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Abstract

The Fisher-EM algorithm has been recently proposed in [4] for the simulta-

neous visualization and clustering of high-dimensional data. It is based on a

latent mixture model which fits the data into a latent discriminative subspace

with a low intrinsic dimension. Although the Fisher-EM algorithm is based

on the EM algorithm, it does not respect at a first glance all conditions of

the EM convergence theory. Its convergence toward a maximum of the likeli-

hood is therefore questionable. The aim of this work is two folds. Firstly, the

convergence of the Fisher-EM algorithm is studied from the theoretical point

of view. It is in particular proved that the algorithm converges under weak

conditions in the general case. Secondly, the convergence of the Fisher-EM

algorithm is considered from the practical point of view. It is shown that the

Fisher’s criterion can be used as stopping criterion for the algorithm to im-

prove the clustering accuracy. It is also shown that the Fisher-EM algorithm

converges faster than both the EM and CEM algorithm.

Keywords: high-dimensional data, model-based clustering, discriminative

subspace, Fisher-EM algorithm, convergence properties.

1. Introduction

With the exponential growth of measurement capacities, the measured

observations are nowadays frequently high-dimensional and clustering such
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data remains a challenging problem. In particular, when considering the mix-

ture model context, the corresponding clustering methods show a disappoint-

ing behavior in high-dimensional spaces. They suffer from the well-known

curse of dimensionality [2] which is mainly due to the fact that model-based

clustering methods are over-parametrized in high-dimensional spaces.

Fortunately, since the dimension of observed data is usually higher than

their intrinsic dimension, it is theoretically possible to reduce the dimension

of the original space without loosing any information. In the literature, a very

common way to reduce the dimension is to use feature extraction methods

such as principal component analysis (PCA) or feature selection methods.

However, as shown by Chang [7], the principal components linked to the

largest eigenvalues do not necessary contain the most relevant information

about the group structure of the dataset. An alternative to dimension re-

duction methods is subspace clustering [5, 12, 13, 14, 16]. These techniques

model the data of each group in low-dimensional subspaces while keeping all

original dimension. Even though these methods turned out to be very effi-

cient in practice, they are usually not able to provide a global visualization

of the clustered data since they model each group in a specific subspace.

To overcome this limitation, Bouveyron and Brunet [4] recently proposed

a new statistical framework which aims to simultaneously cluster the data

and produce a low-dimensional representation of the clustered data. To that

end, the proposed model clusters the data into a common latent subspace

which both best discriminates the groups according to the current fuzzy par-

tition of the data and has an intrinsic dimension lower than the dimension

of the observation space. The proposed inference procedure for this latent

mixture model is called the Fisher-EM algorithm. It is based on an EM

procedure from which an additional step, named F-step, is introduced to es-

timate the projection matrix whose columns span the discriminative latent

space. This projection matrix is estimated at each iteration by maximizing

a constrained Fisher’s criterion conditionally to the current soft partition of

the data. As reported by [4], the Fisher-EM algorithm turns out to outper-

form most of the existing clustering and subspace clustering methods while

providing in addition a useful visualization of the clustered data.

However, with the introduction of this additional step, the Fisher-EM

algorithm does not satisfy at a first glance to all conditions required by the

convergence theory of the EM algorithm. Indeed, the update of the orienta-
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tion matrix in the F step is not done by directly maximizing the expected

complete log-likelihood as required in the EM algorithm theory. From this

point of view, the convergence toward a maximum of the likelihood of the

Fisher-EM algorithm cannot be guaranteed and is therefore questionable.

This paper consequently focuses on the convergence properties of the

Fisher-EM algorithm and is organized as follows. Section 2 reviews the dis-

criminative latent mixture model and the Fisher-EM algorithm which was

proposed for its inference. Section 3 focuses on theoretical aspects. The con-

vergence of the Fisher-EM algorithm is in particular proved in two different

cases. Numerical experiments are then presented in Section 4 to highlight

the practical behavior of the convergence. Some concluding remarks and

ideas for further works are finally given in Section 5.

2. The DLM model and the Fisher-EM algorithm

The discriminative latent mixture (DLM) model [4] aims to both cluster

the data at hand and reduce their dimensionality into a common latent

subspace. Conversely to similar approaches, such as [5, 13, 15, 16, 18], this

latent subspace is assumed to be discriminative and its intrinsic dimension

is strictly bounded by the number of groups.

