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An alternative to the diffusion equation in population genetics.

Bahram Houchmandzadeh, Marcel Vallade.
CNRS & Grenoble Université, Laboratoire de Spectrométrie Physique, BP87, 38402 St-Martin d’Hères Cedex, France.

Since its inception by Kimura in 1954 (M. Kimura, PNAS, 41:144) , the diffusion equation has
become a standard technique of population genetics. The diffusion equation is however only an
approximation, valid in the limit of large populations and small selection. Moreover, useful quantities
such as the fixation probabilities are not easily extracted from it and need the concomitant use of a
forward and backward equation. We show here that the partial differential equation governing the
probability generating function can be used as an alternative to the diffusion equation with none
of its drawbacks: it does not involve any approximation, it has well defined initial and boundary
conditions, and its solutions are finite polynomials. We apply this technique to derive analytical
results for the Moran process with selection, which encompasses the Kimura diffusion equation.

I. INTRODUCTION.

The use of the diffusion equation in problems related to
population genetics was first suggested by Kolmogorov to
Wright [1] and was successfully applied by Kimura[2] to
genetic drift. The diffusion equation is an approximation
of the discrete Master Equation governing the dynamics
of a stochastic system for large populations : if the size
N of the population is sufficiently large to neglect terms
smaller than 1/N , then the discrete Master Equation can
be written as a continuous (in allele frequency) partial
differential equation. Since the resolution of partial dif-
ferential equation is much more advanced than discrete
equations, the diffusion equation has been proved very
popular and has become a standard technique of popu-
lation genetics theory [3, 4].

The Diffusion equation in population genetics is not
without its drawbacks (for a thorough discussion, see [5]).
First, this is an approximation of order 1/N , and is not
suitable for small populations. There are many cases
where the small populations are relevant, most important
among which is when the spatial scale is included in the
theory. When a species is dispersed over a wide area,
different alleles of a gene will be fixed in different areas,
even in the absence of environment heterogeneity and
geographical barriers. The isolation by distance is due
to the fact that individuals compete only against those
in their migration range, the number of which can be
significantly smaller than the population considered as a
whole [6–9].

Other problems are more technical. The original
Kimura equation is a forward equation and important
quantities such as the fixation probabilities of absorbing
states cannot be computed directly, but one has to re-
sort to the accompanying backward equation [3, 4], even
though solutions using distribution theory have been re-
cently proposed [10]. Moreover, the solution of Kimura’s
equations is given in terms of infinite series, with a low
convergence rate [11], even though recent progress in al-
gorithms has accelerated this computation [12, 13] ; in
any case, it seems unnecessary to solve a finite problem
involving N coupled equations by infinite series ; it would
be numerically more efficient to solve directly the N orig-

inal probability equations.
In the following, we show that a partial differential

equation for the probability generating function (dPGF)
can be obtained from the master equation ; this equa-
tion does not include any approximation and N appears
only as one of its parameters ; the equation has polyno-
mial solutions of degree N and various quantities such as
the fixation probabilities of absorbing states can be eas-
ily extracted from its stationary solution. We show the
usefulness of this approach by applying it to the classi-
cal model of Moran [14], which encompasses the Kimura
diffusion equation in the limit of large population.

This article is organized as follows : we will first intro-
duce the continuous time master equation for birth-death
phenomena and show how various moments can be ex-
tracted from it ; we then apply it to the Moran process
and show how introduction of the dPGF can circumvent
the moment closure problem. The follwing section will be
devoted to the asymptotic behaviour of this equation for
large time, where the fixation probabilities can be found
trivially ; The fourth section is devoted to the full dy-
namics problem in the absence of selection ; in the next
section we will include selection. The concluding section
is devoted to various possible generalizations.

II. MASTER EQUATION AND DPGF

DERIVATION.

