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Abstract. Simple games are a powerful tool to analyze decision-making
and coalition formation in social and political life. In this paper we
present relational models of simple games and develop relational algo-
rithms for solving some game-theoretic basic problems. The algorithms
immediately can be transformed into the language of the Computer Al-
gebra system RelView and, therefore, the system can be used to solve
the problems and to visualize the results of the computations.

1 Introduction

In game theory (starting with [12]) a distinction is made between non-cooperative
games and cooperative games. In non-cooperative games each player (agent,
party etc.) must decide individually, while in cooperative games players are al-
lowed to act jointly and to decide within a group what strategy will be followed.

Cooperative games (see e.g. [13, 14] for an introduction) are a very useful
tool for modeling the cooperation of players and for measuring the outcome
caused by this. Simple games are a special class of cooperative games. Here
the numerical payoff of a coalition is either 1 or 0. Hence, only two classes of
coalitions are possible. The winning ones (payoff 1) take all and the losing ones
(payoff 0) receive nothing. This kind of games is very important, e.g., in social
choice theory, for the comparison and measurement of influence and power of
agents in decision-making processes and for the analysis of social and political
situations. In respect of the latter application domain we refer to [7, 8, 17], for
example.

As demonstrated e.g., in [9, 15], a lot of important problems on simple games
are known to be intractable in terms of complexity theory. In the recent years we
successfully have combined relation algebra (cf. [16]) and the BDD-based specific
purpose Computer Algebra system RelView (cf. [3, 4]) for the formation of
coalitions and alliances and to measure the strength of agents in social and
political networks. See [5, 6] for details. In [2] this approach is extended to
the solution of some standard problems on simple games like the detection of
some key players, the test of some fundamental properties of simple games, and
the computation of some power indices. All relation-algebraic solutions of [2]
and, hence, also the corresponding RelView-programs, base on the so-called
relational vector-model of simple games. An alternative model, called relational
membership-model, is only used to facilitate the input of the RelView-programs
and to visualize their computed results.
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The present paper is a continuation of [2]. Besides the vector-model and
the membership-model we study a third relational model of simple games, viz.
the seat-distribution-model of the important sub-class of voting games. We also
show how some standard problems on simple games can be solved using the
membership-model instead of the vector-model. There are situations where the
membership-model is more appropriate than the vector-model. Because Rel-
View has a very efficient BDD implementation of relations, the tool is able to
deal with non-trivial simple games that, for instance, appear in practical political
life. In addition, the tool has visualization facilities which are not easily found in
other software tools and which are most helpful for fully comprehending difficult
concepts and for understanding and testing the programs. We will demonstrate
the visualization of results by an example from the present practical political
life, viz. the game that models the German parliament after the 2009 election.

2 Relational Preliminaries

We denote the set (type) of all relations with source X and target Y (i.e., the

powerset 2X×Y ) by [X↔Y ] and write R : X↔Y instead of R ∈ [X↔Y ].
If X and Y are finite sets, then we may consider R also as a Boolean matrix.
This interpretation is well suited for many purposes and Boolean matrices are
also used as one of the graphical representations of relations within RelView.
Therefore, in this paper we often use Boolean matrix terminology and notation.
In particular, we speak of rows, columns and components/entries of relations
and write Rx,y instead of 〈x, y〉 ∈ R or xR y. We will employ the following basic
operations on relations: R (complement), R ∪ S (union), R ∩ S (intersection),
RT (transposition) and RS (composition). Furthermore, we will use the special
relations O (empty relation), L (universal relation) and I (identity relation). Here
we overload the symbols, i.e., avoid the binding of types to them.

By syq(R,S) = RT S ∩ R TS the symmetric quotient of R : X↔Y and
S : X↔Z is defined. The type of syq(R,S) is [Y ↔Z], and transforming its
definition into a component-wise notation, we have for all y ∈ Y and z ∈ Z that
syq(R,S)y,z iff for all x ∈ X it holds Rx,y iff Sx,z.