2.1. The DLM model

Let {y1, . . . , yn} ∈ R
p denote a dataset of n observations that one wants

to cluster into K homogeneous groups, i.e. adjoin to each observation yj

a value zj ∈ {1, . . . ,K} where zi = k indicates that the observation yi be-

longs to the kth group. On the one hand, let us assume that {y1, . . . , yn}

are independent observed realizations of a random vector Y ∈ R
p and

that {z1, . . . , zn} are also independent realizations of a random vector Z ∈

{1, . . . ,K}. On the other hand, let E ⊂ R
p denote a latent space assumed

to be the most discriminative subspace of dimension d ≤ K − 1 such that

0 ∈ E and where d is strictly lower than the dimension p of the observed

space. Moreover, let {x1, . . . , xn} ∈ E denote the actual data, described in

the latent space E of dimension d, which are in addition presumed to be

independent realizations of an unobserved random vector X ∈ E. Finally,

for each group, the observed variable Y ∈ R
p and the latent variable X ∈ E

are assumed to be linked through a linear transformation:
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Y = UX + ε, (2.1)

where U is a p×d orthonormal matrix common to the K groups and satisfying

U tU = Id. The p-dimensional random vector ε stands for the noise term and,

conditionally to Z, ε is assumed to be distributed according to a centered

Gaussian density function with covariance matrix Ψk (ε|Z=k ∼ N (0,Ψk)).

Besides, within the latent space, X is assumed to be Gaussian conditionally

to Z = k:

X|Z=k ∼ N (µk,Σk) (2.2)

where µk ∈ R
d and Σk ∈ R

d×d are respectively the mean vector and the

covariance matrix of the kth group. Given these distribution assumptions

and according to equation (2.1),

Y|X,Z=k ∼ N (UX,Ψk), (2.3)

and its marginal distribution is therefore a mixture of Gaussians:

f(y) =
K
∑

k=1

πkφ(y;mk, Sk), (2.4)

where πk is the mixing proportion of the kth group and φ(.) denotes the

multivariate Gaussian density function parametrized by the mean vector

mk = Uµk and the covariance matrix Sk = UΣkU
t + Ψk of the kth group.

Furthermore, a p × p matrix W = [U, V ] is defined, satisfying the condition

W tW = WW t = Ip, where the (p − d) × p matrix V is an orthogonal

complement of U . Finally, the noise covariance matrix Ψk is assumed to

satisfy the conditions VΨkV
t = βkIp−d and UΨkU

t = 0d, such that ∆k =

W tSkW has the following form:

∆k =































Σk 0

0

βk 0
. . .

. . .

0 βk
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Figure 2.1: Graphical summary of the DLM[Σkβk] model.

These last conditions imply that the discriminative and the non discrimina-

tive subspaces are orthogonal, which suggests in practice that all the relevant

clustering information remains in the latent subspace. This model is referred

to by DLM[Σkβk] in [4] and a graphical summary is given in Figure 2.1.

2.2. A family of parsimonious model

Parsimonious models can be obtained by constraining the parameters

Σk or βk to be common between and within the groups. For instance, the

covariance matrices Σ1, . . . ,ΣK in the latent space can be assumed to be

common across the groups and this submodel is referred to by DLM[Σβk].

Similarly, in each group, Σk can be assumed to be diagonal, i.e. Σk =

diag(αk1, . . . , αkd). This submodel is referred to by DLM[αkjβk]. A constraint

can also be applied in the parameter βk by assuming it to be common to all

classes (∀k, βk = β). This assumption can be viewed as modeling the non

discriminative information with a unique parameter which seems natural for

data obtained in a common acquisition process. A list of the 12 different

DLM models is given by Table 1 and detailed descriptions can be found

in [4]. Such a family yields very parsimonious models and allows, in the

same time, to fit into various situations. In particular, the complexity of

the DLM[Σkβk] model mainly depends on the number of clusters K since the

dimensionality of the discriminative subspace is such that d ≤ K−1. Notice

that the complexity of the DLM[Σkβk] grows linearly with p contrary to the

traditional Gaussian models in which the complexity increases with p2. As

an illustration, if we consider the case where p = 100, K = 4 and d = 3,

then the number of parameters to estimate for the DLM[Σkβk] is 337 which
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Model Nb. of parameters
K = 4 and

