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We investigate the Large Deviations properties of bootstrapped empirical measure with exchangeable weights. Our main result shows in great generality how the resulting rate function combines the LD properties of both the sample weights and the observations. As an application we recover known conditional and unconditional LDPs and obtain some new ones.

Introduction and main results

We say that a sequence of Borel probability measures (P n ) n≥1 on a topological space Y obeys a Large Deviation Principle (hereafter abbreviated LDP) with rate function I if I is a non-negative, lower semi-continuous function defined on Y such that

-inf y∈A o I(y) ≤ lim inf n→∞ 1 n log P n (A) ≤ lim sup n→∞ 1 n log P n (A) ≤ -inf y∈ Ā I(y)
for any measurable set A ⊂ Y, whose interior is denoted by A o and closure by Ā. If the level sets {y : I(y) ≤ α} are compact for every α < ∞, I is called a good rate function. With a slight abuse of language we say that a sequence of random variables obeys an LDP when the sequence of measures induced by these random variables obeys an LDP. For a background on the theory of large deviations, see Dembo and Zeitouni [START_REF] Dembo | Large deviations techniques and applications[END_REF] and references therein.

Our framework is the following: We are given a triangular array ((W n i ) 1≤i≤n ) n≥1 of R + -valued random variables defined on a probability space (Ω, A, P) and such that (H1) For every n ≥ 1 we have n i=1 W n i = n.

(H2) For every n ≥ 1 the vector (W n 1 , . . . , W n n ) is n-exchangeable i.e. for every element σ of S n the set of permutations of {1, . . . , n} the vectors (W n 1 , . . . , W n n ) and (W n σ(1) , . . . , W n σ(n) ) have the same distribution.

We shall assume that the W n i 's have some LD properties to be detailed below. We are further given a triangular array ((x n i ) 1≤i≤n ) n≥1 of elements of a Polish space (Σ, d Σ ) such that

µ n = 1 n n i=1 δ x n i w → µ ∈ M 1 (Σ) (1.1)
where w → stands for weak convergence in the space of Borel probability measures on Σ. Let us recall that µ n w → µ if and only if for every real-valued, bounded and continuous application f defined on Σ we have Σ f (x)µ n (dx) → Σ f (x)µ(dx). Our goal in the present paper is to investigate the LD properties of

L n = 1 n n i=1 W n i δ x n i . (1.2) 
So far LD properties of families of randomly weighted empirical measures like (1.2) have been established in the particular case of independent and identically distributed W n 1 , . . . , W n n , see e.g. [START_REF] Ellis | The large deviation principle for measures with random weights[END_REF][START_REF] Dembo | Large deviations for subsampling from individual sequences[END_REF][START_REF] Najim | A Cramér type theorem for weighted random variables[END_REF]. Results on the LD properties of some particular cases of L n as considered here, i.e. with exchangeable W n 1 , . . . , W n n are available but their proofs rely on the definition of the chosen sampling weights, see e.g. [START_REF] Baxter | A comparison principle for large deviations[END_REF][START_REF] Dembo | Large deviations for subsampling from individual sequences[END_REF][START_REF] Chaganty | Some properties of the Kullback-Leibler number[END_REF]. Hence, the present paper gives the first derivation of the LD properties of the family of empirical measures L n under the natural assumptions (H1-H2). The interest in considering families rather than particular cases lies on the fact that only an upper level of abstraction can reveal the mechanisms that really enter into play.

Here we shall consider L n from the bootstrap point of view and adopt its vocabulary [START_REF] Efron | The jackknife, the bootstrap and other resampling plans[END_REF][START_REF] Hall | The bootstrap and Edgeworth expansion[END_REF][START_REF] Barbe | The weighted bootstrap[END_REF][START_REF] Giné | Lectures on some aspects of the bootstrap[END_REF]. In 1979, in a landmark paper, Efron proposed the following idea: When given a realization x n 1 , . . . , x n n of random variables X n 1 , . . . , X n n one can easily obtain "additional data" by sampling independent and 1 n n i=1 δ x n i -distributed random variables X * 1 , . . . , X * m , . . . . It amounts to sample with replacement from an urn which composition is described by 1 n n i=1 δ x n i . Often, this is computationally cheap and theoretical studies are available to assess the quality of the distribution of H( 1 m m i=1 δ X * i ) in approximating the distribution of H( 1 n n i=1 δ X n i ) which make it all worthwhile. A rich literature started flourishing on the ground of this idea. It was soon noticed that the preceding procedure is not the only possible one and that it can be generalized so that 1 n n i=1 W n i δ x n i under conditions (H1-H2) is the right object to be considered. For example, Efron's bootstrap corresponds to (W n 1 , . . . , W n n ) distributed according to a Multinomial law. The literature on the subject developed into two complementary directions: "conditional" results where x n 1 , . . . , x n n are fixed observations filling some conditions and H( 1

n n i=1 W n i δ x n i
) is considered and "unconditional" results where the x n 1 , . . . , x n n are allowed to fluctuate and H( 1

n n i=1 W n i δ X n i
) is considered instead. Classically the bootstrap scheme is said to be efficient when it mimics the behavior of H( 1 n n i=1 δ X n i ) and one distinguishes between "conditional efficiency" and "unconditional efficiency". For example, Praestgaard and Wellner investigated the Central Limit behavior of L n in [START_REF] Praestgaard | Exchangeably weighted bootstraps of the general empirical process[END_REF]; they gave a necessary and sufficient condition on the second moments properties of the W n i which works for both conditional and unconditional efficiency. Later, Hall and Mammen studied the efficiency of the bootstrap schemes in the Edgeworth expansions at the second order [START_REF] Hall | On general resampling algorithms and their performance in distribution estimation[END_REF]. There, conditions on the fourth order cumulants of the weights are required. In a similar context, Wood already showed in [START_REF] Wood | Bootstrap relative errors and sub-exponential distributions[END_REF] that Efron's bootstrap is efficient to mimic the empirical mean in the moderate deviations regime for observations satisfying the Cramer condition but not for heavier tails.

Following Barbe and Bertail [START_REF] Barbe | The weighted bootstrap[END_REF], we say that a bootstrap scheme is LDefficient when the bootstrapped empirical measure has the same LD properties as the original empirical measure. It is a very strong property: thinking of percentile bootstrap's confidence intervals, LD-efficiency says that the relative coverage accuracy tends to 1 exponentially fast. As an application of our general approach, we will be able to discuss both conditional and unconditional LDefficiency for many classical choices of ((W n i ) 1≤i≤n ) n≥1 and/or ((X n i ) 1≤i≤n ) n≥1 . Actually we go further in the sense that as an application of our approach we obtain LD results that are new in the literature like e.g. an unconditional LDP for Efron's bootstrap and conditional and unconditional LDP's for iid weighted bootstrap and k-blocks bootstraps. Now let us describe our results more precisely. To this end we need to introduce some more notations. We consider

M 1 1 (R + ) = ρ ∈ M 1 (R + ) : R+ x ρ(dx) = 1 a subset of W 1 (R + ) = ρ ∈ M 1 (R + ) : R+ x ρ(dx) < ∞
the so-called Wasserstein space of order 1 on R + . Both M 1 1 (R + ) and W 1 (R + ) are endowed with the Wasserstein-1 distance

W 1,|•| (ρ, γ) = inf π∈C(ρ,γ) R+×R+ |x -y|π(dx, dy)
where C(ρ, γ) is the subset of M 1 (R + × R + ) of couplings of ρ and γ i.e. the set of Borel probability measures π on R + × R + such that their first marginal π 1 is ρ and second marginal π 2 is γ. In addition to (H1-H2) we shall assume that the ((W n i ) 1≤i≤n ) n≥1 are such that

(H3) The sequence (S n = 1 n n i=1 δ W n i ) n≥1 satisfies an LDP on M 1 1 (R + ) en- dowed with the W 1,|•| distance with good rate function I W .
In Section 7 we prove that (H3) is valid for a broad collection of sampling weights. Actually we shall see that the LD properties of (L n ) n≥1 directly follow from the LD properties of

V n = 1 n n i=1 δ (W n i ,x n i )
on the set

M 1 1 (R + × Σ) = ρ ∈ M 1 (R + × Σ) : R+ xρ 1 (dx) = 1 endowed with the distance ∆(ρ, γ) = W 1,|•| (ρ 1 , γ 1 ) + β BL,δ (ρ, γ)
where

β BL,δ (ρ, γ) = sup f ∈C b (R + ×Σ) ||f ||∞ +||f || L,δ ≤1 R+ f (x)ρ(dx) - R+ f (x)γ(dx)
is the so-called dual-bounded Lipschitz metric on M 1 (R + × Σ) and as usual

||f || ∞ = sup x∈R+×Σ |f (x)|, ||f || L,δ = sup x,y∈R + ×Σ x =y |f (x) -f (y)| δ(x, y) ,
δ is a metric on R + ×Σ compatible with the product topology and C b (R + ×Σ) is the set of real-valued, bounded and continuous applications defined on R + × Σ.