A vector is a relation v with the specific set 1 := {⊥} as target. Since in
vx,⊥ the second index ⊥ is irrelevant, we write in the following vx instead of
vx,⊥. Vectors correspond to Boolean column vectors. We say that v : X↔1
describes the subset Y of X if for all x ∈ X we have x ∈ Y iff vx. In such a
case inj(v) : Y ↔X denotes the embedding-relation of Y into X. This means
that for all y ∈ Y and x ∈ X we have inj(v)y,x iff y = x. To model sets we
also will use the relation-level equivalents of the set-theoretic symbol “∈”, i.e.,
membership-relations E : X↔ 2X defined by Ex,Y iff x ∈ Y , for all x ∈ X and
Y ∈ 2X . A combination of embedding-relations and membership-relations allows
a column-wise enumeration of a subset of a powerset. If v : 2X↔1 describes a
subset S of 2X in the sense defined above, then for all x ∈ X and Y ∈ S we
have (E inj(v)

T
)x,Y iff x ∈ Y . Using Boolean matrix terminology this means that

the elements of S are described precisely by the columns of E inj(v)
T

: X↔S.
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A non-empty vector v : X↔1 is a point if vvT ⊆ I. This means that it
describes a singleton subset of X or an element from X if we identify a singleton
set with the only element it contains. In the Boolean matrix model, hence, a point
p : X↔1 is a Boolean column vector in which exactly one entry (component)
is 1. If it describes x ∈ X, then for all y ∈ X it holds py iff x = y.

For a direct product X × Y there are the projections which decompose a
pair u = 〈u1, u2〉 into its first component u1 and its second component u2.
Within relation algebra it is very useful to consider instead of projections the
corresponding projection relations π : X×Y ↔X and ρ : X×Y ↔Y such that,
given any u ∈ X×Y , it holds πu,x iff u1 = x and ρu,y iff u2 = y. Projection
relations enable us to describe the well-known pairing operation of functional
programming relation-algebraically as follows: For given relations R : Z↔X
and S : Z↔Y we define their pairing (frequently also called fork or tupling)
[R,S] : Z↔X×Y by [R,S] := RπT∩SρT. Then for all z ∈ Z and pairs u ∈ X×Y
a simple reflection shows that [R,S]z,u iff Rz,u1

and Sz,u2
.

We also will employ a function rel (in the usual mathematical sense) which
establishes a Boolean lattice isomorphism between the types [X×Y ↔1] and
[X↔Y ]. It is defined by rel(v) = πT(ρ ∩ vLT) for all vectors v : X×Y ↔1,
where π : X×Y ↔X and ρ : X×Y ↔Y are the projection relations of X × Y
and L is a universal vector of type [Y ↔1]. Using a component-wise notation,
the definition says that for all x ∈ X and y ∈ Y we have v〈x,y〉 iff rel(v)x,y.

3 The Computer Algebra System RelView

RelView (see [4, 11]) is a specific purpose Computer Algebra system for the
visualization and manipulation of relations. In it all data are represented as re-
lations, which the tool visualizes in different ways. It offers several algorithms
for pretty-printing a relation for which source and target coincide as a directed
graph. Alternatively, an arbitrary relation may be displayed as a Boolean matrix
which is very useful for visual editing and also for discovering structural prop-
erties that are not evident from a graphical presentation. Because RelView
often works on (very) large data, it uses a very efficient implementation of re-
lations based on reduced ordered binary decision diagrams (see [10, 11]). E.g.,
a membership-relation E : X↔ 2X requires O(|X|) BDD-vertices only. Besides
it, we will also use a vector cardfilter(Q) : 2X↔1 that describes the subset
{Y ∈ 2X | |Y | < Q} of 2X . Its BDD-implementation requires O(|X|2) vertices.

The main purpose of RelView is the evaluation of relation-algebraic expres-
sions. These are constructed from the relations of its workspace using pre-defined
operations and tests and user-defined functions and programs. A RelView-
program is much like a function procedure in Modula 2, except that it only
uses relations as data type. It starts with a head line containing the program
name and the formal parameters. Then the declaration of the local relational
domains, functions and variables follows. Declarations of product domains allow
to introduce projection relations and pairings. The main part of a program is the
body, a while-program over relations. As a program computes a value, it con-
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tains a return-clause, which is a relation-algebraic expression whose value after
the execution of the body is the result. For instance, the RelView-programs
corresponding to the definition of rel(v) in Sect. 2 looks as follows:

rel(v,S)

DECL XY = PROD(S*S^,S^*S);

pi, rho, L

BEG pi = p-1(XY); rho = p-2(XY); L = L1n(rho)^

RETURN pi^*(rho & v*L^)

END.