Consider a continuous time birth-death stochastic pro-
cess in a community of fixed size N , when the probability
of observing k events in an infinitesimal time interval dt
is proportional to dtk (Poissonian events). We denote
note the transition rates, the probability density for the
system to change its size from n to m individuals during
an infinitesimal time dt→ 0 by [15]:

W (n→ n+ 1) =W+(n)

W (n→ n− 1) =W−(n)

W (n→ n+ k) = 0 if |k| > 1
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The master equation governing P (n, t), the probability
of observing n individuals at time t is given by

∂P (n, t)

∂t
=W+(n− 1)P (n− 1)−W+(n)P (n) (1)

+W−(n+ 1)P (n+ 1)−W−(n)P (n)

The prototype of such problems is the continuous time
Moran process for haploid populations [14], a process
when individuals die randomly at rate µ and are imme-
diately replaced by the duplicate of another individual .
This is a broad model which generalizes the Kimura dif-
fusion equation (where time is considered continuous, see
below). The total number of individuals carrying differ-
ent alleles of a given gene is fixed to N . Let us suppose
that all alleles have the same fitness (= 1 ) except one
which we call A; without loss of generality, we include
the additional fitness s into the duplication probability.
Denoting by n the number of individuals carrying A and
by (N −n) the number of all other individuals, the tran-
sition probabilities read :

W−(n) = µn
(N − n)

N
(2)

W+(n) = µ(N − n)
n

N
(1 + s) (3)

In the first line, µn is the probability per unit of time that
one A−individual dies and is replaced by a non-A ; the
second line corresponds to a non-A individual dying and
being replaced by an A; the factor (1 + s) designates the
different fitness of allele A in replacing another one . In
the following, without loss of generality, we will measure
time in units of N/µ and we therefore set µ/N = 1.

Note that If N is large, equation (1) can be approxi-
mated by the Kimura diffusion equation (see mathemat-
ical details VII A)

∂p(x, t)

∂t
= −Ns∂ (x(1− x)p)

∂x
+
∂2 (x(1− x)p)

∂x2

where x = n/N and p(x, t) = NP (n, t). However, as
we argued above, the diffusion equation is only an ap-
proximation of order N−1( The error was precisely esti-
mated in the case of Fisher-Wright model when no se-
lection is present[16], but to our knowledge, no precise
estimation is available for s 6= 0). Instead of resorting to
this approximation, we can directly extract exact quan-
tities such as the probability generating function (PGF).
The PGF φ(z, t) constitutes the most complete informa-
tion we can have on the given stochastic process and is
defined as[15, 17]

φ(z, t) =
∑

n

znP (n, t) (4)

where z is an auxiliary continuous variable. The systems
we are looking at have two absorbing states at n = 0 and
n = N . Therefore the function φ is in fact a polynomial
of degree N : If at the initial time t = 0, P (n, t) = 0

for n < 0 and n > N , the presence of the two absorbing
states ensures that this will remain so.

The equation governing the PGF can be extracted from
the master equation (1) [15, 18]:

∂φ

∂t
=

〈

(zn+1 − zn)W+(n)
〉

(5)

+
〈

(zn−1 − zn)W−(n)
〉

if the transition rates W±(n) are polynomials of degree
k in n, then the right hand side of equation (5) will con-
tain partial derivatives of order k of the function φ with
respect to z. Therefore, the discrete master equation
(1) is naturally and without any approximation trans-
formed into a partial differential equation which we call
the dPGF.

Application of the above principle to the Moran pro-
cess (eqs 2,3) provides the Moran dPGF (see Mathemati-
cal Details VII B) which we will investigate in this article
:

∂φ

∂t
=

1

σ
(1− z) (σ − z)

∂

∂z

(

Nφ− z
∂φ

∂z

)

(6)

where σ is the inverse of the fitness : σ = 1/(s+1). This
is a well defined partial differential equation, first order
in t and second order in z and has the same formal struc-
ture as the diffusion equation. However, the boundary
conditions of this equation are unequivocally specified.
If at time t = 0, the number of A−individuals is n0, then
P (n, 0) = δn,n0 and

φ(z, 0) = zn0 (7)

Moreover, from the definition of the PGF,

φ(1, t) = 1 (8)

