian is the Jacobi constant of celes-
tial mechanics [6].

B. Topology of phase space

The accessible part of phase space changes depending
on the field frequency, amplitude, and the value of the
Jacobi constant. A revealing way to visualize the acces-
sible part in position space is to compute the zero velocity
surface [6]. By applying Hamilton’s equations to Eq. (3)
we arrive at

ẋ = px + ωy,

ẏ = py − ωx,

so that the Jacobi constant becomes

K (x, y, ẋ, ẏ) =
ẋ2

2
+

ẏ2

2
− 1

2
ω2

(

x2 + y2
)

+ E0x. (4)

Setting ẋ = ẏ = 0 gives the zero-velocity surface

V (x, y) = −1

2
ω2

(

x2 + y2
)

+ E0x,

which charts the lower limit of the accessible parts of
the billiard, as K is varied. A cross section of the zero-
velocity surface is shown in Fig. 2 for y = 0. Depending
on the value of K, three possibilities arise: If K is smaller
than −ω2r2out/2−E0rout, then there is no accessible part
to the dynamics. If K is between −ω2r2out/2 − E0rout
and −ω2r2in/2 + E0rin then only a portion of the annu-
lar region is accessible. In this range of values, several

FIG. 3: Accessible regions (white) of the billiard for different
Jacobi values at I = 1014 W · cm−2 and ω = 0.0584 a.u.
Jacobi values correspond to the dashed lines in Fig. 2.

truncations of the annulus are possible; in particular, we
distinguish two types: one which is homotopic to an an-
nulus, and one which is only a portion of an annulus (see
Fig. 3). For K larger than −ω2r2in/2 + E0rin, the entire
annulus is accessible to the dynamics. As the laser in-
tensity is increased, the difference between the right and
left sides of the well is amplified. In this paper we mainly
consider Jacobi constants larger than −ω2r2in/2 + E0rin
such that the full annular region of the billiard is ac-
cessible to the dynamics. For I = 1014 W · cm−2 and
ω = 0.0584 a.u., this critical value of K is approximately
equal to 0.15.

C. Dynamical rules

The dynamics is computed in a piecewise fashion be-
cause of the walls. It is composed of segments of laser-
driven dynamics, as given by Hamiltonian (3), until the
particle reaches one of the walls. At this instant, the re-
flection rule is applied which mimics an elastic scattering
at the limit of an infinitely stiff potential.

Concerning the laser-driven dynamics, the equations
of motions associated with Hamiltonian (3) are given by
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x (t) =
E0

ω2
+

((

x0 −
E0

ω2

)

+ px,0t

)

cosωt

+

((

py,0 −
E0

ω

)

t+ y0

)

sinωt, (5a)

y (t) =

(

y0 +

(

py,0 −
E0

ω

)

t

)

cosωt

−
((

x0 −
E0

ω2

)

+ px,0t

)

sinωt, (5b)

px (t) =

(

py,0 −
E0

ω

)

sinωt+ px,0 cosωt, (5c)

py (t) =

(

py,0 −
E0

ω

)

cosωt− px,0 sinωt+
E0

ω
,(5d)

where x0, y0, px,0, and py,0 are the initial conditions (at
time t = 0).
At time t = tR, the electron reaches either one of the

two walls and we apply the reflection condition before
a next phase of laser-driven dynamics. The reflection
conditions are more easily expressed in polar coordinates
as it corresponds to the radial momentum changing sign
while the other coordinates are unchanged (see Fig. 4).
By definition of the billiard, the rebound takes place at
time t = tR satisfying

√

x2 (tR) + y2 (tR) = ri,

where i denotes the wall index, i.e., i ∈ {in, out}. Be-
fore the rebound (i.e., at t = t−R), we compute the ra-
dial momentum pr from the value of (x, y, px, py) by
pr = (xpx + ypy)/r. Then, the rebound condition is
given by a change of sign of the radial momentum

pr
(

t+R
)

= −pr
(

t−R
)

.