In this program the declarations introduce XY as name for the direct product
X ×Y and three variables pi, rho and L. Since polymorphism is not part of the
present version of RelView, the type [X↔Y ] is made available via a second
argument S of this type. Using the product domain XY, in the body the projection
relations π : X×Y ↔X and ρ : X×Y ↔Y and the universal vector L : Y ↔1
are computed and stored in pi, rho and L, respectively. The return-clause is a
direct translation of the definition of rel(v) into RelView-code.

4 Relational Models of Simple Games

A cooperative game is a pair (N, f), where N = {1, . . . , n} is the set of players
and f : 2N → R is the game’s characteristic function. A subset C of N is
called a coalition and f(C) represents its payoff. The game (N, f) is simple if
f(C) ∈ {0, 1} for all C ∈ 2N . In this case, a coalition C with f(C) = 1 is winning
and one with f(C) = 0 is losing . A function from 2N into {0, 1} can be seen as
a vector of type [2N↔1] such that the function maps C ∈ 2N to 1 iff the entry
of the vector in the row corresponding to C is 1. Hence, the above definition
immediately leads to a first relational model of simple games.

Definition 4.1 Given a simple game (N, f), a vector v : 2N↔1 is called its
relational vector-model if for all C ∈ 2N it holds f(C) = 1 iff vC .

The vector-model v : 2N↔1 of a simple game (N, f) describes the set W of the
game’s winning coalitions as subset of 2N in the sense of Sect. 2. Characteristic
functions are not the only possibility do define simple games. Another natural
way to introduce them is to use pairs (N,W) with N = {1, . . . , n} again as set
of players and W as subset of 2N that specifies the set of winning coalitions. If
we enumerate the set W via the columns of a relation as described in Sect. 2,
we obtain another relational model of simple games.

Definition 4.2 Let (N, f) be a simple game andW denote the set of its winning
coalitions. Then M : N↔W is called the game’s relational membership-model
if for all k ∈ N and C ∈ W it holds Mk,C iff k ∈ W.

Since the columns of the membership-model enumerate the set of winning coali-
tions, with regard to the use of RelView this model is in particular appropriate
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for input and output purposes. Which coalitions are winning can hardly be seen
from the vector-model. Concerning the efficiency of algorithms. experiments with
RelView have shown that in the case of a high percentage of winning coalitions
typically the vector-model is superior and for games with smaller sets of winning
coalitions prevalently the membership-model wins.

From Sect. 2 we already know how to get the membership-model from the
vector-model. This transformation is described again in the “⇒”-part of the
following theorem. In its “⇐”-part it is shown how to obtain the vector-model
back from the membership-model. For a proof of this implication, see [2].

Theorem 4.1 Let (N, f) be a simple game with setW of winning coalitions and
E : N↔ 2N be a membership-relation. If v : 2N↔1 is the game’s vector-model,
then its membership-model is M := E inj(v)

T
: N↔W, and if M : N↔W is the

game’s membership-model, then its vector-model is v := syq(E,M)L : 2N↔1.

Assume (N, f) to be a simple game and let w1, . . . , wn, Q be natural numbers. In
this context, Q is called the quota and wk is called the weight of player k. Then
the linear list [Q;w1, . . . , wn] constitutes a weighted realization of the game if for
all coalitions C ∈ 2N it holds that C is winning iff

∑
k∈C wk ≥ Q. A simple game

is called a weighted voting game or a weighted majority game if it has a weighted
realization. This type of simple games plays a prominent role if game theory is
used to model and analyze real political situations. See [7, 8], for example.

To obtain a specification of weighted voting games within relation algebra,
the players are interpreted as the parties of a parliament and the weights as the
number of the parliament seats the parties hold, i.e., in the very same way as in
real political life. This leads to the following seat-distribution-model.

Definition 4.3 If (N, f) is a weighted voting game with the weighted realization
[Q;w1, . . . , wn], a relation D : S↔N models the game’s seat-distribution if it
is a mapping (in terms of relation algebra this may be specified by DTD ⊆ I and
DL = L; cf. [16]), and for all k ∈ N it holds wk = |{s ∈ S | Ds,k}|.

In the concrete case of real political parties and parliaments, for all s ∈ S and
k ∈ N the relationship Ds,k (or D(s) = k in conventional notation) is interpreted
as “seat s is owned by party k”. I.e., the weight of a party equals the number of
its seats. In Theorem 4.2 we show how to obtain from the seat-distribution-model
the vector-model and, hence, via Theorem 4.1 also the membership model.