If s = 0, then W+(n) = W−(n), 〈n(t)〉 = n0 and there-
fore

∂φ

∂z

∣

∣

∣

∣

=1

= n0 if s = 0 (9)

If s 6= 0, z = σ is a fixed point of equation (6)
(∂φ/∂t|z=σ = 0 ) and therefore

φ(σ, t) = φ(σ, 0) = σn0 (10)

The set of equations (6) with the initial condition (7) and
the boundary condition (8) and (9) or (10) constitute a
well defined problem ; this is not the case for the forward
diffusion equation used in population genetics, where the
equation is valid only for gene frequencies x ∈]0, 1[ and
the terminal classes x = 0 and x = 1 have to be treated
separately by some ad hoc treatment (see for example
[3], p379-80).
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Figure 1. The evolution of the probability generating function
φ(z, t) for large time. The PGF, from the initial condition
φ(z, 0) = zn0 converges to the stationary solution φs(z) =
πNzN+π0 (arrows indicate the direction of evolution of φ(z, t)
). In this illustration, n0 = 1 where n0 is the initial number
of A−individual. Points z = 1 and z = σ are fixed points of
the evolution equation (6).

III. STATIONARY SOLUTION AND THE LIMIT

FOR LARGE TIMES.

Figure 1 captures the dynamics of the PGF φ(z, t) and
its convergence towards the stationary solution φs(z).
The stationary solution of equation (6) is given by

Nφs − zφ′s = K

where K is a constant. This is is an ordinary first order
differential equation and its solution is:

φs(z) = πNz
N + π0.

Using the boundary conditions (8) and (9) when s = 0,
the two integration constants are found to be

πN =
n0

N
; π0 =

N − n0

N
(11)

When s 6= 0, equation (9) has to replaced by (10) and

πN =
1− σn0

1− σN
; π0 =

σn0 − σN

1− σN
(12)

where as mentioned, σ = 1/(1 + s). Note that as s → 0,
equations (12) converge to equations (11). Probabilities
P (n, t → ∞) can be extracted from the stationary PGF
:

P (n,∞) = πNδn,N + π0δn,0

specifically, πN and π0 are the total probability of fixation
and loss of allele. With the dPGF method, the fixation
probabilities are easily obtained without any approxima-
tion or hypothesis on the value of N and s. Obtaining
this result is more intricate with other methods such as:
(i) looking for a functional equation governing the dis-
crete time PGF, as was originally done by Fisher [19]
and reviewed by Moran ; (ii) when the backward diffu-
sion equation [3] is used ; (iii) when two discrete Markov

-0.5 -0.25 0 0.25 0.5

s
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Figure 2. fixation probabilities πN as a function of relative
fitness s for different values of initial number of allele n0 =
1, 10, 50, 90, 99. Symbols represent direct numerical resolution
of master equation (1) for the Moran process. Continuous
lines represent theoretical expressions given by equation (12).
Total number of individuals N = 100.

processes are embedded in order to transform the prob-
lem into the “gambler’s ruin” one [20] as done by Moran
[14]. Note that σn = en log σ ≈ e−ns for small relative fit-
ness s, and therefore πN given by equation (12) contains
the well known result for fixation probability for haploid
populations

u =
1− e−sn0

1− e−sN

as a particular approximation. Figure 2 shows the com-
parison between direct numerical resolution of the master
equation (1) for the Moran process and its comparison to
expressions (12) for the fixation probabilities.