As a consequence, the values of the momenta after the
rebound, denoted p+x and p+y , are given by

p+x = −
(x2 − y2)p−x + 2xyp−y

r2
, (6a)

p+y =
−2xyp−x + (x2 − y2)p−y

r2
. (6b)

We note that Hamiltonian (3) is left unchanged by the
reflection rule, that is K

(

t+R
)

= K
(

t−R
)

, which is easily
seen from the expression of the kinetic energy in polar
coordinates which is equal to p2r/2 + p2θ/

(

2r2i
)

.

D. Linearization of the flow

In this section, we consider the linear effect of the re-
bound condition on neighboring trajectories. The moti-
vation for doing so is twofold: First the tangent rebound
condition can be used to compute the tangent flow of tra-
jectories to deduce the linear stability of periodic orbits.

FIG. 4: Schematic representation for computation of the re-
bound condition. The solid blue and red lines are real tra-
jectories, differing only by a small perturbation in the initial
conditions. The dashed red and blue lines are representa-
tions of the linearized dynamics. The angle θ is the angle of
rotation used in Hamiltonian (7).

Second, as the billiard model corresponds to the limit
of infinitely stiff potential for a Hamiltonian system, the
billiard model should preserve the Hamiltonian structure.
We have already checked that the rebound condition pre-
serves the Hamiltonian, thus the last prescription is that
the symplectic two-form is preserved, or equivalently the
tangent rebound matrix is symplectic.
The tangent rebound matrix can be seen as an exten-

sion of the tangent flow [32] to include the impact of the
rebound on neighboring trajectories (to first order). For
that, we consider a first trajectory with initial conditions
x0, y0, px,0, py,0 at t = 0 in the neighborhood of one of
the two walls, i.e., x2

0+y20 ≈ r2i , where i ∈ {in, out}, and
such that the rebound time tR ≪ 1. Then, we look at
the impact of a perturbation of these initial conditions to
x0 + dx0, y0 + dy0, px,0 + dpx,0, py,0 + dpy,0 immediately
after the rebound. Because the rebound time is not the
same for the two trajectories, we have to consider a small
laser-driven propagation before and after the rebound to
deduce the tangent rebound properties. The situation is
schematically depicted in Fig. 4.
The computation of the tangent rebound matrix is

more easily seen in a rotated Cartesian set of coordinates
x̃, ỹ, p̃x, p̃y, for some angle θ to be specified later. In the
rotated frame, the corresponding Hamiltonian reads

K (x, y, px, py) =
p2x
2

+
p2y
2

− ω (xpy − ypx)

+E0x cos θ + E0y sin θ, (7)

where we have dropped the tildes for simplicity. Since
we are only interested in the linear properties of the re-
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bound condition, throughout this section we consider all
the equations linearized to the first order.

As explained in Sec. II C, the dynamics is computed
piecewise with a first stage of laser-driven propagation
until the electron reaches the wall, then the rebound
condition and finally a new stage of laser-driven prop-
agation. In the rotated frame and before the rebound,
i.e., t < tR, the laser-driven dynamics given by Hamilto-
nian (7) yields

x (t) ≈ x0 + (px,0 + ωy0) t, (8a)

y (t) ≈ y0 + (py,0 − ωx0) t, (8b)

px (t) ≈ px,0 + (ωpy,0 − E0 cos θ) t, (8c)

py (t) ≈ py,0 − (ωpx,0 + E0 sin θ) t, (8d)

where we have neglected O(t2). At this stage, we select
the rotation angle θ such that the perpendicular direction
to the wall at the rebound is aligned with the x-direction
for the unperturbed trajectory. We keep this fixed frame
for the perturbed trajectory. An alternative way (which
provides the same solution) is to consider a perturbed ro-
tated frame (obtained by a rotation by an angle θ+dθ) to
impose the same constraint (the direction perpendicular
to the wall is the x-axis at the rebound) on the perturbed
trajectory. As a consequence of the chosen angle θ, the
rebound condition solely depends on the x-direction, such
that x (tR) = ri, or equivalently using Eq. (8a)

tR ≈ ri − x0

px,0 + ωy0
. (9)

Besides, because of the circular shape of the billiard and
the angle θ, at the rebound the y-component vanishes
(y (tR) = 0). However, for the perturbed trajectory, this
condition does not apply. Since we consider the per-
turbed trajectory comparatively to the original one in
the same rotated frame, it is easier for the purpose of the
calculation to keep formally the y-components, knowing
that it is actually equal to zero.