Theorem 4.2 Assume (N, f) to be a weighted voting game with the weighted
realization [Q;w1, . . . , wn] and let the mapping D : S↔N model its seat-dist-
ribution. If E : N↔ 2N and E′ : S↔ 2S are membership-relations, then the
vector-model of the game is v := syq(DE,E′) cardfilter(Q) : 2N↔1.

Proof. Let c abbreviate cardfilter(Q). From the component-wise descriptions of
c and of symmetric quotients (see Sect. 3 and 2) we get for all C ∈ 2N that

vC ⇔ (syq(DE,E′) c )C
⇔ ∃X ∈ 2S : syq(DE,E′)C,X ∧ cX
⇔ ∃X ∈ 2S : syq(DE,E′)C,X ∧ |X| ≥ Q
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⇔ ∃X ∈ 2S : (∀ s ∈ S : (DE)s,C ↔ E′s,X) ∧ |X| ≥ Q
⇔ ∃X ∈ 2S : (∀ s ∈ S : (∃ k ∈ N : Ds,k ∧ Ek,C)↔ E′s,X) ∧ |X| ≥ Q
⇔ ∃X ∈ 2S : (∀ s ∈ S : (∃ k ∈ N : Ds,k ∧ k ∈ C)↔ s ∈ X) ∧ |X| ≥ Q
⇔ ∃X ∈ 2S : X = {s ∈ S | ∃ k ∈ C : Ds,k} ∧ |X| ≥ Q
⇔ ∃X ∈ 2S : X =

⋃
k∈C{s ∈ S | Ds,k} ∧ |X| ≥ Q

⇔ |
⋃
k∈C{s ∈ S | Ds,k}| ≥ Q

⇔
∑
k∈C |{s ∈ S | Ds,k}| ≥ Q

⇔
∑
k∈C wk ≥ Q.

Hence, the vector v describes the set of all winning coalitions. �

If the weights are small, then it is easy to obtain the seat-distribution relation D
of a weighted voting game using RelView’s facilities for interactively construct-
ing relations on the system’s screen using command buttons and the mouse. In
the case of larger weights such a procedure may become cumbersome. Here it
is advantageous to employ the ASCII file-format of RelView in order to load
a relation W into the system that consists of the pairs (1, w1), . . . , (k,wk) and
then to apply a simple RelView-program that transforms W into D.

In practical political live the number of winning coalitions of a simple game
that models a certain situation can grow rapidly with the number of players.
Therefore, in the following example we deal with a rather small game.

Example 4.1. We consider a weighted voting game with five players, that mod-
els the parliament of Germany (the German Bundestag) after the September
2009 election. Its weighted realization is [312; 239, 146, 93, 76, 68], with 312 as
quota (for absolute majority; the number of seats of the present German parlia-
ment is 622) and then the numbers of seats of the five parties. These are, from
left to right, labeled with 1, 2, 3, 4 and 5 and correspond (in the same order) to
the parties CDU/CSU, SPD, FDP, Die Linke and Bündnis 90 / Die Grünen. All
data are taken from the official web site www.bundeswahlleiter.de.

Depicted by RelView, the membership-model M : N↔W of this game
looks as follows; in this Boolean 5 × 16 matrix a black square means a 1-entry
and a white square means a 0-entry. The row labels of M denote the players.

Column 5 of this matrix represents the coalition that forms the present German
government. If we transform M into the vector-model vector v : 2N↔1, we
obtain in RelView a Boolean 32 × 1 matrix in which exactly 16 entries are
1. The following two pictures show the membership-relation E : N↔ 2N and,
below it, the transpose of v, that is, the row vector vT : 1↔ 2N .
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The 32 columns of E describe all coalitions. A comparison of the pictures (here
the transposition of v is adequate) shows that the 1-entries of the vector-model
precisely designate the columns of E that belong to the membership-model.

5 Three Applications Concerning Power of Players

As already mentioned in the introduction, simple games are very useful for the
comparison and measurement of power in decision-making processes. In this
section we consider three different possibilities to describe power and show how
they can be specified using relation algebra and the membership-model. We also
demonstrate how RelView can used to evaluate the relation-algebraic specifi-
cations. Our starting point is the following notion, first introduced in [12].