IV. PURE GENETIC DRIFT.

We now turn our attention to the full solution of equa-
tion (6) when no selection is present, i.e. s = 0. The case
s 6= 0 will be studied in the next section. The master
equation (1) is a system of N + 1 first order linear dif-
ferential equations with one constraint (

∑

n P (n, t) = 1)
and therefore its general solution is of the form

P (n, t) =

N−1
∑

k=0

βn
k e

λkt

The PGF φ(z, t) being only a combination of these proba-
bilities weighted with functions zn, it is natural to search
for its solution as a finite superposition of eigenfunc-
tions ψn(z) exp(λnt) where ψn and λn are solutions of
the eigenvalue equation

λψ(z) = (1− z)2
d

dz
(Nψ(z)− zψ′(z)) (13)

The solution of the above equation can be given in terms
of hypergeometric functions 2F1(y), where y = 1/(z − 1)
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[18] or Hahn’s polynomials [21] ; for the purpose of this
article and having in mind the case s 6= 0, it is more
fruitful to solve it directly using the polynomial nature
of the solutions. We already know the stationary solution
λ0 = 0, ψ0(z) = π0 + πNz

N . For λ 6= 0, as z = 1 is a
double zero of ψ(z), we look for solutions as polynomials
of (1− z), i.e.

ψ(z) =
N−1
∑

k=0

ak(1− z)k+1 (14)

which gives rise to the following two term recurrence re-
lations between the coefficients ak :

a0 = 0 (15)

[λ+ k(k + 1)] ak = k(k −N)ak−1 k = 1, ...N − 1(16)

As a0 = 0, non trivial solutions are found only if λ =
−n(n+1) for some integer n ; we use this integer to order
the eigenvalues λn and eigenfunctions ψn(z) :

λn = −n(n+ 1) n = 1, 2, ...N − 1 (17)

ψn(z) =

N−1
∑

k=n

ank (1− z)k+1 (18)

ann = 1

ank =
k(N − k)

n(n+ 1)− k(k + 1)
ank−1 k = n+ 1, ..., N − 1(19)

The coefficients ank can be put into explicit form in terms
of binomial coefficients (see Mathematical details VII C).
The PGF is given in terms of the above eigenfunctions
as

φ(z, t) = π0 + πNz
N +

N−1
∑

n=1

Cnψn(z)e
λnt (20)

where the coefficients Cn are determined from the initial
condition φ(z, 0) = zn0 . The ank matrix is triangular
and therefore this determination is straightforward (see
Mathematical details VIIC).

Expanding ψn(z) using the binomial development of
(1− z)k+1 and identifying the result with the PGF defi-
nition (4) we obtain the probabilities P (n, t) as :

P (n, t) = π0δn,0 + πNδn,N

+ (−1)n
N
∑

k=n

αk−1(t)

(

k
n

)

(21)

where

αk(t) =
N−1
∑

n=1

Cna
n
ke

λnt k = 1, ..., N − 1

and α−1(t) = α0(t) = 0.
Note that the above expressions are exact solutions.

However, as the eigenvalues λn = −n(n + 1) increase
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Figure 3. The PGF φ(z, t) as a function of z for various
times ti for genetic drift s = 0. The PGF is computed
directly by numerical resolution of the Master equation (1)
(continuous line) and is compared to its theoretical expres-
sion given by eq.(20) (circle). N = 40, n0 = 5, times
ti = 0, 0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2 ( in units of N/µ)
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Figure 4. Probabilities P (n, t) as a function of n at various
times for genetic drift s = 0. The probabilities are com-
puted by direct numerical resolution of the Master equation
(1) (continuous lines) and are compared to their theoretical
expression given by eq.(20) (circles). N = 40, n0 = 5, times
ti = 0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2 ( in units of N/µ)

rapidly, these expressions can be approximated by taking
into account only the first few eigenfunctions, depending
on the degree of accuracy required. Figures (3,4) show
the accuracy of the above formula by comparing them to
the numerical resolution of the Master equation (1).

Historically, problems of evolution were formulated in
the framework of Fisher Wright (FW) model. Moran and
FW are equivalent at the large population limit, where
both are well approximated by the same diffusion equa-
tion. The exact solution P (n, t|n0, 0) dervied above (eq.
21) allows for a direct comparison between them. FW
is a discrete time, non-overlapping generations, N−step
model where the probability of having n individuals at
generation T +1 given that there are n0 at generation T
is

PFW (n|n0) =
(n0

N

)n (

1− n0
N

)N−n
(

N

n

)

(22)
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Figure 5. Comparison between the discrete time, N−step
Moran distribution PM (n|n0) = P (n, t = 1/N |n0)
(black, circles) and Fisher-Wright (red, triangle) distribution
PFW (n|n0) for three different inital values n0.