For any two probabilities ρ, ν on a measurable space (E, E) we denote by

H(ν|ρ) = E dν log dν dρ if ν ≪ ρ +∞ otherwise
the relative entropy of ν with respect to ρ. To any ρ(dw, dx)

∈ M 1 (R + × Σ) we associate ρ x (dw) ∈ M 1 (R + ) (resp. ρ w (dx) ∈ M 1 (Σ))
a stochastic kernel which is the conditional distribution of the first (resp. second) marginal of ρ given the second (resp. first). We summarize this by ρ(dw, dx Lemma 1.4.3 in [12]. Our first result is the following Theorem 1.1. The sequence (V n ) n≥1 satisfies an LDP on M 1 1 (R + × Σ) endowed with the distance ∆ with good rate function

) = ρ x (dw) ⊗ ρ 2 (dx) (resp. ρ(dw, dx) = ρ 1 (dw) ⊗ ρ w (dx)). If ν, γ ∈ M 1 (R + × Σ) are such that ν 1 = γ 1 = θ (resp. ν 2 = γ 2 = θ) then H(ν|γ) = R+ H(ν w |γ w )θ(dw) (1.3) (resp. H(ν|γ) = Σ H(ν x |γ x )θ(dx)), see
J (ρ; µ) = H(ρ|ρ 1 ⊗ µ) + I W (ρ 1 ) if ρ 2 = µ +∞ otherwise.
The reason for working on M 1 1 (R + × Σ) endowed with the distance ∆ is to make the following map

F : M 1 1 (R + × Σ) → M 1 (Σ) ρ(dw, dx) → R+ wρ(dw, dx)
well-defined and continuous once M 1 (Σ) is endowed with the weak convergence topology. By contraction (see Theorem 4.2.1 in [START_REF] Dembo | Large deviations techniques and applications[END_REF]) an LDP for (L n ) n≥1 easily follows from Theorem 1.1

Corollary 1.1. The sequence (L n ) n≥1 satisfies an LDP on M 1 (Σ) endowed with the weak convergence topology with good rate function

K(ν; µ) = inf ρ:F (ρ)=ν J (ρ; µ) = inf ρx:F (ρx⊗µ)=ν Σ H(ρ x |ρ 1 )µ(dx) + I W (ρ 1 ) .
We shall often see in applications that

I W (ν) = H(ν|ξ) for some ξ ∈ M 1 (R + ) such that Λ ξ (α) = log R+ e αx ξ(dx) < ∞ (1.4)
for every α ∈ R. We denote by

Λ * ξ (x) = sup α∈R {αx -Λ ξ (α)} . (1.5)
the Fenchel-Legendre transform of Λ ξ . In this particular case we obtain a generalization of Kullback inequality

Lemma 1.1. If I W (ν) = H(ν|ξ) for some ξ ∈ M 1 (R + ) then for every ν, µ ∈ M 1 (Σ) we have K(ν; µ) ≥ Σ Λ * ξ ( dν dµ (x))µ(dx) if ν ≪ µ +∞ otherwise. (1.6)
Moreover, assuming that (1.4) holds for every α ∈ R, the preceding inequality turns out to be an equality for every ν, µ ∈ M 1 (Σ) if and only if

lim α→-∞ Λ ′ ξ (α) = 0 and lim α→+∞ Λ ′ ξ (α) = +∞. (1.7)
Remark that the right hand side of the inequality (1.6) is the rate function obtained in case of iid weights in [START_REF] Dembo | Large deviations for subsampling from individual sequences[END_REF].

Next we allow the x n i 's to fluctuate and consider a triangular array ((X n i ) 1≤i≤n ) n≥1 of Σ-valued random variables defined on (Ω, A, P) such that

(H4) The sequence (O n = 1 n n i=1 δ X n i ) n≥1
satisfies an LDP on M 1 (Σ) endowed with the weak convergence topology with good rate function I X .

(H5) For every n ≥ 1 the vectors (X n 1 , . . . , X n n ) and (W n 1 , . . . , W n n ) are independent.

An LDP for

V n = 1 n n i=1 δ (W n i ,X n i )
holds as a consequence of Theorem 1.1 and Theorem 2.3 in [START_REF] Grunwald | Sanov results for Glauber spin-glass dynamics[END_REF] Theorem 1.2. The sequence (V n ) n≥1 satisfies an LDP on M 1 1 (R + × Σ) endowed with the distance ∆ with good rate function

J(ρ) = H(ρ|ρ 1 ⊗ ρ 2 ) + I W (ρ 1 ) + I X (ρ 2 ).
(1.8)

Again, by contraction, an LDP for

L n = 1 n n i=1 W n i δ X n i easily follows from Theorem 1.2
Corollary 1.2. The sequence (L n ) n≥1 satisfies an LDP on M 1 (Σ) endowed with the weak convergence topology with good rate function

K(ν) = inf ρ:F (ρ)=ν J(ρ) = inf ρ2∈M1(Σ) inf ρx:F (ρx⊗ρ2)=ν Σ H(ρ x |ρ 1 )ρ 2 (dx) + I W (ρ 1 ) + I X (ρ 2 ) = inf ρ2∈M1(Σ) K(ν; ρ 2 ) + I X (ρ 2 ) . (1.9)
It follows that for every ν ∈ M 1 (Σ) we have K(ν) ≤ I X (ν).

The latter inequality illustrates the smoothing effect of the random weights W n 1 , . . . , W n n on the distribution of L n . We shall see in most examples that for classical choices of ((W n i ) 1≤i≤n ) n≥1 and/or ((X n i ) 1≤i≤n ) n≥1 there exists at least one ν ∈ M 1 (Σ) such that K(ν) < I X (ν). Nevertheless, we have the following Corollary 1.3. A necessary and sufficient condition on ((W n i ) 1≤i≤n ) n≥1 to ensure that for every ((X n i ) 1≤i≤n ) n≥1 and every ν ∈ M 1 (Σ) we have

K(ν) = I X (ν) is that for every ν, ζ ∈ M 1 (Σ) K(ν; ζ) = 0 if ν = ζ +∞ otherwise.
It follows from Lemma 1.1 that is condition is satisfied e.g. when the sampling weights are such that I W (ν) = H(ν|δ 1 ) as for the delete-h(n) jacknife with h(n) = o(n), see Corollary 2.5 below.

The paper is structured as follows. Section 2 presents several applications of our main results. There we discuss efficiency issues for both conditional and unconditional LDPs. The rest of the paper is devoted to proofs. In particular Section 7 contains the proofs of several sampling weights LDPs. Some of these are new to the literature.

Examples of applications

In this section we investigate the LD properties of (L n ) n≥1 and (L n ) n≥1 for several particular choices of ((W n i ) 1≤i≤n ) n≥1 and/or ((X n i ) 1≤i≤n ) n≥1 . To specify our results we need some more notations. For every λ > 0 we shall denote by P(λ) the Poisson distribution with parameter λ and by Q(λ) the distribution of a random variable Y such that λY is P(λ)-distributed. More generally, for every λ, γ > 0 we shall denote by F (λ, γ) the distribution of a random variable Y such that λY is P(γ)-distributed. For every positive integers m and n and every n-tuple of non-negative numbers (p n 1 , . . . , p n n ) such that n i=1 p n i = 1 we shall denote by Mult n (m, (p n 1 , . . . , p n n )) the distribution of (Y 1 , . . . , Y n ) the numbers of balls found in n urns labeled 1, . . . , n when m balls are thrown in these urns independently, each having probability p n 1 to fall in the urn labeled 1, probability p n 2 to fall in the urn labeled 2, etc...

Efron's bootstrap and "m out of n" bootstrap

For every m, n ≥ 1 the weights (W 

K(ν; µ) = λH(ν|µ).
By properly rescaling we immediately obtain for every λ > 0 and every measur-

able A ⊂ M 1 (Σ) that -inf ν∈A o H(ν|µ) ≤ lim inf n→∞ 1 m(n) log P(L n ∈ A) ≤ ≤ lim sup n→∞ 1 m(n) log P(L n ∈ A) ≤ -inf ν∈ Ā H(ν|µ). (2.1)
Next we investigate the LD properties of (L n ) n≥1 without any other assumption that (H4-H5). To this end we introduce

Z = η ∈ M 1 (Σ) : I X (η) = 0 .
It follows from Corollary 1.2 and 2.1 that Corollary 2.2. The sequence (L n ) n≥1 satisfies an LDP on M 1 (Σ) endowed with the weak convergence topology with good rate function K such that

K(ν) = inf ζ∈M1(Σ) {λH(ν|ζ) + I X (ζ)} ≤ λ inf η∈Z H(ν|η).
Now we consider some particular cases for ((X n i ) 1≤i≤n ) n≥1 . First, we assume that for every n ≥ 1 the random variables X n 1 , . . . , X n n are independent and identically µ-distributed. [START_REF] Dudley | Real analysis and probability, volume 74 of Cambridge Studies in Advanced Mathematics[END_REF]) and Corollary 2.1 can be interpreted as a conditional LDP. Hence, any "m out of n" bootstrap such that lim n→∞ m(n)/n = 1 (in particular Efron's bootstrap) leads to a conditional LDP that coincides with the original LDP in this case. This was first established in [START_REF] Baxter | A comparison principle for large deviations[END_REF] for Efron's Bootstrap and in [START_REF] Chaganty | Some properties of the Kullback-Leibler number[END_REF] in the general case. Actually the X n 1 , . . . , X n n need not be iid but only that the associated empirical measures satisfy an LDP with rate function H(•|µ) for Efron's bootstrap to be conditionally LD-efficient. Corollary 2.2 completes the previous result with an unconditional LDP. In this particular case I X (ζ) = H(ζ|µ) and by taking e.g. µ = 9 10 δ 0 + 1 10 δ 1 , ν = 1 10 δ 0 + 9 10 δ 1 , ζ = 1 2 δ 0 + 1 2 δ 1 and λ = 1 we observe that K(ν) ≤ H(ν|ζ) + H(ζ|µ) < H(ν|µ) hence Efron's bootstrap is not unconditionally LD-efficient. Straightforward use of the same kind of arguments shows that this remark also holds true when X n 1 , . . . , X n n is the result of sampling without replacement from an urn with suitable properties (see Theorem 7.2 in [START_REF] Dembo | Large deviations techniques and applications[END_REF] for the reference LDP) or when X n 1 , . . . , X n n are the n first components of an infinitely exchangeable sequence of random variables (see [START_REF] Dinwoodie | Large deviations for exchangeable random vectors[END_REF] for the reference LDP).