p = 100

DLM[Σkβk ] (K − 1) +K(K − 1) + (K − 1)(p −K/2) +K2(K − 1)/2 +K 337

DLM[Σkβ] (K − 1) +K(K − 1) + (K − 1)(p −K/2) +K2(K − 1)/2 + 1 334

DLM[Σβk]
(K − 1) +K(K − 1) + (K − 1)(p −K/2) +K(K − 1)/2 +K 319

DLM[Σβ] (K − 1) +K(K − 1) + (K − 1)(p −K/2) +K(K − 1)/2 + 1 316

DLM[αkjβk]
(K − 1) +K(K − 1) + (K − 1)(p −K/2) +K2 325

DLM[αkjβ] (K − 1) +K(K − 1) + (K − 1)(p −K/2) +K(K − 1) + 1 322

DLM[αkβk]
(K − 1) +K(K − 1) + (K − 1)(p −K/2) + 2K 317

DLM[αkβ] (K − 1) +K(K − 1) + (K − 1)(p −K/2) +K + 1 314

DLM[αjβk]
(K − 1) +K(K − 1) + (K − 1)(p −K/2) + (K − 1) +K 316

DLM[αjβ] (K − 1) +K(K − 1) + (K − 1)(p −K/2) + (K − 1) + 1 313

DLM[αβk]
(K − 1) +K(K − 1) + (K − 1)(p −K/2) +K + 1 314

DLM[αβ] (K − 1) +K(K − 1) + (K − 1)(p −K/2) + 2 311

Full-GMM (K − 1) +Kp+Kp(p+ 1)/2 20603

Com-GMM (K − 1) +Kp+ p(p+ 1)/2 5453

Mixt-PPCA (K − 1) +Kp+K(d(p − (d + 1)/2) + d+ 1) + 1 1198 (d = 3)

Diag-GMM (K − 1) +Kp+Kp 803

Sphe-GMM (K − 1) +Kp+K 407

Table 1: Number of free parameters to estimate when d = K−1 for the DLM models and
some classical models (see text for details).

is drastically less than in the case of the Full-GMM (20603 parameters to

estimate).

2.3. The Fisher-EM algorithm

An estimation procedure, called the Fisher-EM algorithm, is also pro-

posed in [4] in order to estimate both the discriminative space and the pa-

rameters of the mixture model. This algorithm is based on the EM algorithm

from which an additional step is introduced, between the E and the M-step.

This additional step, named F-step, aims to compute the projection ma-

trix U whose columns span the discriminative latent space. The Fisher-EM

algorithm has therefore the following form, at iteration q:

The E-step. This step computes the posterior probabilities t
(q)
ik that the ob-

servations belong to the K groups using the following update formula:

t
(q)
ik = π̂

(q−1)
k φ(yi, θ̂

(q−1)
k )/

K
∑

ℓ=1

π̂
(q−1)
ℓ φ(yi, θ̂

(q−1)
ℓ ), (2.5)

with θ̂k = {µ̂k, Σ̂k, β̂k, Û}.

The F-step. This step estimates, conditionally to the posterior probabilities,

the orientation matrix U (q) of the discriminative latent space by maximizing
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the Fisher’s criterion [9, 11] under orthonormality constraints:

Û (q) = max
U

trace
(

(U tSU)−1U tS
(q)
B U

)

,

w.r.t. U tU = Id, (2.6)

where S stands for the covariance matrix and S
(q)
B , defined as follows:

S
(q)
B =

1

n

K
∑

k=1

n
(q)
k (m

(q)
k − ȳ)(m

(q)
k − ȳ)t, (2.7)

denotes the soft between covariance matrix with n
(q)
k =

∑n
i=1 tik, m

(q)
k =

1/n
(q)
k

∑n
i=1 t

(q)
ik yi and ȳ = 1/n

∑n
i=1 yi. This optimization problem is solved

in [4] using the concept of orthonormal discriminant vector developed by [10]

through a Gram-Schmidt procedure. Such a process enables to fit a dis-

criminative and low-dimensional subspace conditionally to the current soft

partition of the data while providing orthonormal discriminative axes. In

addition, according to the rank of the matrix S
(q)
B , the dimensionality of the

discriminative space d is strictly bounded by the number of clusters K.

The M-step. This third step estimates the parameters of the mixture model
in the latent subspace by maximizing the conditional expectation of the
complete log-likelihood:

Q(θ) = −
1

2

K
∑

k=1

n
(q)
k

[

-2 log(πk) + tr(Σ−1
k Û (q)tC

(q)
k Û (q)) + log(|Σk|)

+ (p-d) log(βk) +
trace(C

(q)
k )-

∑d

j=1 û
(q)t
j C

(q)
k û

(q)
j

βk

+ p log(2π)
]

. (2.8)

where C
(q)
k = 1

n
(q)
k

∑n
i=1 t

(q)
ik (yi − m̂

(q−1)
k )(yi − m̂

(q−1)
k )t is the empirical co-

variance matrix of the kth group and û
(q)
j is the jth column vector of Û (q),

n
(q)
k =

∑n
i=1 t

(q)
ik . Hence, maximizing Q conditionally to Û (q) leads to the fol-

lowing update formula for the mixture parameters of the model DLM[Σkβk]:

π̂
(q)
k =

n
(q)
k

n
, (2.9)

µ̂
(q)
k =

1

n
(q)
k

n
∑

i=1

t
(q)
ik Û (q)tyi, (2.10)
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Σ̂
(q)
k = Û (q)tCkÛ

(q), (2.11)

β̂
(q)
k =

tr(Ck)-
∑d

j=1 û
(q)t
j Ckû

(q)
j

p− d
. (2.12)

The Fisher-EM procedure iteratively updates the parameters until a stopping

criterion is satisfied (see next paragraph). Finally, since the latent subspace

has a low dimension and is also common to all groups, the clustered data can

be easily visualized by projecting them into the estimated latent subspace.

2.4. Computational aspects

In all iterative procedures, both the initialization procedure and the stop-

ping criterion have a significant effect on the algorithm performance. Regard-

ing the initialization, several strategies have been proposed in the literature

for initializing the EM algorithm. A popular practice [3], called mini-EM,

executes the EM algorithm several times from a random initialization and

only keeps the set of parameters associated with the highest likelihood. The

use of k-means or of a random partition are also standard approaches for

initializing the algorithm. In [4], it also suggested to initialize the Fisher-

EM algorithm with the partition provided by the EM algorithm. On the

other side, a classical stopping criterion is to stop the algorithm when the

difference between two consecutive likelihood values is smaller than a posi-

tive value ε provided by the user. This stopping criterion will be used in the

experiments of Section 4 and will be compared to an alternative proposed in

this work. However, the stop of the algorithm with such a stopping criterion

does not guarantee that it has reached a maximum of the likelihood.

3. Theoretical considerations on the convergence

The convergence of the Fisher-EM algorithm is first considered here from

the theoretical point of view. Two cases are considered: the isotropic case

(model DLM[αβ]) and the general case.

3.1. Isotropic case: model DLM[αβ]

We first consider the model DLM[αβ] which assumes a common and

spherical covariance matrix for each class both in the latent subspace (∀k ∈

{1, . . . ,K}, Σk = αId) and in its orthogonal complement (∀k ∈ {1, . . . ,K}, βk =

β). Then, in this case, the following result holds.
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Theorem 1. In the case of the model DLM[αβ], the Fisher-EM algorithm is
an EM algorithm and its convergence toward a local maximum of the likeli-
hood is therefore guaranteed.

Proof. In order to prove that the Fisher-EM algorithm is an EM algorithm
in the case of the model DLM[αβ], it is necessary and sufficient to show that
the maximization of the constrained Fisher’s criterion (2.6) (involved in the
F step) is equivalent to the maximization of the conditional expectation of
the complete log-likelihood Q(θ) at iteration q.

On the one hand and by assuming that the empirical covariance matrix
of the whole dataset is equal to Ip, the optimization problem (2.6) considered
in the F step at iteration q can be rewritten, without loss of generality, as
follows:







min
U

trace
(

U tS
(q)
W U

)

,

wrt U tU = Id,

since cov(Y) = S
(q)
B + S

(q)
W where SW = 1

n

∑K
k=1 n

(q)
k C

(q)
k is the soft within

covariance matrix, C
(q)
k = 1

n
(q)
k

∑n
i=1 t

(q)
ik (yi − m̂

(q−1)
k )(yi − m̂

(q−1)
k )t is the

empirical covariance of the kth group and n
(q)
k =

∑n
i=1 t

(q)
ik . In order to ease

the reading, the index q of the current iteration is omitted in the remainder
of the proof.

On the other hand, let us consider the quantity −2Q(θ) which has the
following form in the case of the DLM models:

−2Q(θ) = −2

K
∑

k=1

n
∑

i=1

tik log (πkφ (yi; θk))

=
K
∑

k=1

[

n
∑

i=1

tik[−2 log(πk) + p log (2π) + log |Sk|+ (yi −mk)
tS−1

k (yi −mk)]

]

=

K
∑

k=1

[

n
∑

i=1

tik[log |Sk|+ (yi −mk)
tS−1

k (yi −mk)]

]

+ γ1,

where γ1 =
∑K

k=1

∑n
i=1 tik[−2 log(πk) + p log (2π)] is a constant term while

maximizing with respect to U .
Let us now consider the case of the model DLM[αβ] which implies that

Sk = S = W∆W t, ∀k ∈ {1, . . . ,K}, and that the matrix ∆ has the following
form:

∆ =

[

αId 0

0 βIp−d

]

. (3.1)

Given these assumptions, the quantity γ2 =
∑K

k=1

∑n
i=1 tik log |Sk|, which is

also equal to
∑K

k=1 nk log |S|, is as well independent of U and then becomes
a constant with respect to U .
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Moreover, denoting by A the quantity
∑K

k=1

∑n
i=1 tik(yi −mk)

tS−1(yi −
mk), we can state that:

A =
K
∑

k=1

n
∑

i=1

tik(yi −mk)
tS−1(yi −mk)

= trace

(

S−1
K
∑

k=1

n
∑

i=1

tik(yi −mk)(yi −mk)
t

)

= ntrace
(

S−1SW

)

.