The Moran process is a one-step model over infinitesi-
mal time; it transforms into a N−step one if we consider
it over the finite time of one generation, PM (n|n0) =
P (n, t = 1/N |n0, 0). Figure 5 shows the comparison
between these two processes where it can be observed
that the FW process has a norrower distribution than
the Moran one. Moran[14] had pointed to this difference
by computing the probability of the number of descen-
dant of one individual in both processes.

V. INCLUDING SELECTION.

When selection is present and s 6= 0, the spectral de-
composition is achieved by solving the eigenvalue equa-
tion

λσψ = (1− z) (σ − z)
d

dz
(Nψ − zψ′) (23)

where σ = 1/(1 + s) as defined before. This equation
is called Heun’s equation [22]. Heun’s polynomials and
their eigenvalues have been less studied than for exam-
ple the oblong spheroïd ; there is, to our knowledge, no
explicit formula or fast algorithm for their computation.
However, we are interested in the small s limit (s ≪ 1)
and therefore we can compute the solution of (23) by the
perturbation technique in powers of s. The first order
perturbation solution, satisfactory for Ns . 1, is directly
obtained from the pure genetic drift solution by a simple
scaling : note that if we set y = 1−z/√σ, equation (23),
transforms into

−
√
σλψ =

(

y2 − ǫ(y − 1)
) d

dy
(Nψ + (1− y)ψ′) (24)

where

ǫ =
√
σ + 1/

√
σ − 2 =

s2

4
+O(s3) (25)

The ǫ term in the transformed equation (24) is ∼ s2 and
is therefore neglected in the first order (in s) calculation.
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Figure 6. The probabilities P (n, t) as a function of n at
various times ti, for s = 2.5×10−2 (Ns = 1). (i) contin-
uous line : direct numerical resolution of the Master equa-
tion (1) ; (ii) circles : theoretical expression (26) correspond-
ing to first order perturbations ; (iii) dotted lines : solu-
tions for s = 0 (from Fig. 4). N = 40, n0 = 5, times
ti = 0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2 ( in units of N/µ).

Neglecting O(ǫ) terms, equation (24) acquires the same
structure as the equation (13) for the pure genetic drift
which we have already solved. The PGF φ(z, t) therefore
reads

φ(z, t) = π0+πNz
N+

N−1
∑

n=1

C(1)
n ψ(1)

n (z)e−n(n+1)t/
√
σ+O(s2)

(26)
where

ψ(1)
n =

N−1
∑

k=n

ank (1− z/
√
σ)k+1

The coefficients ank are the same as in (19) ; the am-

plitudes C
(1)
n are obtained as before by using the initial

condition φ(z, 0) = zn0 . Figure 6 shows the accuracy of
the first order solution for Ns = 1.

The computation can be extended to second order per-
turbations in s (see Mathematical Details VIIC). Note
however that for large value of Ns, the term z∂zφ in
equation (6), is comparable to Nφ only in the vicinity of
z = 1. Therefore, for z ∈ [0, σ], we can neglect this term
and use the approximate equation

σ
∂φ

∂t
= N(1− z) (σ − z)

∂φ

∂z

which is a first order differential equation and can be
solved exactly :

φ(z, t) =

(

(σ − z)e−Nst − σ(1− z)

(σ − z)e−Nst − (1− z)

)n0

This is indeed a good approximation of the PGF forNs &
2 in the interval [0, σ]. As φ is not z−polynomial anymore
retrieving the probabilities P (n, t) from this function by
successive derivation is numerically fragile ; the formula
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Figure 7. Loss of allele probability P (0, t) as a function of
time, measured in (N/µ) units, for various values of the ad-
ditional fitness s. Continuous curves correspond to eq. (27) ,
circles to direct numerical resolution of the Master equation
1). N = 100 ; n0 = 5 ; s = 0.01, 0.05, 0.1, 0.25, 0.5 .

however is very accurate for small n, and specially for
the loss of allele probability as a function of time which
takes the simple form

P (0, t) =

(

1− e−Nst

1 + s− e−Nst

)n0

(27)

Figure (7) show the accuracy of this approximation for
Ns ∈ [1, 50] interval.