Definition 5.1 A winning coalition of a simple game is minimal winning if
every proper subset is losing.

In the following theorem we show how to specify the set W� of all minimal win-
ning coalitions as a subset of the set W of all winning ones via a vector of type
[W↔1]. An immediate consequence is the column-wise enumeration of W�.

Theorem 5.1 If M : N↔W is the membership-model of a simple game, then

m := ( I ∩ M TM )L : W↔1 describes the minimal winning coalitions W� as

subset of W and M� := M inj(m)
T

: N↔W� column-wisely enumerates W�.

Proof. In the specification of the vector m the type of L is [W↔1] and the type
of I is [W↔W]. Now, we obtain for all C ∈ W that

mC ⇔ ( ( I ∩ M TM )L )C

⇔ ¬∃D ∈ W : IC,D ∧ ( M TM )C,D ∧ LD

⇔ ¬∃D ∈ W : C 6= D ∧ ( M TM )C,D
⇔ ¬∃D ∈ W : C 6= D ∧ ¬∃ i ∈ N : M i,C ∧Mi,D

⇔ ¬∃D ∈ W : C 6= D ∧ ∀ i ∈ N : Mi,D →Mi,C

⇔ ¬∃D ∈ W : C 6= D ∧ ∀ i ∈ N : i ∈ D → i ∈ C
⇔ ¬∃D ∈ W : D ⊂ C.

This shows that m describes W� as subset of W. The second claim follows from
the fact that for all players k ∈ N and minimal winning coalitions C ∈ M� we
have (due to the component-wise description of embedding-relations in Sect. 2)

M�k,C ⇔ (M inj(m)
T

)k,C
⇔ ∃D ∈ W : Mk,D ∧ inj(m)C,D
⇔ ∃D ∈ W : k ∈ D ∧ C = D
⇔ k ∈ C. �

When investigating the power of players, one possibility is to identify some key
players having different strength and then to classify the set of players accord-
ingly. In this paper we consider the following key players.
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Definition 5.2 Player k of a simple game is a dictator if {k} is the only mini-
mal winning coalition, a veto player if it belongs to all minimal winning coaliti-
ons, and a dummy player if it does not belong to any minimal winning coalition.

A dictator is the most powerful player of a simple game. He can enforce any
decision without help of the other players. There exists at most one dictator. A
veto player is needed to win, but he cannot win on his own. If, however, any
coalition that contains this player is winning, then he is a dictator. Finally, a
dummy player is a player without any power. Next, we present relation-algebraic
specifications of these key players.

Theorem 5.2 Let the relation M� : N↔W� be as in Theorem 5.1 If we define

a := syq(I,M�) I L : N↔1, b := M� L : N↔1 and c := M�L : N↔1, then
for all players k ∈ N it holds that it is a dictator iff ak, a veto player iff bk, and
a dummy player iff ck.

Proof. Notice, that in the specification of a besides L : W�↔1 two different

identity relations appear, viz. I : N↔N in syq(I,M�) and I : W�↔W� in I L .
Now, the first claim follows from the calculation

ak ⇔ (syq(I,M�) I L )k

⇔ ∃C ∈ W� : syq(I,M�)k,C ∧ ( I L )C
⇔ ∃C ∈ W� : (∀ i ∈ N : Ii,k ↔M�i,C) ∧ ¬∃D ∈ W� : IC,D ∧ LD
⇔ ∃C ∈ W� : (∀ i ∈ N : i = k ↔ i ∈ C) ∧ ¬∃D ∈ W� : C 6= D
⇔ ∃C ∈ W� : C = {k} ∧ ¬∃D ∈ W� : C 6= D
⇔ k is a dictator

that uses the component-wise description of symmetric quotients given in Sect.
2. The relation L in the specification of b has type [W�↔1], too, and

bk ⇔ ( M� L )k
⇔ ¬∃C ∈ W� : ¬M�k,C ∧ LC
⇔ ∀C ∈ W� : M�k,C
⇔ ∀C ∈ W� : k ∈ C
⇔ k is a veto player

is a proof of the second claim. The third claim can be shown in a similar way. �

We have translated the relation-algebraic specifications given in the last two
theorems into RelView-code. Then we have applied the RelView-programs
to the relations of the game of Example 4.1. Here are the results.