Besides, since S−1 = W∆−1W t where W satisfies WW t = W tW = Ip, the
quantity A can be rewritten as:

A = ntrace
(

(

W t∆W
)−1

SW

)

= ntrace
(

∆−1W tSWW
)

.

Let us finally introduce the matrices W̃ = [U, 0p−d] and W̄ = [0d, V ] such
as W = W̃ + W̄ , where V is an orthogonal complement of U . In this case,
the relation W tSWW = W̃ tSW W̃ t + W̄ tSW W̄ can be easily stated since
W̃ tSW W̄ and W̄ tSW W̃ are both null matrices. Therefore, according to the
diagonal form of the matrix ∆ (see equation (3.1)), then the quantity A
becomes:

A = ntrace
(

∆−1
(

W̃ tSW W̃ t + W̄ tSW W̄
))

= n

(

trace

(

1

α
U tSWU

)

+ trace

(

1

β
V tSWV

))

=
n

α
trace

(

U tSWU
)

+ γ3,

where γ3 = ntrace
(

1
βV

tSWV
)

is independent of U . Thus, the conditional

expectation of the complete log-likelihood Q(θ) can be rewritten as:

−2Q(θ) =
n

α
trace

(

U tSWU
)

+ γ,

where γ = γ1 + γ2 + γ3.
Consequently, since minimizing the quantity trace(U tSWU) with respect

to U is equivalent to maximizing Q(θ), the F step of the Fisher-EM algorithm
maximizes Q(θ) with respect to U in the case of the model DLM[αβ]. This
allows to conclude that the Fisher-EM algorithm, in the case of the model
DLM[αβ], is a traditional EM algorithm and its convergence toward a local
maximum of the likelihood is therefore guaranteed [17].
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3.2. General case: all DLM models

We now consider the general case (all other models of the DLM family)

and, in this case, the following result holds.

Theorem 2. If, at each iteration q, the quantity

δ(q) =

K
∑

k=1

trace

[

n
(q)
k

(

Σ̂
(q−1)−1

k −
1

β̂
(q−1)
k

Id

)

(

Û (q−1)tC
(q)
k Û (q−1) − Û (q)tC

(q)
k Û (q)

)

]

is positive, then the Fisher-EM algorithm is a generalized EM (GEM) algo-
rithm and its convergence toward a local maximum of the likelihood is there-
fore guaranteed.

Proof. In order to prove that the Fisher-EM algorithm is a generalized EM al-
gorithm [8], it is necessary to show that, at each iteration q, Q(U (q+1), θ(q+1)) ≥
Q(U (q), θ(q)), where θ(q) is the set of model parameters estimated at itera-
tion q, U (q) is the orientation matrix of the latent subspace and Q(θ) is the
conditional expectation of the complete log-likelihood.

Let Û (q) and θ̂(q) =
{

µ̂(q), Σ̂(q), β̂(q), π̂(q)
}

be the model parameters es-

timated at iteration q and let t
(q+1)
ik , i = 1, ..., n and k = 1, ...,K, be the

posterior probabilities computed in the E step at iteration q + 1.
On the one hand, let us consider the quantity:

δ(q+1) = Q(Û (q+1), θ̂(q))−Q(Û (q), θ̂(q)).

In the case of the DLM models, we recall that Q(U, θ̂(q)) has the following
form:

Q(U, θ̂(q)) =−
1

2

K
∑

k=1

n
∑

i=1

t
(q+1)
ik

[

−2 log(π̂
(q)
k ) + trace

(

(

Σ̂
(q)
k

)

−1

U tC
(q+1)
k U

)

+ log
∣

∣

∣Σ̂
(q)
k

∣

∣

∣

+ (p− d) log(β̂
(q)
k ) +

1

β̂
(q)
k

trace(C
(q+1)
k − U tC

(q+1)
k U) + p log(2π)

]

.

where C
(q+1)
k is the empirical covariance matrix of the kth group computed

at iteration q + 1 (conditionally to the posterior probabilities t
(q+1)
ik ). By

subtracting term by term, we end up with:

δ(q+1) =
1

2

[

K
∑

k=1

trace
(

B
(q)
k

(

A
(q)
k −A

(q+1)
k

))

]

,
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where:

A
(q)
k = Û (q)tn

(q+1)
k C

(q+1)
k Û (q)

A
(q+1)
k = Û (q+1)tn

(q+1)
k C

(q+1)
k Û (q+1)

B
(q)
k = Σ̂

(q)−1

k −
1

β̂
(q)
k

Id.