VI. CONCLUDING REMARKS.

We have shown the usefullness of dPGF technique in
population genetics through the example of the Moran
process. We have shown that a partial differential equa-
tion can be obtained for the probability generating func-
tion that is not an approximation and which has finite
polynomial solutions. The solutions can be computed
exactly for pure genetic drift and with the perturbation
techniques when s 6= 0, and we have shown the agree-
ment with the numerical solution of the original Master
Equation.

The usefulness of the dPGF technique is very broad
and can be used to capture many features of population
dynamics. For example mutations can be included by
considering two alleles A and a, with mutation rate from
one to others being ν1 and ν2 . Denoting by n the number
of A−alleles, the transition rates read :

W+(n) = (N − n) (n(1 + s)(1− ν1) + (N − n− 1)ν2)

W−(n) = n ((N − n) (1− ν2)− (n− 1)ν1)

and give rise to a dPGF equation which has a simi-
lar structure to equation (6) and can be studied by the
same methods. The diploid populations can be studied
by including transition rates W (n → n ± 2). More im-
portantly, we could include the spatial extension of the
ecosystem by dividing the ecosystem into patches and

modifying the transition rates to include migrations from
adjacent patches, which again will include linear terms in
the transition rates [9, 23]. This would be an important
step to show the possibility of sympatry in speciation.
Other problems which could be modeled by this tech-
nique are the selection of social behaviour and the control
of the cheaters. The dPGF technique has the potential to
investigate by simple means a large number of problems
of population genetics.

VII. MATHEMATICAL DETAILS.

A. Diffusion equation.

To transform the discrete master equation (1) into a
continuous diffusion equation for large N, set x = n/N ,
dx = 1/N , p(x, t)dx = P (n, t), w±(x) =W (n). Develop-
ing equation (1) into powers of dx, one finds

∂p(x, t)

∂t
= − 1

N

∂ (a(x)p(x, t))

∂x
+

1

2N2

∂2 (b(x)p(x, t))

∂x2
+O(dx3)

where a(x) = w+(x)−w−(x) and b(x) = w+(x)+w−(x).
In the particular case of the Moran Process, a(x) =
N2sx(1 − x), b(x) = 2N2x(1 − x)(1 + s/2) ; neglecting
higher order terms the above equation reads

∂p(x, t)

∂t
= −Ns∂ (x(1− x)p(x, t))

∂x
+(1+

s

2
)
∂2 (x(1− x)p(x, t))

∂x2

The Kimura equation is an approximation of the above
diffusion equation for small s, when the term s/2 can be
neglected compared to unity. To go beyond the limit of
small s, we renormalize the time t′ = t(1 + s/2) and the
fitness s′ = s/(1 + s/2) to find

∂p(x, t)

∂t′
= −Ns′ ∂ (x(1− x)p(x, t))

∂x
+
∂2 (x(1− x)p(x, t))

∂x2

which is again similar to the classical Kimura equation,
valid for arbitrary s. We have to keep in mind however
that the coefficient s′ can be markedly different from the
fitness s, when the latter is not small compared to unity.

B. Moran dPGF derivation.

Consider the master equation (1) with the Moran tran-
sition rates (2,3). We define the PGF as

φ(z, t) =
∑

n

znP (n, t) (28)

where z is an auxiliary continuous variable. To derive
the PGF equation, multiply both sides of equation (1)
by zn and sum over the index n. The left hand side of
the equation is

∑

n

zn
∂P (n, t)

∂t
=

∂

∂t

∑

n

znP (n, t) =
∂φ(z, t)

∂t
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For the right hand side, consider for example the term

∑

n

znW+(n− 1)P (n− 1) =
∑

n

zn+1W+(n)P (n) (29)