Then 1 n n i=1 δ X n i w → µ a.s. (see Theorem 11.4.1 in

Iid weighted bootstrap

The weights (W n 1 , . . . , W n n ) for an iid-weighted bootstrap are defined on the ground of a sequence Y 1 , . . . , Y n , . . . of R + -valued independent random variables with common distribution ξ. We shall assume that for every α > 0 we have Λ ξ (α) < ∞ and that Λ * ξ (0) = ∞ (or equivalently P(Y 1 = 0) = 0). The weights (W n 1 , . . . , W n n ) are defined by

W n 1 = Y 1 1 n n i=1 Y i , . . . , W n i = Y i 1 n n i=1 Y i , . . . , W n n = Y n 1 n n i=1 Y i .
In order to describe the LD behavior of (

S n = 1 n n i=1 δ W n i ) n≥1 we introduce the map G : W 1 (R + ) × R * + → W 1 (R + ) (ρ, m) → G(ρ, m) : A ∈ B R+ → ρ(mA)
where for every Borel set A ∈ B R+ and every m > 0 we write

mA = {x ∈ R + , ∃y ∈ A : x = my} .
The continuity of G is the main argument in the proof of the following Theorem 2.2. The sequence

(S n = 1 n n i=1 δ W n i ) n≥1 satisfies an LDP on M 1 1 (R + ) endowed with the W 1,|•| distance with good rate function I W (ρ) = inf m>0 H(G( 1 m , ρ)|ξ) .

The previous LDP leads to

Corollary 2.3. For every ν, µ ∈ M 1 (Σ) we have

K(ν; µ) ≥ inf m>0 Σ Λ * ξ (m dν dµ (x))µ(dx) if ν ≪ µ +∞ otherwise.
Moreover, the preceding turns out to be an equality for every ν, µ

∈ M 1 (Σ) if and only if lim α→-∞ Λ ′ ξ (α) = 0 and lim α→+∞ Λ ′ ξ (α) = +∞.
It follows from the previous corollary that there is no distribution ξ such that for every ν, µ ∈ M 1 (Σ) the identity K(ν; µ) = H(ν|µ) holds. Indeed, as soon as there exists ν, µ ∈ M 1 (Σ) such that dν dµ (x) = 0 on a set A such that µ(A) > 0 one has K(ν; µ) = ∞ while it could be possible that H(ν|µ) < ∞. In words there is no choice of ξ for which one gets a conditional LDP that coincides with the original one for X n 1 , . . . , X n n independent and µ-distributed. It is clearly due to the fact that Λ * ξ (0) = ∞ forces all the weights W n 1 , . . . , W n n to be positive which is to be compared to e.g. Efron's bootstrap. Finally, as for Efron's bootstrap, one can construct examples to show that in most classical cases the iid-bootstrap is not unconditionally LD-efficient.

The multivariate hypergeometric bootstrap

Let K be a fixed integer number such that K ≥ 2. The multivariate hypergeometric bootstrap emerges from the following urn scheme: Put K copies of each observed data in an urn so that the urn contains Kn elements then draw from this urn a sample of size n without replacement. The sampling weights (W n 1 , . . . , W n n ) take their values in {0, 1, . . . , K} under the constraint n i=1 W n i = n and are distributed according to

P(W n 1 = w n 1 , . . . , W n n = w n n ) = C w n 1 K • • • C w n n K C n nK .
Let us denote by B(K, 1 K ) the Binomial distribution with parameters K and

1 K . Theorem 2.3. The sequence (S n = 1 n n i=1 δ W n i ) n≥1 satisfies an LDP on M 1 1 (R + ) endowed with the W 1,|•| distance with good rate function I W (ρ) = H(ρ|B(K, 1 K ))
Consider fixed observations ((x n i ) 1≤i≤n ) n≥1 such that (1.1) holds, we obtain Corollary 2.4. The sequence (L n ) n≥1 satisfies an LDP on M 1 (Σ) endowed with the weak convergence topology with good rate function

K(ν; µ) ≥ Σ Λ * B(K, 1 K ) ( dν dµ (x))µ(dx) if ν ≪ µ +∞ otherwise.
We only obtain an inequality since B(K, 1 K ) does not satisfy condition (1.7). Again, there is no integer K such that for every ν, µ ∈ M 1 (Σ) the identity K(ν; µ) = H(ν|µ) holds. Indeed, as soon as there exists ν, µ ∈ M 1 (Σ) such that dν dµ (x) > K on a set A such that µ(A) > 0 one has K(ν; µ) = ∞ while it could be possible that H(ν|µ) < ∞. Thus all multivariate hypergeometric bootstraps fail to be conditionally LD-efficients for iid observations. One can construct examples to show that in most classical cases the multivariate hypergeometric bootstrap fails to be unconditionally LD-efficient.

A bootstrap generated from deterministic weights

The weights for bootstrap schemes defined from deterministic weights are given by (W n 1 , . . . , W n n ) = (w n σn(1) , . . . , w n σn(n) ) where for every n ≥ 1 the w n 1 , . . . , w n n are fixed non-negative real numbers such that n i=1 w n i = n and

1 n n i=1 δ w n i W1 → γ ∈ M 1 1 (R + )
and σ n is an uniformly over S n distributed random variable. We clearly have Theorem 2.4. The sequence

(S n = 1 n n i=1 δ W n i ) n≥1 satisfies an LDP on M 1 1 (R + ) endowed with the W 1,|•| distance with good rate function I W (ρ) = 0 if ρ = γ +∞ otherwise.
An important special case is the grouped, or delete-h jacknife. The grouped jacknife with group block size h may be viewed as a bootstrap generated by permuting the deterministic weights

(w n 1 , . . . , w n n ) =   n n -h , . . . , n n -h , 0, . . . , 0 n -h h We shall take h = h(n) such that lim n→∞ h(n)/n = α ∈ [0, 1) so γ = (1 -α)δ 1 1-α + αδ 0 . Corollary 2.5. If α > 0 the sequence (L n ) n≥1 satisfies an LDP on M 1 (Σ)
endowed with the weak convergence topology with good rate function

K(ν; µ) = (1 -α)H(ν|µ) + αH µ-(1-α)ν α |µ if µ-(1-α)ν α ∈ M 1 (Σ) +∞ otherwise.
If α = 0 the sequence (L n ) n≥1 satisfies an LDP on M 1 (Σ) endowed with the weak convergence topology with good rate function

K(ν; µ) = 0 if ν = µ +∞ otherwise.
Naturally this result coincides with Theorem 7.2.1 in [START_REF] Dembo | Large deviations techniques and applications[END_REF]. Combining Corollary 1.2 and Corollary 2.5 we obtain an unconditional version of the latter result. To every ν ∈ M 1 (Σ) we associate

E ν = {ζ ∈ M 1 (Σ) : ζ -(1 -α)ν α ∈ M 1 (Σ)} Corollary 2.6. If α > 0 the sequence (L n ) n≥1 satisfies an LDP on M 1 (Σ)
endowed with the weak convergence topology with good rate function

K(ν) = inf ζ∈Eν U(ν, ζ)
where

U(ν, ζ) = (1 -α)H(ν|ζ) + αH ζ -(1 -α)ν α |ζ + I X (ζ).
If α = 0 the sequence (L n ) n≥1 satisfies an LDP on M 1 (Σ) endowed with the weak convergence topology with good rate function K(ν) = I X (ν).

The k-blocks bootstraps

Let us consider the (moving or circular) k-block bootstrap. Consider weights from the "m = n/k out of n" bootstrap:

1 k (W n 1 , . . . , W n n ) ∼ Mult n (m, (1/n, . . . , 1/n)).
The k-blocks bootstrapped empirical measure can be written as in [START_REF] Holmes | Stein's method: expository lectures and applications[END_REF] with the formula

L n = 1 n n i=1 W n i 1 k j∼i δ x n j
where j ∼ i means that the j belong to block i. For the moving k-blocks bootstrap,

j ∼ i if j ∈ {i -k/2, • • • , i + k/2} miodulo n.
With slight modifications we could also consider the circular k-blocks bootstrap where j ∼ i if j ∈ {i, . . . , i + k -1} modulo n. Both schemes are asymptotically equivalent as soon as k is fixed as it is the case here. Notice that

L n = 1 n n i=1 W n i δ x n i with W n i = 1 k j∼i W n j
where ( W n 1 , . . . , W n n ) fails to be exchangeable. However, our approach relies on preliminary results like Theorem 1.1 that are general enough to allow us to handle this situation under some mild additional hypothesis. Indeed, assume that the observations ((

x n i ) 1≤i≤n ) n≥1 satisfy 1 n n i=1 δ (x n i ,...,x n i+k-1 ) w → µ (k) ∈ M 1 (Σ k ). (2.2)
the i indices being taken modulo n. This situation arises e.g. when we are given the realization x n 1 , . . . , x n n of X n 1 , . . . , X n n the first n components of a stationary Markov chains (Y i ) i≥1 with transition probability P and stationary measure µ as in [START_REF] Donsker | Asymptotic evaluation of certain Markov process expectations for large time[END_REF] (see also [START_REF] Bolthausen | Markov process large deviations in τ -topology[END_REF]). In this case we get

1 n n i=1 δ (X n i ,...,X n i+k-1 ) w → µ ⊗ P ⊗ • • • ⊗ P k-1 a.s. so (2.2) is satisfied with µ (k) = µ ⊗ P ⊗ • • • ⊗ P k-1
. which leads to the following conditional LDP Theorem 2.5. The sequence ( L n ) satisfies an LDP on M 1 (Σ) endowed the weak convergence topology with good rate function

K(ν; µ (k) ) = inf 1 k H(ν (k) |µ (k) ) : ν (k) ∈ M 1 (Σ k ), 1 k k i=1 ν (k) i = ν
In the particular case of iid observations we further obtain

Corollary 2.7. The sequence ( L n ) satisfies an LDP on M 1 (Σ) endowed the weak convergence topology with good rate function

K(ν; µ (k) ) = H(ν|µ).
hence the k-blocks bootstrap is conditionnally efficient in this case but fails to be unconditionally efficient for the same reason as Efron's bootstrap, see Section 2.1.