Although the criterion maximized in the F step guarantees that the quantity
∑K

k=1 trace
(

A
(q)
k −A

(q+1)
k

)

≥ 0 if S = Ip, we have however no guarantee

that trace
(

A
(q)
k −A

(q+1)
k

)

≥ 0 for all k = 1, ...,K. It is therefore not possible

to be sure that, at each iteration, δ(q+1) ≥ 0 even though B
(q)
k is a semi-

definite positive matrix. In order to go further, let us therefore assume that
the following condition is satisfied:

H1 : δ(q+1) =
1

2

[

K
∑

k=1

trace
(

B
(q)
k

(

A
(q)
k −A

(q+1)
k

))

]

≥ 0.

On the other hand, the EM algorithm theory [8] implies that the set of

parameter estimates θ̂(q+1) =
{

µ̂(q+1), Σ̂(q+1), β̂(q+1), π̂(q+1)
}

(estimated in

the M step at iteration q + 1) is such that Q(Û (q+1), θ̂(q+1)) ≥ Q(Û (q+1), θ)
for any θ.

It is now straightforward to conclude since, in particular, Q(Û (q+1), θ̂(q+1)) ≥
Q(Û (q+1), θ̂(q)) and Q(Û (q+1), θ̂(q)) ≥ Q(Û (q), θ̂(q)) if Assumption H1 is ver-
ified. Consequently, conditionally to the fact that H1 holds, the Fisher-EM
algorithm is a generalized EM algorithm and its convergence toward a lo-
cal maximum of the likelihood is therefore guaranteed [17] in the general
case.

The convergence condition H1 seems however not to be a strong condi-

tions since, as we said before, the criterion maximized in the F step implies

that
∑K

k=1 trace
(

A
(q)
k −A

(q+1)
k

)

≥ 0 at each iteration q and since B
(q)
k is

a semi-definite positive matrix. We therefore believe that H1 is frequently

satisfied in practice. In addition, it is easy to monitor the quantity δ(q) along

the iterations to verify if H1 is satisfied for the clustering task at hand. Such

a verification is made on a real-world dataset in the following section.

4. Practical considerations on the convergence

We now focus on the practical aspects of the Fisher-EM convergence. We

first present an experimental validation of the convergence criterion intro-

12



−3 −2 −1 0 1 2

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

−6 −4 −2 0 2

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0

Initialization Iteration 1

−6 −4 −2 0 2

−
8

−
7

−
6

−
5

−
4

−
3

−5 −4 −3 −2 −1 0 1 2

−
4

−
3

−
2

−
1

Iteration 3 Iteration 5

−2 −1 0 1 2 3 4

−
4

−
3

−
2

−
1

0

−3 −2 −1 0 1 2 3 4

−
4

−
3

−
2

−
1

0

Iteration 7 Iteration 14

Figure 4.1: Projection of clustered Iris data into the estimated latent discriminative sub-
space at some iterations of the Fisher-EM algorithm.
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duced in Theorem 2. The use of the Fisher’s criterion as stopping criterion

is then investigated and Fisher-EM is finally compared to the EM and CEM

algorithms.

4.1. Experimental validation

The Iris dataset is used here as an introductory example because of the

link with Fisher’s work [9] but also for its popularity in the clustering and

classification communities. This dataset, collected by E. Anderson [1] in

the Gaspé peninsula (Canada), is made of three groups corresponding to

different species of iris (setosa, versicolor and virginica) among which the

groups versicolor and virginica are difficult to discriminate (they are at least

not linearly separable). The dataset consists of 50 samples from each of

three species and four features were measured from each sample. The four

measurements are the length and the width of the sepal and the petal.

For this experiment, we used the Fisher-EM algorithm with the model

DLM[αkjβk] to cluster the 150 observations into three groups. The labels

have been of course used only for the evaluation of the clustering perfor-

mance. The algorithm was initialized with a random partition drown from a

multinomial distribution with equal prior probabilities. Figure 4.1 shows the

projection of clustered data into the estimated latent discriminative subspace

at some iterations of the Fisher-EM algorithm. The current partition of the

data is indicated at each iteration by the colors. Group-specific histograms

provide as well some information on the projected distributions of the groups

on each axis. It can be observed that the estimated latent space of the last

iteration discriminates almost perfectly the three different groups. For this

experiment, the clustering accuracy has reached 98%.