Example 5.1. In the case of the parliament of Germany the RelView tool
computed the results given in the following pictures.
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The two leftmost pictures show again the membership-model M : N↔W and
(below it) the transpose of the vector m :W↔1. The four 1-entries of the row
vector mT : 1↔W precisely designate those rows of M which represent minimal
winning coalitions. If we assemble these four rows in form of a new matrix, we
obtain the column-wise enumeration M� : N↔W� given in the next picture as
Boolean 5×4 matrix. The remaining three vectors of type [N↔1] describe, from
left to right, the sets of dictators, veto players and dummy players, respectively.
Hence, in the present German parliament there exists neither a dictator nor a
veto player. But there is a dummy player, viz. Bündnis 90 / Die Grünen.

Another means for measuring power is the desirability relation. It directly com-
pares two players with regard to the strength of forming winning coalitions.

Definition 5.3 Let (N, f) be a simple game withW as set of winning coalitions.
Then j ∈ N is at least as desirable as i ∈ N , denoted by i �D j, if for all C ∈ 2N

from i, j /∈ C and C ∪ {i} ∈ W it follows C ∪ {j} ∈ W.

In words i �D j says that if i can form a winning coalition with some further
players, then j can do either. The desirability relation �D is a pre-order on the
players. With its help a lot of problems on simple games easily can be solved.
E.g., �D is linear iff the game is swap-robust, which means that a one-for-one
exchange of players between two winning coalitions leaves at least one of them
winning. Next, we show how to specify i �D j by means of relation algebra.

Theorem 5.3 Let M : N↔W be the membership model of a simple game and
assume the players i, j ∈ N to be described by the points p, q : N↔1, respecti-
vely. If E : N↔ 2N is a membership-relation, then i �D j is equivalent to the
inclusion ETp ∩ ETq ∩ syq(E ∪ pL,M)L ⊆ syq(E ∪ qL,M)L.

Proof. Since the point p describes player i, we have for all C ∈ 2N that

(ETp )C ⇔ ¬∃ k ∈ N : Ek,C ∧ pk ⇔ ¬∃ k ∈ N : k ∈ C ∧ k = i ⇔ i /∈ C

(for the second step, see Sect. 2) and also that (the L in pL has type [1↔ 2N ]
and the L composed from the right to the symmetric quotient has type [W↔1])

(syq(E ∪ pL,M)L)C ⇔ ∃D ∈ W : syq(E ∪ pL,M)C,D ∧ LD
⇔ ∃D ∈ W : ∀ k ∈ N : (Ek,C ∨ pk)↔Mk,D

⇔ ∃D ∈ W : ∀ k ∈ N : (k ∈ C ∨ k = i)↔ k ∈ D
⇔ ∃D ∈ W : C ∪ {i} = D
⇔ C ∪ {i} ∈ W.

The latter derivation employs the component-wise description of symmetric quo-
tients given in Sect. 2. In the same way for all C ∈ 2N we get the equivalence of
(ETq )C and j /∈ C and of (syq(E ∪ qL,M)L)C and C ∪ {j} ∈ W from the fact
that the point q describes player j. Using the just shown equivalences in

i �D j ⇔ ∀C ∈ 2N : i /∈ C ∧ j /∈ C ∧ C ∪ {i} ∈ W → C ∪ {j} ∈ W
⇔ ∀C ∈ 2N : (ETp ∩ ETq ∩ syq(E ∪ pL,M)L)C → (syq(E ∪ qL,M)L)C
⇔ ETp ∩ ETq ∩ syq(E ∪ pL,M)L ⊆ syq(E ∪ qL,M)L,
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we obtain the claimed result. �

As a consequence we get the desirability relation �D : N↔N as the union of
all compositions pqT, where p and q range over all points from [N↔1] such
that the right-hand side of Theorem 5.3 holds. This algorithm easily can be
implemented in RelView via two nested loops. From �D two further relations
on players are derived, viz. the more desirability relation ≺D as intersection of
�D and the complement of its transpose, and the equal desirability relation ≡D
as intersection of �D and its transpose.

Example 5.2. Let us consider again the simple game introduced in Example
4.1. The following pictures show, from left to right, the relations �D, ≺D and
≡D as computed by RelView:

Even though the players 2, 3 and 4 have different weights, they are equally
desirable. Such players are also called symmetric.