The next step for the trajectory dynamics is the re-
bound condition, at time t = tR. Because of the orienta-
tion of the frame where the x-direction is aligned with the
radial one, the rebound condition (6) becomes ẋ

(

t+R
)

=

−ẋ
(

t−R
)

and ẏ
(

t+R
)

= ẏ
(

t−R
)

which implies to the mo-
menta

px
(

t+R
)

= −px
(

t−R
)

− 2ωy (tR) , (10)

and py
(

t+R
)

= py
(

t−R
)

, while the positions are left un-
changed.

Finally, after the rebound, the trajectory experiences
a new phase of laser driven dynamics. Combining the re-
bound condition (10) with a linearized propagation sim-
ilar to Eq. (8), one can write the dynamics after the re-
bound as a function of the initial conditions (before the

rebound), such that

x (t) ≈ x (tR) +
(

px
(

t+R
)

+ ωy (tR)
)

(t− tR) ,

≈ x0 − (px,0 + ωy0) (t− 2tR) , (11a)

y (t) ≈ y0 + (py,0 − ωx0) t, (11b)

px (t) ≈ − (px,0 + 2ωy0)− 2ω (py,0 − ωx0) tR

+(ωpy,0 − E0 cos θ) (t− 2tR) , (11c)

py (t) ≈ py,0 + 2ω (px,0 + ωy0) (t− tR)

− (ωpx,0 + E0 sin θ) t, (11d)

where the equations are linearized at the first order in
time. With the explicit formula for the dynamics after
the rebound, as given by Eq. (11), it is straightforward
to compute the impact of the perturbation on the initial
conditions by replacing x0, y0, px,0, py,0 with x0+dx0, y0+
dy0, px,0 + dpx,0, py,0 + dpy,0 respectively. Because of the
change of initial conditions, the rebound time is modified
to tR + dtR as well. Using Eq. (9) for the perturbed
trajectory we end up with

dtR = − dx0

px,0 + ωy0
− ri − x0

(px,0 + ωy0)
2
(dpx,0 + ωdy0) .

(12)
Finally, combining Eq. (11) with Eq. (12) it is possible
to compute the perturbed dynamics after the rebound.
We define the deviations dx, dy, dpx, dpy of the perturbed
trajectory after the rebound. For instance, considering
the x-coordinate, we obtain

dx = −dx0 −
2 (ri − x0)

px,0 + ωy0
(dpx,0 + ωdy0)

− (dpx,0 + ωdy0) (t− 2tR) . (13)

Since we are interested in the dynamics in the vicinity of
the rebound, we consider the limits x0 → ri and t → t+R
(such that t → 0). As a consequence, we end up with
dx = −dx0 from Eq. (13). A similar procedure can be
applied to the other components and summarized in the
linear equation







dx
dy
dpx
dpy






= JR







dx0

dy0
dpx,0
dpy,0






,

where JR is the tangent rebound matrix given by

JR =







−1 0 0 0
0 1 0 0

(

4ωpy − 2E0 cos θ − 2ω2ri
)

p−1
x −2ω −1 0

2ω 0 0 1






,

(14)
using the conditions x = ri, y = 0 and where px is taken
right before the rebound on the wall. We note that the
tangent rebound matrix is a symplectic matrix, which
proves that the rebound condition (6) preserves the sym-
plectic two-form, i.e.,

dx0 ∧ dpx,0 + dy0 ∧ dpy,0 = dx ∧ dpx + dy ∧ dpy.
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The tangent flow is used to characterize the linear sta-
bility of invariant structures like periodic orbits. As for
trajectories, their integration is carried out piecewise: the
integration is composed of intervals of laser-driven prop-
agation and rebound conditions. Between the rebounds,
we integrate the tangent flow given by [32]

dtJ = ∇F J ,

where ∇F is the matrix of variations of the flow associ-
ated with Hamiltonian (7). Then, right after a rebound
on one wall, the Jacobian matrix is equal to the product
of the previous Jacobian matrix right before the rebound,
denoted J−, with the rebound matrix (14): Jacobian ma-
trix after the rebound reads

J+ = JRJ
−.