Figure 4.2 presents the evolution of the log-likelihood and of the con-

vergence criterion δ(q) (cf. Theorem 2) according to the iterations of the

Fisher-EM algorithm on the Iris dataset. As expected, one can observe that

the convergence criterion δ(q) is large at the beginning and decreases toward

0 when the likelihood reaches a stationary value. On this example, it is

therefore guaranteed that the Fisher-EM algorithm reached a local optimum

of the likelihood.

4.2. The Fisher’s criterion as stopping criterion

The Fisher-EM algorithm iteratively maximizes two quantities, the like-

lihood and the constrained Fisher’s criterion (2.6), and, as shown by the
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Figure 4.2: Evolution of the log-likelihood (top) and of the convergence criterion δ
(q)

(bottom) according to the iterations of the Fisher-EM algorithm on the Iris dataset.
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theoretical study of Section 3, both quantities have a strong relationship.

Furthermore, the Fisher-EM algorithm classically stops when the difference

between two consecutive likelihood values is smaller than a positive value ε

provided by the user. It is therefore questionable if the Fisher’s criterion can

be used as stopping criterion instead of the likelihood. This experiment aims

to answer this question.

To that end, we simulated a dataset made of 300 observations coming

from 3 groups (with equal prior probabilities) in a 25-dimensional space

according to the model DLM[αkβ]. The dimension of the latent space was

d = 2 and the transformation matrix W = [U, V ] was randomly simulated

such as W tW = WW t = Ip. The group means and the noise variance were

set up such that the clustering problem was difficult. The used parameters

were µ1 = (0, 0), µ2 = (0, 3), µ3 = (−3, 0), α1 = 0.25, α2 = 1, α3 = 0.5 and

β = 1.

Figure 4.3 shows the evolution of the log-likelihood and of the Fisher

criterion according to the Fisher-EM iterations for the clustering of a sim-

ulated dataset. It clearly appears that the likelihood reaches a stationary

value faster than the Fisher’s criterion. According to these behaviors and

if a stopping criterion with ε = 1e − 3 is applied on both the standardized

log-likelihood and Fisher’s criteria, the algorithm stops after 9 iterations

when considering the likelihood and after 38 iterations when considering the

Fisher’s criterion. The difference between both criteria can be explained

by the fact that the likelihood is mostly associated with the fitting quality

whereas the Fisher’s criterion is more related to the group separation and

consequently to the clustering accuracy. On this example, the parameter

estimation turns out to be satisfying long before the group separation.

This difference can be quantified by computing the clustering accuracy

associated with the clustering results obtained with both criteria. Figure 4.4

shows the evolution of the clustering accuracy according to the Fisher-EM

iterations for the simulated dataset. The Fisher-EM algorithm stops at the

red solid line, after 9 iterations, if the log-likelihood is used and at the green

dashed line, after 38 iterations, if the Fisher criterion is used (when ε =

1e − 3). From this figure, the Fisher’s criterion seems to be a more reliable

stopping criterion than the likelihood when considering the clustering task.

In order to validate this observation, we computed both the average num-

ber of iterations and clustering accuracy for both the likelihood and the

16
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Figure 4.3: Evolution of the log-likelihood (left) and of the Fisher criterion (right) accord-
ing to the Fisher-EM iterations for the clustering of a simulated dataset.

Fisher’s criterion on 25 replications of the experiment. Figure 4.5 presents

these results. It clearly appears that the use of the Fisher’s criterion as

stopping criterion for the Fisher-EM algorithm yields to a significant larger

number of iterations but also to a significant higher clustering accuracy com-

pared to the likelihood. To summarize, this experiment has shown that, when

looking more for a high clustering accuracy than a good parameter estima-

tion, it is preferable to consider the constrained Fisher’s criterion (2.6) as

stopping criterion for the Fisher-EM algorithm.

4.3. Fisher-EM vs. EM and CEM algorithms

We focus now, still from the practical point of view, on the convergence

rate of the EM, classification EM (CEM) [6] and Fisher-EM algorithms.

The convergence rate of the EM algorithm is known to be relatively slow.

Dempster et al. [8] show that the rate of convergence of the EM algorithm is

linear and that it depends on the proportion of information in the observed

data. In order to fasten the convergence rate of the EM algorithm when the

practitioner is mostly interested in the clustering performance, Celeux and

Govaert [6] proposed the CEM algorithm which adds a classification step

between the E and M step. The CEM algorithm is in particular known for

converging faster than the EM algorithm.