Recall that because of the existence of the two absorbing
state n = 0 and n = N and the initial condition

P (n, 0) = 0 if n < 0 orn > N

the sum can be extended to n ∈ Z and therefore the
change of the summation variable from n to n+1 in (29)
has no effect on the boundaries of the summation. Per-
forming this change of variable on all terms, the equation
for the PGF reads :

∂φ

∂t
=

〈

(zn+1 − zn)W+(n)
〉

(30)

+
〈

(zn−1 − zn)W−(n)
〉

For the Moran process, transition rates are of the form

W±(n) = k±n(N − n)

where k− = 1 and k+ = (1+ s) are constant (Recall that
time is measured in units of N/µ). Consider the general
term

〈

zn+αkn(N − n)
〉

= kzα
(

N 〈nzn〉 −
〈

n2zn
〉)

(31)

From the definition (28), it is easily shown that

〈nzn〉 = z
∂φ

∂z

or in general terms,
〈

nkzn
〉

= (z∂z)
k
φ(z, t). Replacing

these terms in (31) reads

〈

zn+αkn(N − n)
〉

= kzαz
∂

∂z

[

Nφ− z
∂φ

∂z

]

Replacing the above terms in equation (30) we obtain

∂φ

∂t
=

(

k+z2 − k+z + k− − k−z
) ∂

∂z

[

Nφ− z
∂φ

∂z

]

= (1− z)(k− − k+z)
∂

∂z

[

Nφ− z
∂φ

∂z

]

= (1− z) (1− (1 + s)z)
∂

∂z

[

Nφ− z
∂φ

∂z

]

which is the displayed equation (6).

C. Explicit expression for coefficients.

The recurrence relation for the coefficients of the eigen-
functions of equation (13) is

ank = − k(N − k)

k(k + 1)− n(n+ 1)
ank−1 k = n+ 1, ..., N − 1

where ann = 1. We can therefore compute the product
directly

ank =
(1−N + n)k−n

(2n+ 2)k−n

(

k
n

)

where it is assumed that Binomial(k, n) = 0 if k < n and
(α)β is the Pochhammer symbol Γ(α+ β)/Γ(β).

As the eigenfunctions are given as polynomials of (1−
z), let us set y = 1 − z. The coefficients ank 6= 0 only
for k ≥ n, and the matrix ank is a (N − 1) × (N − 1)
triangular matrix where its diagonal elements are unity.
To determine the coefficients Cn in the equation (20) we
use the initial condition φ(z, 0) = zn0 :

N−1
∑

n=1

N−1
∑

k=1

Cna
n
ky

k+1 = (1− y)n0 − π0 − πN (1− y)N

=

N−1
∑

k=1

bky
k+1

bk is the result of the binomial development of the above
expression and reads

bk = (−1)k
(

πN

(

N
k + 1

)

−
(

n0

k + 1

))

The Cn are then extracted from the linear triangular sys-
tem

N−1
∑

n=1

Cna
n
k = bk k = 1, ..., N − 1 (32)

and can also be given explicitly,

Cn = (−1)n+1n0
(1−N)n
(n+ 1)n

×

3F2(1− n0,−n, n+ 1; 2, 1−N ; 1)

It is more efficient to solve directly the linear triangular
system (32).

When s 6= 0, the first order (in s ) amplitudes C
(1)
n are

obtained by the same procedure, except that now the
coefficients bk are defined as

bk = (−1)k
(

πN

(

N
k + 1

)

σN/2 −
(

n0
k + 1

)

σn0/2

)

The same procedure can be extended to perturbations
of order ∼ s2 and it extends the range of validity to
Ns . 10. The computation is more cumbersome and we
give here only the results on the eigenvalues :

λn = −n(n+ 1)

(

1 + ǫ
N2 − 1 + n(n+ 1)

2(2n− 1)(2n+ 3)

)

σ−1/2

ForNs = 10, the relative deviations from exact values are
at most 4% for the first eigenvalues and become negligible
for large n’s.
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