III. ANALYSIS OF THE DYNAMICS

A sampling of typical trajectories of the annular bil-
liard for I = 1012 W · cm−2 is shown in Fig. 5. These
examples illustrate qualitatively the different types of ob-
served trajectories already discussed in Sec. I. In the top
row we see that the trajectories only hit the outer wall
and never the inner wall and are therefore “whispering
gallery orbits”, or WGOs. In the middle row we show
“daisy orbits”. They are qualitatively the same, hitting
both walls successively and accessing the entire angu-
lar distribution of the billiard. Both WGO and “daisy
orbits” keep a constant rotational direction, either clock-
wise or counterclockwise, which we denote negative or
positive, respectively. In the bottom row, left panel we
see a “pringle orbit”, hitting both walls in turn, however,
limited only to the downfield region of the billiard. The
simple two rebound trajectories located at both extremes
of the upfield and downfiled region of the billiard are pe-
riodic orbits. The leftmost curve is an elliptic periodic
orbit (stable) while the rightmost curve is a hyperbolic
periodic orbit (unstable). In the bottom right panel is a
trajectory which hits neither wall (see Sec. III A 1). In
the following sections we connect these trajectories to
phase space structures and their stability.

A. Poincaré Sections

Since the dynamical system has two degrees of free-
dom, a convenient way to visualize the dynamical orga-
nization of phase space is by Poincaré sections. Here we
consider a Poincaré section with equation pr = 0 in the
direction ṗr > 0. The rebound condition (6) imposes
a discontinuity in the radial momentum pr at the re-
bound, such that formally the condition pr = 0 is never
reached during a rebound. However, we see the billiard
as the limit of an infinitely stiff potential, and a smoother
dynamics corresponding to Hamiltonian (1) would reach

FIG. 5: Trajectories of the annular billiard for I = 1012 W ·

cm−2 and ω = 0.0584 a.u. The trajectory type is shown in
the top left corner of the panel and K = 0.35 (see Fig. 2) for
all panels with the exception of the bottom right. The arrow
shows the direction of travel of the trajectory. In the bottom
left panel the simple two rebound orbits are periodic orbits.
The downfield orbit (orange) is elliptic and the upfield orbit
(red) is hyperbolic. The bottom right panel is a trajectory
which hits neither wall for K = 2Up ≈ 0.002 (see Sec. IIIA 1).

pr = 0 before changing sign. As a consequence, we con-
sider the rebounds on the walls as potential candidates
for the Poincaré section. The electron either rebounds
on the outer wall, meaning that the radial momentum
changes from positive to negative values or the electron
rebounds on the inner wall, so that the radial momentum
changes from negative to positive values. In order to com-
ply with the transverse condition ṗr > 0 we include only
the collisions with the inner wall. Furthermore, because
of the rebound condition (6) we note that pθ, x = r cos θ,
and y = r sin θ are continuous under a rebound so that it
is equivalent to record their values either directly before
or after the rebound. The Poincaré section can be rep-
resented in several ways. A three-dimensional plot can
be used where we plot (x, y, pθ) or we can make a pro-
jection onto the plane (θ, pθ) using the constant Jacobi
constraint. Regardless of which method is chosen there
are two types of points on the section: The first kind are
points on the inner wall for which r = rin and pr cho-
sen so as to satisfy the condition on the Jacobi constant
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FIG. 6: A Poincaré section for I = 1014 W ·cm−2, ω = 0.0584
a.u., and K = 0.35. The blue trajectories are the namesake
of “pringle orbits”. The corresponding two dimensional pro-
jection is displayed in Fig. 7, bottom right panel.

K. The second kind are points for which pr = 0 and r
is chosen so as to satisfy K. In this paper, for the sake
of simplicity of our figures, we make use of the projec-
tion onto the two dimensional plane (θ, pθ), however, we
show the three dimensional counterpart in Fig. 6 where
we have colored “pringle” trajectories in blue to illustrate
their namesake shape.