3 Proof of Theorem 1.1

Most of the proof of Theorem 1.1 relies on the proof of a particular case that we describe now: We are given two triangular arrays ((w n i ) 1≤i≤n ) n≥1 and ((x n i ) 1≤i≤n ) n≥1 of elements of R + and Σ respectively, possibly with repetition, such that

ν 1,n = 1 n n i=1 δ w n i W1 → ν 1 ∈ M 1 1 (R + ) and ν 2,n = 1 n n i=1 δ x n i w → ν 2 ∈ M 1 (Σ),
and such that for every n ≥ 1 we have n i=1 w n i = n. Let (σ n ) n≥1 be a sequence of random variables defined on (Ω, A, P) such that for every n ≥ 1 the distribution of σ n is uniform over S n . Let (T n ) n≥1 be the sequence of random measures defined on (Ω, A, P) by

T n = 1 n n i=1 δ (w n σn(i) ,x n i ) ∈ M 1 1 (R + × Σ).
This is a particular case of V n . Following the proof of Theorem 1 in [START_REF] Trashorras | Large deviations for symmetrised empirical measures[END_REF] we shall prove Lemma 3.1. The sequence (T n ) n≥1 satisfies an LDP on M 1 (R + × Σ) endowed with the weak convergence topology with good rate function

I(ρ) = H(ρ|ν 1 ⊗ ν 2 ) if ρ 1 = ν 1 and ρ 2 = ν 2 +∞ otherwise.
A stronger version of Lemma 3.1 i.e. an LDP for (T n ) n≥1 on M1 1 (R + × Σ) endowed with the distance ∆ is proved in Section 3.2. The final proof of Theorem 1 relies on the latter result and Theorem 2.3 in [START_REF] Grunwald | Sanov results for Glauber spin-glass dynamics[END_REF] and is given in Section 3.3.

Proof of Lemma 3.1

Let us introduce some more notations before we carry on with the proof of Lemma 3.1. For every n ≥ 1 we write

P n = ν ∈ M 1 1 (R + × Σ) : ∃ σ ∈ S n , ν = 1 n n i=1 δ (w n σ(i) ,x n i ) .
We introduce two triangular arrays ((L n i ) 1≤i≤n ) n≥1 and ((R n i ) 1≤i≤n ) n≥1 of elements of R + and Σ respectively, defined on (Ω, A, P) and such that for every n ≥ 1 the 2n random variables L n 1 , . . . , L n n , R n 1 , . . . , R n n are mutually independent. We further assume that every L n i (resp. R n i ) is distributed according to ν 1,n (resp. ν 2,n ). The sequence

T n = 1 n n i=1 δ (L n i ,R n i ) ∈ M 1 (R + × Σ)
has the following LD behavior Lemma 3.2. The sequence (T n ) n≥1 satisfies an LDP on M 1 (R + × Σ) endowed with the weak convergence topology with good rate function H(ρ|ν 1 ⊗ ν 2 ).

Proof Since ν 1,n W1 → ν 1 we have ν 1,n w → ν 1 according to e.g. Theorem 7.11 in [START_REF] Villani | Topics in optimal transportation[END_REF]. Moreover, since ν 2,n w → ν 2 we have ν 1,n ⊗ ν 2,n w → ν 1 ⊗ ν 2 (see [START_REF] Billingsley | Convergence of probability measures[END_REF], Chapter 1, Theorem 3.2). The announced result then follows from Theorem 3 in [START_REF] Baxter | A comparison principle for large deviations[END_REF].

Our strategy in proving Lemma 3.1 consists in comparing T n to random measures coupled to T n . Comparison is possible because the ρ ∈ M 1 (R + × Σ) such that I(ρ) < +∞ can be approached in the weak convergence topology by elements of P n . Our proof of this property requires to use several metrics on M 1 (R + × Σ) compatible with the weak convergence topology. This is the reason why in Section 3.1.1 we give a short account on the weak convergence topology prior to the proof of our approximation result. In Section 3.1.2 we construct our coupling. Finally, in Section 3.1.3 we prove the LD bounds of Lemma 3.1.

An approximation result

We are given the Polish space (R + , d e ) with d e (x, y) = |x -y| 1 . The distance d e is not a bounded metric but it is topologically equivalent to the bounded metric de (x, y) = d e (x, y) 1 + d e (x, y)

Analogously we define a bounded metric dΣ on Σ on the ground of d Σ . The product topology on R + × Σ is metrizable by e.g.

d 2,M ((x 1 , x 2 ), (y 1 , y 2 )) = max(d e (x 1 , y 1 ), d Σ (x 2 , y 2 )) (3.1)
or

d 2,+ ((x 1 , x 2 ), (y 1 , y 2 )) = d e (x 1 , y 1 ) + d Σ (x 2 , y 2 ). (3.2) 
They both make R + × Σ a Polish space. We can also metrize the product topology on R + × Σ with the analogues d2,M and d2,+ of (3.1) and (3.2) built on the ground of de and dΣ . With a slight abuse of notation we shall denote by

β BL,δ (ρ, ν) = sup f ∈C b (R + ) f ∞+ f L,δ ≤1 R+ f dρ - R+ f dν (3.3)
the so-called dual-bounded Lipschitz metric on M 1 (R + ) where δ is either d e or de . It is compatible with the weak convergence topology (see [START_REF] Dudley | Real analysis and probability, volume 74 of Cambridge Studies in Advanced Mathematics[END_REF], Chapter 11, Theorem 11.3.3). According to Kantorovitch-Rubinstein Theorem (see [START_REF] Dudley | Real analysis and probability, volume 74 of Cambridge Studies in Advanced Mathematics[END_REF], Chapter 11, Theorem 11.8.2) the following metric on M 1 (R + )

W 1, de (ρ, ν) = inf Q∈C(ρ,ν) R+×R+ de (x, y)Q(dx, dy) ,
the so-called Wasserstein-1 metric associated to de is compatible with the weak convergence topology as well. However, note that the "analogue" of W 1, de built on the ground of d e is not a metric for the weak convergence topology (for an illustration of this fact see [START_REF] Dudley | Real analysis and probability, volume 74 of Cambridge Studies in Advanced Mathematics[END_REF] p.420-421). Finally we shall denote by

β BL, d2,M (ρ, ν) = sup f ∈C b (R + ×Σ) f ∞+ f L, d2,M ≤1 R+×Σ f dρ - R+×Σ f dν (3.4)
and

W 1, d2,+ (ρ, ν) = inf Q∈C(ρ,ν) (R+×Σ)×(R+×Σ) d2,+ (x, y)Q(dx, dy) ,
two metrics on M 1 (R + × Σ) compatible with the weak convergence topology on this set. The following is a key result in the proof of Lemma 3.1.

Lemma 3.3. Let ρ ∈ M 1 (R + × Σ) be such that ρ 1 = ν 1 and ρ 2 = ν 2 . For every n ≥ 1 there exists a ρ n ∈ P n such that ρ n w → ρ.

Proof Let ρ ∈ M 1 (R + × Σ) be such that ρ 1 = ν 1 and ρ 2 = ν 2 . According to Varadarajan's Lemma (see [START_REF] Dudley | Real analysis and probability, volume 74 of Cambridge Studies in Advanced Mathematics[END_REF], Chapter 11, Theorem 11.4.1) there exists a family ((

u n i , v n i ) 1≤i≤n ) n≥1 of elements of R + × Σ such that γ n = 1 n n i=1 δ (u n i ,v n i ) w → ρ.
For every n ≥ 1 we take ϕ n , τ n ∈ S n such that

n i=1 de (u n i , w n ϕn(i) ) = min ϕ∈Sn n i=1 de (u n i , w n σ(i) )
and

n i=1 dΣ (v n i , x n τn(i) ) = min τ ∈Sn n i=1 dΣ (v n i , x n τ (i) ) .
We shall prove that

ρ n = 1 n n i=1 δ (w n ϕn (i) ,x n τn(i) ) w → ρ.
To this end it is sufficient to prove that β BL, d2,M (ρ n , ρ) → 0. Let ε > 0 be fixed.

There exists an N 0 such that for every n ≥ N 0 we have

β BL, d2,M (ρ, γ n ) < ε/3. (3.5) Since γ n 1 w
→ ρ 1 = ν 1 there exists an N 1 such that for every n ≥ N 1 we have W 1, de (γ n 1 , ν 1,n ) < ε/3. We will show that due to this for every n ≥ N 1 we have

1 n n i=1 de (u n i , w n ϕn(i) ) < ε/3. (3.6) 
We shall prove that it leads to

β BL, d2,M (γ n , γ n ) < ε/3 (3.7) for every n ≥ N 1 where γn = 1 n n i=1 δ (w n ϕn (i) ,v n i ) .
Analogously to (3.6 -3.7) one can prove that there exists an N 2 such that for every n ≥ N 2

β BL, d2,M (γ n , ρ n ) < ε/3. (3.8)
By combining (3.5, 3.7, 3.8) we obtain the announced result.