Indices are a third means to measure power. A well-established index goes back
to [1]. Under the assumption that all coalitions are equally likely and that each
player votes ‘yes’ or ‘no’ with probability 1

2 , the power of k is defined as the
probability that k is decisive for the outcome. If all indices are normalized in
such a way that their sum equals to 1, this leads to the following specification.

Definition 5.4 Let (N, f) be a simple game with set of winning coalitions W.
Then the pair 〈k,C〉 ∈ N × W is called a swing if k ∈ C and C \ {k} /∈ W.
The Banzhaf power index of k ∈ N is defined as ηk

η , where ηk is the number of
swings with first component k and η is the number of all swings.

If we have a relation B : N↔W at hand that precisely contains the swings of a
simple game, then ηk equals the number of 1-entries of row k of B and η equals
the total number of 1-entries of B. The next theorem presents a relation-algebraic
specification of this relation.

Theorem 5.4 Assume M : N↔W to be the membership model of a simple

game. If we define B := M ∩ rel(syq([ I ,M ],M)L) : N↔W, then for all k ∈ N
and C ∈ W the pair 〈k,C〉 is a swing iff Bk,C .

Proof. Notice that in the definition of B the relations I and L have the types
[N↔N ] and [W↔1], respectively. We start the proof with

(syq([ I ,M ],M)L)〈k,C〉 ⇔ ∃D ∈ W : syq([ I ,M ],M)〈k,C〉,D ∧ LD
⇔ ∃D ∈ W : ∀ i ∈ N : [ I ,M ]i,〈k,C〉 ↔Mi,D

⇔ ∃D ∈ W : ∀ i ∈ N : ( I i,k ∧Mi,C)↔Mi,D

⇔ ∃D ∈ W : ∀ i ∈ N : (i 6= k ∧ i ∈ C)↔ i ∈ D
⇔ ∃D ∈ W : C \ {k} = D
⇔ C \ {k} ∈ W,
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using the component-wise descriptions of symmetric quotients and pairings given
in Sect. 2. If we combine this result with the component-wise description of the
function rel given in Sect. 2, too, we can complete the proof by

Bk,c ⇔ (M ∩ rel(syq([ I ,M ],M)L) )k,C
⇔ Mk,C ∧ ¬rel(syq([ I ,M ],M)L)k,C
⇔ k ∈ C ∧ ¬(syq([ I ,M ],M)L)〈k,C〉
⇔ k ∈ C ∧ C \ {k} /∈ W
⇔ 〈k,C〉 is a swing . �

If the RelView tool depicts B as a Boolean matrix in the relation-window, then
in the window’s status bar the number of 1-entries of B is shown. Furthermore,
it is able to mark the rows and columns of B for explanatory purposes. So far, we
have only shown the possibility to attach consecutive row and column numbers
to relations. But also the numbers of 1-entries can be attached as labels. This
immediately allows to compute Banzhaf power indices using the tool.

Example 5.3. The following picture shows the relation-window of RelView,
where the swing-relation B : N↔W for the parliament of Germany is depicted.

From the message [24 entries] at the bottom of this window and the second
components of the row labels we obtain the following Banzhaf power indices:
CDU/CSU 12

24 , SPD 4
24 , FDP 4

24 , Die Linke 4
24 and Bündnis 90 / Die Grünen 0

24 .

6 Conclusions

In spite of the fact that RelView implements relations very efficiently, due of
its general approach it cannot compete with special algorithms tailored for hard
game-theoretic problems. Such algorithms even can tackle games like the US
Federal System game with 537 players. We believe that the real attraction of
RelView lies in its flexibility: New types and properties of games are intro-
duced all the time and RelView proved to be ideal for experimenting with new
concepts while avoiding unnecessary overhead. By now, systematic experiments
are accepted as means for obtaining new scientific insights and results, and tools
for this purpose become increasingly important as one proceeds in investigations.

In those cases where the present RelView tool is not effective, all hope is
not lost. By our experiments we have noticed that in many cases the BDDs
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of the results are relatively small. This led to the insight that BDDs are an
excellent means for solving efficiently game-theoretic problems, especially if they
are manipulable in full generality and not only indirectly via the language of
RelView. Consequently, the current direction in the development of RelView
is to make it more extensible by expanding its interface in such a way that it
is possible to outsource program logic into plug-ins. By specific game-theoretic
plug-ins we hope to be able to treat successfully in the future also large problems.
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