1. Trajectories which intersect neither wall

It is natural to ask whether the choice of Poincaré sec-
tion is a good one, i.e., do all trajectories intersect the
Poincaré section? A small subset of trajectories which
are noteworthy for both their peculiarity and the dynam-
ics they showcase, do not intersect the Poincaré section
pr = 0. In that spirit we analyze the trajectories which
do not collide with either wall. For such trajectories,
x2+y2 needs to remain between r2in and r2out at all times.
The dynamics of these trajectories is governed by Hamil-
tonian (3). Using the translation x̃ = x−E0/ω

2, p̃x = px,
ỹ = y and p̃y = py − E0/ω, the Hamiltonian is mapped
to

K̃ =
p2x + p2y

2
− ω(xpy − ypx) +

E2
0

2ω2
,

where we have dropped the tildes for simplicity. The
dynamical features no longer depend on the value of E0.
The dynamics is better seen in polar coordinates, where
the Hamiltonian becomes

K =
p2r
2

+
p2θ
2r2

− ωpθ +
E2

0

2ω2
.

Since pθ is a conserved quantity, the dynamics is that of a
particle evolving in a potential equal to p2θ/(2r

2) and the

particle will collide with a wall unless pθ = 0. In the case
where, pθ = 0, pr is constant, and it has to vanish so that
no collision with the walls takes place. Therefore the only
trajectories which do not hit a wall are circular orbits
(since ṙ = pr = 0). In the original coordinates, these
circular periodic orbits are centered around (x0, y0) =
(E0/ω

2, 0) and they have a specific Jacobi constant of
2Up where Up = E2

0/(4ω
2) is the ponderomotive energy.

For this Jacobi constant, there exist a priori an infinite
number of such orbits since the radius is not fixed. The
only constraint on the radius is that the circular orbit
has to fit inside the annulus.
Based on the laser parameters E0 and ω, the exis-

tence and characterization of such orbits can be divided
into several categories. For realistic fullerene parame-
ters, (rout − rin) /2 < rin, which is considered here, the
analysis can be grouped into four categories. Different
parameters may lead to a different decomposition that
can nevertheless be identified in a similar fashion (for
instance the third point below may dissappear).

1. If E0/ω
2 is larger than rout, then such trajectories

do not exist because the center is outside the
billiard.

2. If E0/ω
2 is in between rin and rout, then the

circular orbits are on the right hand side of the
inner wall of the annular billiard.

3. If E0/ω
2 is in between (rout − rin) /2 and rin, then

such trajectories do not exist because none of the
orbits can be fit inside the allowed region.

4. If E0/ω
2 is smaller than (rout − rin) /2, then the

circular orbits surround the inner wall with a slight
shift in the right direction.

The bottom panel of Fig. 5 shows a sample trajec-
tory in the fouth category. In this example, the value
E0/ω

2 ≈ 1.1, which is less than rin and hence the tra-
jectory surrounds the inner wall, but is shifted slightly
to the right. Except in rare cases (where E0/ω

2 is equal
to rin or rout), if such orbits exist, then they exist as a
continuous family. A linear stability analysis shows that
these orbits are parabolic. In addition, given that θ̇ = −ω
(since pθ = 0), the particle turns clockwise.
Of course, these orbits remain exceptional, in the sense

that they only exist at some particular value of the Jacobi
constant K = 2Up. For ω = 0.0584 a.u., all the orbits hit
one wall at least for intensities larger than I = 5.56 ×
1013 W ·cm−2 or intensities between 2.16×1013 W ·cm−2

and 1.96×1012 W ·cm−2. The circular orbits confined in
the right hand side of the annulus only exist for intensities
between 2.16× 1013 W · cm−2 and 5.56× 1013 W · cm−2.
Finally, for intensities lower than 1.96 × 1012 W · cm−2

an infinite family of circular orbits surrounding the inner
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wall exist. Apart from the examples illustrated in this
section all trajectories intersect, an infinite number of
times, the Poincaré section. Therefore, we can safely keep
our definition of the Poincaré section without missing
important dynamics.