Proof of (3.6) Since γ n 1 and ν 1,n have finite support every Borel probability

measure Q on R + × R + such that Q 1 = γ n 1 and Q 2 = ν 1,n is of the form Q(α) = 1 n n i,j=1 α i,j δ (u n i ,w n j ) (3.9) 
where α = (α i,j ) 1≤i,j≤n is an n × n bi-stochastic matrix. Conversely every n × n bi-stochastic matrix α defines through (3.9) a Borel probability measure

Q(α) on R + × R + such that Q(α) 1 = γ n 1 and Q(α) 2 = ν 1,n .
From the Birkhoff-Von Neumann Theorem we know that every bi-stochastic matrix can be written as a convex combination of permutation matrices. These are n × n matrices with a single 1 in every line and every column, all other entries being 0 (for a proof of this fact see e.g. [START_REF] Liu | Introduction to combinatorial mathematics[END_REF], Chapter 11, Example 11.2). There is an obvious one-toone correspondence between elements of S n and n × n permutation matrices. For every δ ∈ S n we shall denote by K δ the permutation matrix naturally associated to δ by this correspondence. Therefore for any Borel probability measure

Q on R + × R + such that Q 1 = γ n 1 and Q 2 = ν 1,n i.e. any choice of the components (λ δ ) δ∈Sn of the convex combination α = δ∈Sn λ δ K δ such that Q = Q(α) we have R+×R+ de (x, y)Q(dx, dy) = δ∈Sn λ δ ( n i=1 de (u n i , w n δ(i) )) (3.10) ≥ 1 n n i=1
de (u n i , w n ϕn(i) ).

(3.11)

Hence for every n ≥ N 1

1 n n i=1 de (u n i , w n ϕn(i) ) = W 1, de (γ n 1 , ν 1,n ) < ε/3 which proves (3.6). Proof of (3.7) For every f ∈ C b (R + × Σ) such that ||f || ∞ + ||f || L, d2,M ≤ 1 we have R+×Σ f dγ n - R+×Σ f dγ n ≤ 1 n n i=1 f (w n ϕn(i) , v n i ) -f (u n i , v n i ) ≤ 1 n n i=1 d2,M ((w n ϕn(i) , v n i ), (u n i , v n i )) ≤ 1 n n i=1 de (u n i , w n ϕn(i) ) < ε/3.
Hence for every n ≥ N 1 we have β BL, d2,M (γ n , γ n ) < ε/3.

Coupled empirical measures

To every n ≥ 1 and every realization of T n we associate two elements of M 1 (R + × Σ) by

W 1, d2,+ (T n , W n ) = min ν∈Pn W 1, d2,+ (T n , ν) (3.12) 
and

W 1, d2,+ (T n , W n ) = max ν∈Pn W 1, d2,+ (T n , ν) . (3.13) 
In case there are several elements of P n achieving the min (resp. the max) W n (resp. W n ) is picked uniformly at random among these measures.

Lemma 3.4. For every n ≥ 1 the random measures W n , W n and T n are identically distributed over M 1 (R + × Σ).

Proof We shall only prove that W n and T n are identically distributed since the proof with W n and T n works the same way. Let n ≥ 1 be fixed. For the sake of clarity let us first assume that there is no repetition among the w n 1 , . . . , w n n and the x n 1 , . . . , x n n . In this case every ρ ∈ P n corresponds to a single τ ∈ S n by

ρ = 1 n n i=1 δ (w n τ (i) ,x n i ) . (3.14) 
Next let us consider a fixed realization (l n i , r n i ) 1≤i≤n of (L n i , R n i ) 1≤i≤n and let us denote by w n the corresponding value for T n . Due to the property of the minimizer in the Wasserstein distance between two atomic measures we already employed in the proof of Lemma 3.3, for every ρ ∈ P n (i.e. every τ ∈ S n according to (3.14)) there exists a σ ∈ S n such that

W 1, d2,+ (w n , ρ) = 1 n n i=1 d2,+ ((l n i , r n i ), (w n σ(i) , x n σ•τ (i) )) = 1 n n i=1 de (l n i , w n σ(i) ) + 1 n n i=1 dΣ (r n i , x n σ•τ (i) ).
Thus, since we are looking for the minimum over σ and τ , for a fixed realization (l n i , r n i ) 1≤i≤n of (L n i , R n i ) 1≤i≤n the corresponding value of w n is obtained by finding η l and η r such that

n i=1 de (l n i , w n η l (i) ) = min σ∈Sn n i=1 de (l n i , w n σ(i) )
and

n i=1 dΣ (r n i , x n ηr (i) ) = min σ∈Sn n i=1 dΣ (r n i , x n σ(i) )
and taking

w n = 1 n n i=1 δ (w n η l (i) ,x n ηr (i) ) .
In case several η l and/or η r realize the minima in the displays above, those defining w n are picked among them uniformly at random. Now, remark that for every γ l , γ r ∈ S n , observing (l n γ l (i) , r n γr (i) ) 1≤i≤n has the same probability as observing (l n i , r n i ) 1≤i≤n and results in γ l • η l and γ r • η r in defining w n instead of η l and η r . Thus, if we consider η l and η r as random variables defining W n , we see that their distribution conditioned on W n is uniform over S n . Hence W n and T n are both uniformly distributed over P n , thus identically distributed. This proof extends easily to the case when there are repetitions among the w n 1 , . . . , w n n or x n 1 , . . . , x n n .

Proof of the LD bounds of Lemma 1

We start the proof of the LD bounds by proving the following Lemma 3.5. We have:

1. I is a good rate function.

2. The sequence (T n ) n≥1 is exponentially tight.

Proof

(1) Let α ≥ 0. We have

N α = {ρ ∈ M 1 (R + × Σ) : I(ρ) ≤ α} = {ρ ∈ M 1 (R + × Σ) : H(ρ|ν 1 ⊗ ν 2 ) ≤ α} ∩ {ρ ∈ M 1 (R + × Σ) : ρ 1 = ν 1 and ρ 2 = ν 2 }.
Thus, for every α ≥ 0, N α is the intersection of a compact and a closed subset of M 1 (R + × Σ), therefore it is compact.

(2) For every measurable

A ⊂ M 1 (R + × Σ) we have lim sup n→∞ 1 n log P(T n ∈ A c ) = lim sup n→∞ 1 n log P(T n ∈ A c | 1 n n i=1 δ L n i = ν 1,n , 1 n n i=1 δ R n i = ν 2,n ) ≤ lim sup n→∞ 1 n log P(T n ∈ A c ) -lim inf n→∞ 1 n log P( 1 n n i=1 δ L n i = ν 1,n ) -lim inf n→∞ 1 n log P( 1 n n i=1 δ R n i = ν 2,n ).
Since (T n ) n≥1 satisfies an LDP on M 1 (R + × Σ) with a good rate function it is exponentially tight (see [START_REF] Dembo | Large deviations techniques and applications[END_REF], Remark a) p.8). Thus for every α ≥ 0 we can chose a compact set A α ⊂ M 1 (R + × Σ) that makes the first term in the last display smaller than -α -2. On the other hand it is clear that for every n ≥ 1 we have

P( 1 n n i=1 δ L n i = ν 1,n ) ≥ n! 1 n n
equality corresponding to the case when there are no ties among the x n 1 , . . . , x n n . Thus

-lim inf n→∞ 1 n log P( 1 n n i=1 δ L n i = ν 1,n ) ≤ 1
which completes the proof.

Proof of the lower bound

It is sufficient in order to prove the lower bound of the LDP to prove that

-I(ρ) ≤ lim inf n→∞ 1 n log P(T n ∈ B(ρ, ε))
holds for every ρ ∈ M 1 (R + × Σ) and every ε > 0, where B(ρ, ε) stands for the open ball centered at ρ ∈ M 1 (R + × Σ) of radius ε > 0 for the W 1, d2,+ metric. So let ε > 0 and ρ ∈ M 1 (R + × Σ) be such that I(ρ) < +∞. In particular ρ 1 = ν 1 and ρ 2 = ν 2 . According to Lemma 3.3 there exists a sequence (ρ n ) n≥1 of elements of M 1 (R + ×Σ) such that ρ n ∈ P n and ρ n w → ρ. According to Lemma 3.4

P(T n ∈ B(ρ, ε)) = P( W n ∈ B(ρ, ε)) ≥ P(W 1, d2,+ ( W n , T n ) < ε 3 , W 1, d2,+ (T n , ρ n ) < ε 3 , W 1, d2,+ (ρ n , ρ) < ε 6 ) ≥ P(W 1, d2,+ (ρ n , T n ) < ε 3 , W 1, d2,+ (ρ n , ρ) < ε 6 )
since it follows from the definition of W n that for every ρ n ∈ V n we have

W 1, d2,+ ( W n , T n ) ≤ W 1, d2,+ (ρ n , T n ).
On the other hand since ρ n w → ρ we get that for n large enough W 1, d2,+ (ρ n , ρ) < ε 6 = Ω. Thus, for those n's

P(W 1, d2,+ (ρ n , T n ) < ε 3 , W 1, d2,+ (ρ n , ρ) < ε 6 ) ≥ P(W 1, d2,+ (ρ, T n ) < ε 6 , W 1, d2,+ (ρ n , ρ) < ε 6 ) ≥ P(W 1, d2,+ (T n , ρ) < ε 6 
).

Finally, it follows from Lemma 3.1 that lim inf

n→∞ 1 n log P(T n ∈ B(ρ, ε)) ≥ lim inf n→∞ 1 n log P(W 1, d2,+ (ρ, T n ) < ε 6 ) ≥ -H(ρ|ν 1 ⊗ ν 2 ) = -I(ν).