This experiment aims to compare, in a simulation setup, the convergence

rate of the Fisher-EM algorithm with the ones of the EM and CEM algo-

rithms. To that end, we simulated a dataset made of 600 observations coming

from 3 groups (with equal prior probabilities) in a 5-dimensional space ac-

cording to the model DLM[αkβ]. The dimension of the latent space was d = 2
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Figure 4.4: Clustering accuracy according to the Fisher-EM iterations for the simulated
dataset. The Fisher-EM algorithm stops at the red solid line if the log-likelihood is used
as stopping criterion and at the green dashed line if the Fisher criterion is used (both with
ε = 1e− 3).
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Figure 4.5: Average behaviors of the likelihood and the Fisher criterion as stopping criteria
for the clustering of a simulated dataset (25 replications). The left panel shows the average
number of iterations and the right panel shows the resulting average clustering accuracy.
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Figure 4.6: Evolution of the log-likelihood (top), the clustering accuracy (center) and the
estimation error (bottom) according to the number of iterations for the EM, CEM and
Fisher-EM algorithm.

and the transformation matrix W = [U, V ] was once again randomly simu-

lated such as W tW = WW t = Ip. Conversely to the previous experiment,

the group means and the noise variance were set up such that the cluster-

ing problem was easy. The used parameters were µ1 = (0, 0), µ2 = (0, 10),

µ3 = (−10, 0), α1 = 0.25, α2 = 1, α3 = 0.5 and β = 0.5. Hence, the EM and

CEM algorithms are not disadvantaged and, given the low dimension of the

data and the large number of observations, they should be able to correctly

fit the data. For the three algorithms, the stopping criterion is based on the

likelihood and the same ε = 1e− 6 is used in all cases.

Figure 4.6 and 4.9 present the evolution of the log-likelihood, the cluster-
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(left), CEM (center) and Fisher-EM algorithm (left). Each arrow represents one iteration
of the algorithm.

ing accuracy and the estimation error according to the number of iterations

for the EM, CEM and Fisher-EM algorithm. The estimation error e(q) at

iteration q was computed only on the group means according to the following

formula: e(q) =
∑K

k=1 ‖µk − µ̂
(q)
k ‖2. Firstly, as shown by the final likelihood

values of the three algorithms, the simulated dataset seems quite easy to

model. Indeed, the EM and CEM algorithms end up with likelihood values

closed to the one of the Fisher-EM algorithm for which the model has been

used to simulate the data. As expected, the CEM algorithm converges faster

than the EM algorithm but provides similar results for the clustering and

the parameter estimation. The Fisher-EM algorithm turns out to converge

faster than both the EM and CEM algorithms without any deterioration of

the clustering and estimation results.

Figure 4.7 shows the estimation path of each algorithm in the parameter

space (mean of the 1st group). The actual value of the parameter is indicated

by the red plus at the center of each panel. Each arrow represents one

iteration of the algorithm. It also appears here that the Fisher-EM algorithm

is more efficient than both the EM and CEM algorithms in finding the actual

value of the parameter in the parameter space.

Finally, Figure 4.8 presents the average number of iterations, clustering

accuracy and estimation error for the EM, CEM and Fisher-EM algorithms

on 25 replications of the experiment. These results confirm that the Fisher-

EM algorithm converges faster than both the EM and CEM algorithms while

providing similar or better clustering and estimation performances.
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Figure 4.9: Average clustering accuracy (left) and estimation error (right) for the EM,
CEM and Fisher-EM algorithms (25 replications). .
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5. Conclusion

This article has focused on the convergence properties of the Fisher-EM

algorithm, which has been recently proposed for the simultaneous visualiza-

tion and clustering of high-dimensional data. The aim of this work was two

folds. Firstly, the convergence of the Fisher-EM algorithm toward a local

optimum of the likelihood has been proved in the isotropic case. The con-

vergence has been proved as well in the general case under a weak condition

which is easy to monitor in practice. Secondly, the convergence of the Fisher-

EM algorithm has been studied from a practical point of view. Numerical

experiments have in particular shown that the Fisher’s criterion can be used

as stopping criterion when considering mainly the clustering goal. It has

been also shown that the Fisher-EM algorithm converges faster than both

the EM and CEM algorithm.

Among the possible extensions of this work, it could be interesting to

propose a unified estimation procedure for both the orientation matrix U

and the other model parameters. This should be at least possible in the

isotropic case since we showed that, in this case, the maximization of the

Fisher’s criterion is equivalent to the maximization of the likelihood. Another

interesting extension would be to modify the F step such that the convergence

criterion of Theorem 2 is always satisfied in the general case.
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