2. Varying the intensity

For E0 = 0, Hamiltonian system (3) presents a contin-
uous symmetry by rotation with two degrees of freedom,
so it is integrable. We show the corresponding Poincaré
section in Fig. 7 (top left panel). As expected, phase
space is foliated by invariant tori.

When E0 > 0 the system is no longer integrable and
some invariant tori are expected to be broken. According
to KAM theory, a large portion of invariant tori persist
for E0 small. In Fig. 7 we show the evolution of phase
space as the laser intensity is varied. With increasing
intensity we note the development of a resonance near
pθ ≈ 2.5. This resonance corresponds to the aforemen-
tioned two-rebound elliptic periodic orbit shown by the
left most (downfield) orange curve in the bottom left
panel of Fig. 5. This very robust elliptic periodic or-
bit (situated on the left hand side of the annulus) is
extremely important in shaping the overall structure of
phase space as intensity increases. Trajectories originat-
ing in this region cannot access the entire billiard in a way
analogous to the librational motion in a pendulum. It is
this librational motion which yields the “pringle orbits”
already discussed at the beginning of this section. The
behavior in the vicinity of this main resonance can be
described roughly in the following way: The resonance is
approximately located at pθ = ωr20, and this can be seen

from the dynamical equation for θ, i.e., θ̇ = −ω + pθ/r
2.

For a given trajectory, if all the values of pθ are larger
than ωr2out, then the trajectory turns counterclockwise.
If the values of pθ are smaller than ωr2in then it turns
clockwise. In between, it oscillates between the two ten-
dencies.

The Poincaré sections show that the phase space is
highly regular over several decades of laser intensity.
Chaotic regions of phase space develop near the hyper-
bolic periodic orbit which is a rebound between the two
walls located in the upfield region, or the right-hand side
of the annulus, and is shown in the rightmost curve in
the bottom left panel of Fig. 5. Overall the structure of
phase space looks very similar to that of a forced pen-
dulum. In particular, the width of the main resonance
zone grows like

√
E0 or equivalently like I1/4. However,

we will see that there is a number of discrepancies for
which twistless tori are the most significant ones. We
readily observe that the lower part of phase space (nega-
tive angular momentum) is more chaotic than the upper
one (positive angular momentum).

FIG. 7: Poincaré sections for various values of the laser in-
tensity. Starting in the top left panel we begin with I = 0
(integrable case) and moving left to right and up to down
the intensity is increased. In all panels ω = 0.0584 a.u. and
K = 0.35.

3. Varying the Jacobi value

With the intensity fixed at I = 1014 W · cm−2 the Ja-
cobi value can also be varied, keeping in mind that this
variation affects the accessible regions of the billiard (see
Sec. II B). We show the corresponding Poincaré sections
in Fig. 8. Starting with the top left panel, the Poincaré
section is contained inside the interval θ ∈ [2.45, 3.83]
which agrees with the corresponding panel in Fig. 3,
note also that the dynamics is highly regular. Besides,
since the inner wall is not accessible for this Jacobi value,
points on the section result directly from the condition
that pr = 0: A typical trajectory hits the outer wall but
never reaches the inner one. For the top right panel,
the inner wall is now accessible (see top right panel of
Fig. 3) and the dynamics shows a mixed chaotic and reg-
ular behavior. In the regular region of the Poincaré sec-
tion the trajectories are regular “pringle orbits”, whereby
the turning points in θ̇ are due to the dynamics (and not
to the geometry of the billiard). Recall that the regular
region does not span the entire region of accessible θ val-
ues. However, the trajectories originating in the chaotic
region experience turning points in θ̇ because they hit the
artificial walls imposed by the choice of Jacobi value. In
the bottom panel the entire inner wall is accessible and
only a small portion of the outer wall is inaccessible. The
dynamics is still mixed, composed of a regular region with
“pringle orbits”, and a highly chaotic region where the
trajectories hit the virtual walls imposed by the geome-
try of the configuration space. WGOs are not possible
for these values of Jacobi constant. In fact, WGOs ap-
pear only when the entire annulus is accessible, e.g. in
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FIG. 8: Poincaré sections for various values of K with I =
1014 W · cm−2 and ω = 0.0584 a.u. These Jacobi values are
the same used in Fig. 2 and Fig. 3. The top right panel
includes two trajectories. The left trajectory is taken from
the “pringle” region and the right trajectory is taken from
the chaotic region.

the bottom right panel of Fig. 7.