Proof of the upper bound

In order to prove the upper bound of the LDP, it is sufficient to prove that it holds for compact subsets of M 1 (R + × Σ). Indeed, since (T n ) n≥1 is an exponentially tight sequence (see Lemma 3.5) the full upper bound will follow from Lemma 1.2.18 in [START_REF] Dembo | Large deviations techniques and applications[END_REF]. Let A be a compact subset of M 1 (R + × Σ) and let us denote by

A ν 1 ,ν 2 = ρ ∈ A : ρ 1 = ν 1 and ρ 2 = ν 2
which is a compact subset of M 1 (R + × Σ) as well. Since the weak convergence topology on M 1 (R + × Σ) is compatible with the W 1, d2,+ metric, it makes

M 1 (R + × Σ) a regular topological space: For every ρ ∈ A such that ρ ∈ A c ν 1 ,ν 2 there exists ε ρ > 0 such that B(ρ, 2ε ρ ) ∩ A ν 1 ,ν 2 = ∅. In particu- lar B(ρ, ε ρ ) ∩ A ν 1 ,ν 2 = ∅
where B(ρ, ε) denotes the closed ball centered on ρ ∈ M 1 (R + × Σ) of radius ε > 0 for the W 1, d2,+ metric. On the other hand, since ρ → H(ρ|ν 1 ⊗ ν 2 ) is lower semi-continuous, for every ρ ∈ A ν 1 ,ν 2 and every δ > 0 there exists a ϕ(ρ, δ) > 0 such that inf γ∈ B(ρ,ϕ(ρ,δ))

H(γ|ν 1 ⊗ ν 2 ) ≥ (H(ρ|ν 1 ⊗ ν 2 ) -δ) ∧ 1 δ .
For every δ > 0 we consider the coverage

A ⊂ ∪ ρ∈A∩A c ν 1 ,ν 2 B(ρ, ε ρ ) ∪ ∪ ρ∈A ν 1 ,ν 2 B(ρ, ϕ(ρ, δ) 8 )
from which we extract a finite coverage

A ⊂ (∪ ρ∈I1 B(ρ, ε ρ )) ∪ ∪ ρ∈I2 B(ρ, ϕ (ρ, δ) 8 ) 
where I 1 ⊂ A ∩ A c ν 1 ,ν 2 and I 2 ⊂ A ν 1 ,ν 2 are finite sets. Then, according to Lemma 1.2.15 in [START_REF] Dembo | Large deviations techniques and applications[END_REF] lim sup

n→∞ 1 n log P(T n ∈ A) ≤ max lim sup n→∞ 1 n log P(T n ∈ ∪ ρ∈I1 B(ρ, ε ρ ) ∩ A), lim sup n→∞ 1 n log P(T n ∈ ∪ ρ∈I2 B(ρ, ϕ(ρ, δ) 8 
)) .

For every ρ ∈ I 1 there can not be an infinite number of integers n k such that

P(T n k ∈ ∪ ρ∈I1 B(ρ, ε ρ ) ∩ A) = 0 for otherwise we would get B(ρ, ε ρ ) ∩ A ν 1 ,ν 2 = ∅.
The first term in the max is then equal to -∞. We are left with the second term and according to Lemmas 1,2 and 3 we have lim sup

n→∞ 1 n log P(T n ∈ A) ≤ lim sup n→∞ 1 n log P(T n ∈ ∪ ρ∈I2 B( ν, ϕ(ρ, δ) 8 ) 
)

≤ max ρ∈I2 lim sup n→∞ 1 n log P( W n ∈ B( ρ, ϕ(ρ, δ) 8 ) 
)

≤ max ρ∈I2 lim sup n→∞ 1 n log P(W 1, d2,+ (ρ n , W n ) < ϕ(ρ, δ) 4 ) ≤ max ρ∈I2 lim sup n→∞ 1 n log P(W 1, d2,+ (ρ, W n ) < ϕ(ρ, δ) 2 ) ≤ max ρ∈I2 - inf γ∈ B(ρ,ϕ(ρ,δ)) H(γ|ν 1 ⊗ ν 2 ) ≤ max ρ∈I2 -(H(ρ|ν 1 ⊗ ν 2 ) -δ) ∧ 1 δ ≤ max ρ∈I2 -(I(ρ) -δ) ∧ 1 δ ≤ -inf ρ∈A (I(ρ) -δ) ∧ 1 δ .
By letting δ → 0 we obtain the announced upper bound, see Remark 1.2.10 in [START_REF] Dembo | Large deviations techniques and applications[END_REF].

A stronger version of Lemma 3.1

In the present section we shall prove the following Lemma 3.6. The sequence (T n ) n≥1 satisfies an LDP on M 1 1 (R + × Σ) endowed with the distance ∆ with good rate function I.

Proof First let us notice that

N 1 1 (R + × Σ) = ρ ∈ M 1 (R + × Σ) : R+ x ρ 1 (dx) ≤ 1 is a closed subset of M 1 (R + × Σ)
when the latter is endowed with the weak convergence topology. Since for every n ≥ 1 we have [START_REF] Dembo | Large deviations techniques and applications[END_REF] implies that (T n ) n≥1 obeys an LDP on N 1 1 (R + × Σ) endowed with the weak convergence topology, with good rate function I.

P(T n ∈ N 1 1 (R + × Σ)) = 1, Lemma 4.1.5 in
Next we prove that the same remains true when N 1 1 (R + × Σ) is endowed with the distance ∆. Indeed, since (T n ) n≥1 satisfies an LDP on the Polish space M 1 (R + × Σ) with a good rate function it is exponentially tight: For every L > 0 there exists a compact

A ⊂ M 1 (R + × Σ) such that lim sup n→∞ 1 n log P(T n ∈ A c ) ≤ -L.
The set A ∩ K with

K = ρ ∈ M 1 (R + × Σ) : ρ 1 ∈ ∪ n i=1 {ν 1,n } is a compact subset of N 1 1 (R + × Σ) endowed with ∆. Moreover lim sup n→∞ 1 n log P(T n ∈ (A ∩ K) c ) ≤ lim sup n→∞ 1 n log P(T n ∈ A c ) + + lim sup n→∞ 1 n log P(T n ∈ K c ) ≤ -L. Finally, M 1 1 (R + × Σ) is a closed subset of (N 1 1 (R + × Σ), ∆
) and for every n ≥ 1 we have P(T n ∈ M 1 1 (R + × Σ)) = 1 so again, due to Lemma 4.1.5 in [START_REF] Dembo | Large deviations techniques and applications[END_REF] the sequence (T n ) n≥1 obeys an LDP on M 1 1 (R + × Σ) endowed with the distance ∆ with good rate function I.

Conclusion of the proof of Theorem 1

In order to conclude the proof of Theorem 1 it is sufficient to establish that the distribution of V n on M 1 1 (R + × Σ) is a mixture of Large Deviation Systems (LDS) in the sense of [START_REF] Grunwald | Sanov results for Glauber spin-glass dynamics[END_REF]. For the sake of clarity we recover the notations of [START_REF] Grunwald | Sanov results for Glauber spin-glass dynamics[END_REF] when identifying the components of the LDS

• Z = M 1 1 (R + × Σ
) is a Polish space when endowed with the distance ∆, see the Appendix.

• X = M 1 1 (R +
) is a Polish space when endowed with the W 1 -distance since it is a closed subset of the Polish space (W 1 (R + ), W 1,|•| ) (see e.g. [START_REF] Bolley | Separability and completeness for the Wasserstein distance[END_REF]).

• For every n ≥ 1 we note

X n = ν ∈ M 1 1 (R + ) : ∃ (w 1 , . . . , w n ) ∈ (R + ) n , ν = 1 n n i=1
δ wi and for every ν ∈ X and every n ≥ 1 there exists a ν n ∈ X n such that ν n W1 → ν, see Lemma A.1 in the Appendix below.

• The map π : Z → X defined by π(ν) = ν 1 is continuous and surjective.

• For every n ≥ 1 and every ν =

1 n n i=1 δ wi ∈ X n let P n ν be the distribution of T n = 1 n n i=1 δ (w σn(i) ,x n i ) under P.
The family Π = {P n ν , ν ∈ X n , n ≥ 1} of finite measures on the Borel σ-field on Z is such that for every n ≥ 1 and every ν ∈ X n we have

P n ν (π -1 ({ν} c ) = 0. • Let Q n be the distribution of 1 n n i=1 δ W n i .
For every n ≥ 1 and every and every measurable A ⊂ M 1 1 (R + × Σ)

P(V n ∈ A) = Xn P n ν (A)Q n (dν).
All the requirements of Definition 2.1 in [START_REF] Grunwald | Sanov results for Glauber spin-glass dynamics[END_REF] are satisfied by our model thanks to Lemma 3.6. It follows from Theorem 2.3 in [START_REF] Grunwald | Sanov results for Glauber spin-glass dynamics[END_REF] that the sequence (V n ) n≥1 obeys an LDP on M 1 1 (R + × Σ) with distance ∆ with good rate function

J (ρ) = H(ρ|ρ 1 ⊗ µ) + I W (ρ 1 ) if ρ 2 = µ +∞ otherwise.
4 Proof of Lemma 1.1

In order to prove (1.6) it is sufficient to consider ν, µ ∈ M 1 (Σ) such that K(ν; µ) < ∞ for otherwise the inequality trivially holds. Then there necessary exists (at least) a ρ ∈ M 1 1 (R + × Σ) such that ρ 2 = µ and F (ρ) = ν. For every such ρ the latter reads

ν(A) = R+×A wρ x (dw)µ(dx)
for every measurable A ⊂ Σ, hence ν ≪ µ and

dν dµ (x) = R+ wρ x (dw) (4.1)
µ a.s. This shows that ν ≪ µ is a necessary condition for the existence of ρ such that ρ 2 = µ and F (ρ) = ν so, as claimed, the announced inequality holds true as an equality if ν ≪ µ is not satisfied. Moreover, we have

H(ρ|ρ 1 ⊗ µ) + H(ρ 1 |ξ) = H(ρ|ξ ⊗ µ) = Σ H(ρ x |ξ)µ(dx)
since ρ 2 = µ. It follows from Kullback's inequality (see e.g. Theorem 2.1 in [START_REF] Kullback | Information theory and statistics[END_REF]) that

H(ρ x |ξ) ≥ Λ * ξ ( R+ wρ x (dw))
which combined with (4.1) brings the announced inequality. Actually, it shows that a necessary and sufficient condition on ξ to get for every ν, µ ∈ M 1 (Σ) an equality in (1.6) is that for every ν, µ ∈ M 1 (Σ) there exists a ρ ∈ M 1 1 (R + × Σ) such that ρ 2 = µ, F (ρ) = ν and 

H(ρ x |ξ) = Λ * ξ ( dν dµ ( 
Λ ′ ξ (α) = +∞.
is a necessary and sufficient condition to get for every ν, µ ∈ M 1 (Σ) and every

x ∈ Σ such that dν dµ (x) > 0 a ρ x of the form (4.2) with R+ wρ x (dw) = dν dµ (x) and H(ρ x |ξ) = Λ * ξ ( dν dµ (x)). If dν dµ (x) = 0 then one takes ρ x = δ 0 and still gets R+ wρ x (dw) = dν dµ (x) and H(ρ x |ξ) = Λ * ξ ( dν dµ (x)) = Λ * ξ (0). The announced result follows.

Proof of Theorem 1.2

In order to prove Theorem 1.2 it is sufficient to establish that the distribution of V n on M 1 1 (R + × Σ) is a mixture of LDS. Again we recover the notations of [START_REF] Grunwald | Sanov results for Glauber spin-glass dynamics[END_REF] when identifying the components of the LDS • Z = M 1 1 (R + × Σ) is a Polish space when endowed with the distance ∆. • X = M 1 (Σ) is a Polish space when endowed with the weak convergence topology.

• For every n ≥ 1 we note

X n = ν ∈ M 1 1 (Σ) : ∃ (x 1 , . . . , x n ) ∈ Σ n , ν = 1 n n i=1 δ xi
and according to Varadarajan's Lemma for every ν ∈ X and every n ≥ 1 there exists a ν n ∈ X n such that ν n w → ν. • The map π : Z → X defined by π(ν) = ν 2 is continuous and surjective.

• For every n ≥ 1 and every ν =

1 n n i=1 δ xi ∈ X n let P n ν be the distribution of T n = 1 n n i=1 δ W n
i ,xi under P. The family Π = {P n ν , ν ∈ X n , n ≥ 1} of finite measures on the Borel σ-field on Z is such that for every n ≥ 1 and every ν ∈ X n we have

P n ν (π -1 ({ν} c ) = 0. • Let Q n be the distribution of 1 n n i=1 δ X n i .
For every n ≥ 1 and every and every measurable A ⊂ M 1 1 (R + × Σ)

P(V n ∈ A) = Xn P n ν (A)Q n (dν).
All the requirements of Definition 2.1 in [START_REF] Grunwald | Sanov results for Glauber spin-glass dynamics[END_REF] are satisfied by our model thanks to Theorem 1.1. It follows from Theorem 2.3 in [START_REF] Grunwald | Sanov results for Glauber spin-glass dynamics[END_REF] that the sequence (V n ) n≥1 obeys an LDP on M 1 1 (R + × Σ) with distance ∆ with good rate function

J(ρ) = H(ρ|ρ 1 ⊗ ρ 2 ) + I W (ρ 1 ) + I X (ρ 2 ).
6 Proof of Corollary 1.3

In view of (1.9) a necessary condition on ((W n i ) 1≤i≤n ) n≥1 for K = I X is that for every ν, ζ ∈ M 1 (Σ) and every ((

X n i ) 1≤i≤n ) n≥1 I X (ν) -I X (ζ) ≤ K(ν, ζ).
If we consider X n 1 , . . . , X n n resulting from sampling without replacement on an urn which composition x n 1 , . 

I X (θ) = 0 if θ = ζ ∞ otherwise.
so the announced condition is necessary. It is also clearly sufficient and the announced result follows.

Sample weights Large Deviations Principles

In this section we prove the results given in Section 2.

1 n n i=1 δ xi , 1 n n i=1 δ n m Z n i ).
Proof of Lemma 7.1 Remark that the conditional law of (Z 1 , . . . , Z n ) given

n i=1 Z n i = k is Mult n (k, (1/n, . . . , 1/n))
. Thus, if k = m the result is obvious. If k < m or k > m, the coupling is done such that we move from the law of k balls randomly putted in n urns to m balls into the same urns by picking or putting at random. We finally get the Mult n (m, (1/n, . . . , 1/n)) law.

Proof of Lemma 7.2 By definition

W 1,|•| ( 1 n n i=1 δ n m M n i , 1 n n i=1 δ n m Z n i ) = sup f ∈C b (R + ) ||f || L,|•| ≤1 1 n n i=1 f ( n m M n i ) - 1 n n i=1 f ( n m Z n i ) ≤ 1 m n i=1 |M n i -Z n i | .
Due to the construction of (M n 1 , . . . , M n n ) we have that either all

M n i -Z n i ≤ 0 or all M n i -Z n i ≥ 0, so 1 m n i=1 |M n i -Z n i | = 1 m n i=1 (M n i -Z n i ) = 1 - 1 m n i=1 Z n i .
Moreover, for every non-negative real numbers x 1 , . . . , x n such that

n i=1 x i = n we have W 1,|•| ( 1 n n i=1 δ xi , 1 n n i=1 δ n m Z n i ) = sup f ∈C b (R + ) ||f || L,|•| ≤1 1 n n i=1 f (x i ) - 1 n n i=1 f ( n m Z n i ) ≥ 1 n n i=1 (x i - n m Z n i ) = 1 - 1 m n i=1 Z n i ,
which concludes the proof.

A Sanov's result in a strong topology.

Let ((Z n 1 , . . . , Z n n ) 1≤i≤n ) n≥1 be a triangular array of random variables such that for every n ≥ 1 the Z n 1 , . . . , Z n n are independent and identically P(λ n )distributed and such that lim n→∞ λ n = λ > 0. Proof of Lemma 7.3 According to Theorem 3 in [START_REF] Baxter | A comparison principle for large deviations[END_REF] the sequence (R n ) n≥1 obeys an LDP on M 1 (R + ) when the latter is endowed with the weak convergence topology with good rate function H(•|Q(λ)). Moreover, for every n ≥ 1 we have R n ∈ W 1 (R + ) and, since all the exponential moments of Q(λ) are finite, for every ν ∈ M 1 (R + ) if H(ν|Q(λ) < ∞ then necessarily ν ∈ W 1 (R + ), see e.g. Lemma 2.1 in [START_REF] Eichelsbacher | Large deviations of U -empirical measures in strong topologies and applications[END_REF]. Thus (R n ) n≥1 obeys an LDP on W 1 (R + ) endowed with the weak convergence topology with good rate function H(•|Q(λ)), see Lemma 4.1.5 in [START_REF] Dembo | Large deviations techniques and applications[END_REF]. In particular it is exponentially tight i.e. for every L > 0 there exists a compact

K L ⊂ W 1 (R + ) such that lim sup n→∞ 1 n log P(R n ∈ K L ) < -L.
To strengthen the topology for which the LDP holds it is sufficient to prove that the sequence (R n ) n≥1 is exponentially tight in the stronger W [START_REF] Dembo | Large deviations techniques and applications[END_REF]. To this end we follow the proof of Theorem 1.1. in [START_REF] Wang | Sanov's theorem in the Wasserstein distance: a necessary and sufficient condition[END_REF].

For every L > 0 we introduce

A L = ν ∈ W 1 (R + ) : R+ Λ * Q(λ) (x)ν(dx) ≤ L .
We prove that for every L > 0 the set 

C L = K L ∩ A L is W 1,|•| -compact. First
S(N ) = ∞. For every ν ∈ C L we have x≥N xν(dx) ≤ 1 S(N ) x≥N Λ * Q(λ) (x) x xν(dx) ≤ 1 S(N ) R+ Λ * Q(λ) (x)ν(dx) ≤ L S(N ) hence C L is W 1,|•| -compact. Since lim sup n→∞ 1 n log P(R n ∈ C L ) ≤ max -L, lim sup n→∞ 1 n log P(R n ∈ A L ) (7.1)
we are led to consider P(R n ∈ A L ). According to Chebichev's inequality for every δ ∈ (0, 1)

P(R n ∈ A L ) = P( 1 n n i=1 Λ * Q(λ) (Z n i ) > L) ≤ exp(-δnL) E exp(δΛ * Q(λ) (Z n 1 )) n . (7.2) 
But for every x ∈ R and every λ > 0 we have Λ

* Q(λ) (x) = Λ * P(λ) (λx) hence Λ * Q(λ) (x) = λ -λx + λx log x if x ≥ 0 ∞ otherwise. (7.3) So we get for every x ∈ R the relationship Λ * Q(λ) (x) = (λ/λ n )Λ * Q(λn) (x) so P(R n ∈ A L ) ≤ exp(-δnL) E exp(δ(λ/λ n )Λ * Q(λ) (Z n 1 )) n .
According to Lemma 5.1.14 in [START_REF] Dembo | Large deviations techniques and applications[END_REF] for n large enough we have

E exp(δ(λ/λ n )Λ * Q(λ) (Z n 1 )) ≤ 2 1 -δ(λ/λ n ) So, P( 1 n n i=1 δ W n i ∈ O) = P( 1 n n i=1 δ n m(n) M n i ∈ O) ≥ P(W 1,|•| ( 1 n n i=1 δ n m(n) M n i , 1 n n i=1 δ 1 λn Z n i ) < ε/3, W 1,|•| (ρ n , 1 n n i=1 δ 1 λn Z n i ) < ε/3, W 1,|•| (ρ n , ρ) < ε/3) ≥ P(W 1,|•| (ρ n , 1 n n i=1 δ 1 λn Z n i ) < ε/3, W 1,|•| (ρ n , ρ) < ε/3) ≥ P(W 1,|•| (ρ, 1 n n i=1 δ 1 λn Z n i ) < ε/6)
for every n large enough and the LD lower bound follows from Lemma 7.3.