B. Partitioning of phase space

Because of the dimensionality of the billiard (two de-
grees of freedom) invariant KAM tori constitute barriers
of transport which confine the (chaotic) dynamics to dis-
tinct regions of phase space. However, they are not ro-
bust enough to partition phase space at sufficiently high
value of the intensity. Here, our analysis reveals the ex-
istence of much more robust invariant objects, namely
twistless tori which are particularly relevant for the orga-
nization of phase space [21, 22], since they partition phase
space at relatively high intensities into regions where the
different types of trajectories occur. We next introduce
a diagnostic tool for finding these tori.

1. Frequency Analysis

Frequency analysis [24] is a practical tool in Hamil-
tonian systems for analysis of the dynamics. For inte-
grable systems written in action-angle variables (A,ϕ),
the method consists of plotting the frequency ω(A) =
∂H0/∂A as a function of A, which is expected to be
smooth for (sufficiently smooth) integrable systems. For
nearly integrable systems, the frequency is computed by
a windowed Fourier transform of a chosen observable. It
is computed for an ensemble of trajectories, and plot-
ted, for instance, as a function of the initial value of

the action. From this analysis it is possible to identify
elliptic and hyperbolic islands, regular regions filled by
KAM tori, and chaotic regions by their respective unique
signatures. The elliptic islands are expressed as con-
stant frequency plateaus, the hyperbolic orbits by cusps
in the frequency, regular regions as apparently continu-
ous curves, and chaotic regions as non-smooth sections.
Frequency analysis can also identify regions where the
twist condition is not satisfied, i.e., when ω is no longer
a monotonous function of the action. In this case, the
standard twist condition for the standard KAM theorem
is not satisfied, and it gives rise to a new taxonomy of
dynamical mechanisms, like separatrix reconnection and
twistless tori [21, 22].
In Figure 9 we plot the frequency as a function of the

initial momentum pθ. The ensemble of trajectories are
the series of points on the Poincaré section with initial
conditions θ = π and various pθ while imposing the Ja-
cobi constraint to compute the other variables. The mo-
tivation is that for the integrable case pθ is a conserved
quantity. The frequency analysis of the integrable case
(Fig. 9, upper panel) shows that the frequency is a contin-
uously varying function of pθ, as is expected. The most
interesting feature is that the frequency map does not
change monotonically with pθ. This implies the existence
of twistless tori located at the extrema of the frequency
map, at pθ ≈ −3.03 and pθ ≈ 6.11. In the non-integrable
case (Fig. 9, lower panel), we see the appearence of a
plateau which corresponds to the “pringle orbits”. In ad-
dition we notice some chaotic features in the insets, even
if the overall behavior seems to be quite regular at this
intensity. Furthermore, the frequency map still exhibits
two extrema, again which correspond to twistless tori. A
closer look at the frequency map around pθ = −3.2 and
pθ = 6.5 (insets) reveals a rich dynamics with a succes-
sion of elliptic and hyperbolic orbits, even if the overall
behavior seems to be quite regular.

2. Twistless tori

The aforementioned twistless tori are visualized by
high resolution Poincaré sections. Figure 10 shows
Poincaré sections with initial conditions nearby pθ ≈ 6.5
(upper panel) and pθ ≈ −3.2 (lower panel), correspond-
ing to the local maxima in Fig. 9. Both Poincaré sections
are similar in that they show well-developed chaotic re-
gions sandwiched between two regular regions. The reg-
ular regions correspond to WGOs, shown in blue, and
“daisy orbits”, shown in red. Likewise, the chaotic region
in both panels exhibits a stratification whereby a trajec-
tory originating in one of these regions remains there and
cannot pass to another chaotic region. The stratification
is not due to KAM tori since KAM tori come in fam-
ilies. Instead it is caused by the existence of twistless
tori, which, having dimension two, can partition phase
space. In particular in the lower panel of Fig. 10, we rec-
ognize one of the signatures of twistless tori which is the
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FIG. 9: Frequency analysis in the integrable case (I = 0,
upper panel) and non-integrable case (I = 1012 W · cm−2,
lower panel). The insets display the frequency map around
the extrema. In both panels K = 0.35 and ω = 0.0584 a.u.

meandering behavior (see for instance the interface be-
tween the orange and the dark red chaotic regions). The
black line, superimposed over both panels, separates the
two different possible ways of intersecting the Poincaré
section. Points on the section above (resp. below) the
black line for the upper (lower) panel are standard in-
tersections of the flow with the Poincaré section in the
sense that pr changes sign smoothly before and after the
intersection. Points below (resp. above) the black curve
for the upper (lower) panel are collisions with the inner
wall where the sign of pr changes due to the rebound
condition (see Sec. III A). As expected, all the WGO
trajectories are below the black curve in the lower panel
(since none of their points intersect the inner wall). The
entire WGO region is regular. We also notice that all
the “daisy orbits” are above the black curve, and this
region is also mostly regular. Between these two regions
is a strongly chaotic region with very few elliptic islands.
Each of the chaotic regions (in both panels) has a por-
tion above and below the black line. The range of θ

where each chaotic region exists above (below) the black
line gives the accessible region of the inner wall to the
electron. Figure 11 illustrates how the accessible region
of the inner wall changes as one moves from WGOs to
“daisies” in the lower panel of Fig. 10. Beginning with
the WGOs, shown in blue, which have no points above
the black line (no accessible region on the inner wall) we
increase pθ to the light blue region there is a small range
of θ values for which the chaotic region is above the black
line. The θ values are centered about θ = 0 and they
correspond to the area along the inner wall which is ac-
cessible to the electron. Moving again upwards in pθ we
pass by several more chaotic regions, each having a wider
range of θ above the black line which allows for a wider
range of the inner wall to be visited by the electron. The
inner wall becomes more accessible until finally reaching
the “daisy” region, shown in red. At this point, all inter-
sections of the Poincaré section are above the black line
covering θ ∈ [0, 2π] and therefore the entire inner wall
is accessible. The four twistless tori which exist in this
chaotic region are responsible for the discrete transition
from WGOs to “daisy orbits”. Likewise, a simiar feature
can be observed for the upper panel of Fig. 10, nearby
pθ = 6.5, however there are fewer chaotic regions and
hence fewer twistless tori.

Conclusions and outlook

The motivation of our work stems from recent pho-
toionization experiments in strong field of atoms and
molecules in both circular and linear polarized light
where a significant variation of the yields with polar-
ization was observed [3]. We propose a rather simple
dynamical model for the motion of a valence electron in-
side the valence shell of fullerene C60, namely an annular
billiard. We have investigated the dynamics when this
electron is subjected to a circularly polarized laser field.
We have shown that it exhibits three distinct types of
trajectories: “whispering gallery”, “daisy” and “pringle”
orbits. These trajectories are found in distinct, identifi-
able regions of phase space for a wide range of laser inten-
sity and Jacobi values. They are kept characteristically
segregated from each other by the existence of twistless
tori which partition phase space. The twistless tori are
identified through a frequency analysis and are confirmed
by generation of high resolution Poincaré sections. These
twistless tori, blessed with high stability, exist in chaotic
regions where KAM tori have been broken by the strong
laser field. Because of the barriers they create, twistless
tori, allow for a transition scenario from WGO orbits to
“daisy orbits” in both rotational directions, positive and
negative.
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FIG. 10: Poincaré sections of parts of phase space near the
minimum (lower panel) and maximum (upper panel) of Fig. 9.
In both panels, filled in layers correspond to each chaotic re-
gion separated by a twistless torus. The parameters are cho-
sen the same as in Fig. 9 (I = 1012 W · cm−2, K = 0.35, and
ω = 0.0584 a.u.)
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