Proof of Corollary 2.1

First notice that Λ Q(λ) (α) = λ(e α/λ -1) so condition (1.7) is satisfied. Using (7.3) we immediately obtain the announced result.

Proof of Corollary 2.2

Let us prove the inequality in Corollary 2.2. Let ν ∈ M 1 (Σ) be such that inf η∈Z H(ν|η) < ∞. Necessarily for every η ∈ Z such that H(ν|η) < ∞ we have ν ≪ η. Now for every such η consider ρ ∈ M 1 1 (R + × Σ) defined by ρ 2 = η while the regular conditional distribution of its first marginal given the second is ρ x (dw) = F (λ, λ dν dη (x))(dw) if dν dη (x) > 0 δ 0 (dw) otherwise.

Let us check that F (ρ) = ν. Indeed, every measurable A ⊂ Σ can be decomposed into A = A ν ∪ A ⊥ ν where A ν = A ∩ Support(ν) and 

Iid weighted bootstrap

The following Lemma 7.4. G is continuous.

is the main argument in the proof of Theorem 2. Since ρ n W1 → ρ we have ρ n w → ρ hence for every ε > 0 there exists a compact

K ε ⊂ R * + such that sup n≥1 {ρ n (K c ε ), ρ(K c ε )} < ε. Thus R+ f (x)G(ρ n , m n )(dx) - R+ f (x)G(ρ, m)(dx) = R+ f ( x m n )ρ n (dx) - R+ f ( x m )ρ(dx) ≤ Kε f ( x m n )ρ n (dx) - Kε f ( x m )ρ(dx) + 2ε||f || ∞ ≤ Kε f ( x m n ) -f ( x m ) ρ n (dx) + + Kε f ( x m )ρ n (dx) - K f ( x m )ρ(dx) + 2ε||f || ∞ (7.4)
Since f is continuous it is uniformly continuous over compact subsets of R * + so there is an N 0 such that for every n ≥ N 0

sup x∈Kε f ( x m n ) -f ( x m ) < ε.
By taking N 0 large enough we can make the second term in (7.4) as small as desired, which concludes the proof.

Proof of Theorem 2.2

According to [START_REF] Wang | Sanov's theorem in the Wasserstein distance: a necessary and sufficient condition[END_REF], that all the exponential moments of ξ are finite is a necessary and sufficient condition for 1 If α = 0 then γ = δ 1 and for every ν ∈ M 1 (Σ) there is only one ρ ∈ M 1 1 (R + × Σ) such that F (ρ) = ν which is ρ = δ 1 ⊗ ν and the announced result immediately follows.

7.5 The k-blocks bootstrap . We obtain the desired result using the contraction principle on the map

H : M 1 (Σ k ) → M 1 (Σ) ρ (k) → H(ρ (k) ) 1 k k i=1 ρ (k) i
which is continuous because it is Lipschitz.

Proof of Corollary 2.7

Let ν ∈ M 1 (Σ). Since H(ν ⊗k ) = ν and in this particular case µ (k) = µ ⊗k we get

K(ν; µ (k) ) ≤ 1 k H(ν ⊗k |µ ⊗k )
= H(ν|µ).

On the other hand for every ρ (k) such that H(ρ (k) ) = ν we have

H(ν|µ) = H( 1 k k i=1 ρ (k) i |µ) ≤ 1 k k i=1 H(ρ (k) i |µ)
since H(•|µ) is convex. To conclude the proof just notice that

H(ρ (k) |µ ⊗k ) = H(ρ (k) | ⊗ k i=1 ρ (k) i ) + H(⊗ k i=1 ρ (k) i |µ ⊗k ) ≥ H(⊗ k i=1 ρ (k) i |µ ⊗k ) = k i=1 H(ρ (k) i |µ).
In all the cases considered above we have

W 1 ( 1 n n i=1 δ u n i , 1 n n i=1 δ w n i ) = sup f ∈C b (R + ) ||f || L ≤1 1 n n i=1 f (u n i ) - 1 n n i=1 f (w n i ) ≤ sup f ∈C b (R + ) ||f || L ≤1 1 n n i=1 |f (u n i ) -f (w n i )| ≤ 1 n n i=1 |u n i -w n i | = 1 n n i=1 u n i - 1 n n i=1 w n i = 1 n n i=1 u n i -1 → 0.

Lemma 7 . 3 .

 73 The sequence (R n = 1 n n i=1 δ 1 λn Z n i ) n≥1 obeys an LDP on W 1 (R + ) endowed with the W 1,|•| distance with good rate function H(•|Q(λ)).

F

  A ν ) = ν(A).Moreover by taking Σ1 = Σ ∩ { dν dη (x) > 0} and Σ 2 = Σ ∩ { dν dη (x) = 0} we get H(ρ|ρ 1 ⊗ η) + H(ρ 1 |Q(λ)) + I X (η) = H(ρ|Q(λ) ⊗ η) )η(dx) + λη(Σ 2 )= λH(ν|η), hence K(ν) ≤ λ inf η∈Z H(ν|η).

2

 2 

7. 2 . 1 4

 214 Proof of Lemma 7.We consider a sequence of probability measures (ρ n ) n≥1 such that ρ n W1 → ρ and a sequence of positive numbers m n → m > 0 and prove that G(ρ n , m n ) W1 → G(ρ, m). It is not difficult to show that for every f ∈ C b (R * + ), every ρ ∈ W 1 (R + ) and every m > 0 we haveR+ f (x)G(ρ, m)(dx) = R+ f ( x m )ρ(dx). So R+ xG(ρ n , m n )(dx) = R+ x mn ρ n (dx) → 1 m R+ xρ(dx) = R+ xG(ρ, m)(dx).Hence, according to Theorem 7.11 in[START_REF] Villani | Topics in optimal transportation[END_REF] we are left to prove that for everyf ∈ C b (R * + ) we have R+ f (x)G(ρ n , m n )(dx) → R+ f (x)G(ρ, m)(dx).

ρ 1 =

 1 Yi to satisfy an LDP on W 1 (R + ) endowed with W 1,|•| with good rate function H( • |µ). Next, sinceG : W 1 (R + ) → R + ν → R+ xν(dx)is continuous when W 1 (R + ) is furnished with the W 1 distance we obtain that ( i ) satisfies an LDP on the product spaceW 1 (R + ) × R + with good rate function R(ρ, x) = H(ρ|µ 1 ) if R+ uρ(du) = x +∞ otherwise. Since Λ * (0) = ∞ we have R(ρ, 0) = ∞. Hence, according to Lemma 4.1.5 in [8], an LDP for ( i ) n≥1 holds on W 1 (R + ) × R * + with the same rate function R. Since G is continuous γ. Necessarily ρ 1 1-α (dx) = ν(dx) and ρ 2 is such that ρ 0 (dx) = ζ(dx)-(1-α)ν(dx) α ∈ M 1 (Σ). Thus E ν is non-empty andH(ρ|ρ 1 ⊗ ρ 2 ) + I W (ρ 1 ) + I X (ρ 2 ) = (1α)H(ν|ρ 2 ) + αH ρ 2 -(1α)ν α |ρ 2 I X (ρ 2 ) ≥ inf ρ2∈Eν U(ν, ρ 2 )

7. 5 . 1

 51 Proof of Theorem 2.5 Let us apply Corollary 2.1 to L n = 1

  x)) µ a.s.. According to Kullback's inequality this holds true if and only if there exists β x ∈ R such that µ a.s. ρ x can take the form Let us recall that under (1.4) the map Λ ξ is C ∞ in R, that for every α ∈ R

			ρ x (dw) =	1 Z x	e βxw ξ(dw)	(4.2)
	and still satisfy	R+	wρ x (dw) =	dν dµ	(x).
		Λ	′ ξ (α) =		R+ we αw ξ(dw) R+ e αw ξ(dw)
				=	1 Z R+	we αw ξ(dw)
	and that Λ that	′′ ξ (α) > 0 for every α ∈ R, see Section 2.2.1 in [8]. So finally it appears lim α→-∞ Λ ′ ξ (α) = 0 and lim α→+∞

  notice that A L is closed for the weak convergence topology hence C L is compact for this topology. Thus, to prove that C L is W 1,|•| -compact it remains to prove that C L has uniformly integrable first moments. Let S(N ) = Λ * Q(λ) (N )/N . According to Lemma 2.2.20 in[START_REF] Dembo | Large deviations techniques and applications[END_REF] we have lim N →∞

We use this notation to underscore the fact that for Lemma 3.1 to hold it is not necessary for the w n i 's to be real numbers. It is sufficient to have Polish space valued w n i 's.

The proof relies on the combination of a coupling construction and a Sanov's result in a strong topology.

Coupling Poisson and Multinomial distributions.

Let m, n ≥ 1 and Z n 1 , . . . , Z n n be independent random variables such that every Z n i is P(m/n)-distributed. We shall interpret each Z n i as the number of balls randomly thrown in an urn labeled i. To (Z n 1 , . . . , Z n n ) we couple (M n 1 , . . . , M n n ) in the following way

i > m we pick uniformly at random n i=1 Z n im balls in the urns. We define (M n 1 , . . . , M n n ) as the new occupation numbers of the urns.

Z n i balls into the urns. The urns are chosen independently for each added ball with probability 1/n. Again, we denote by (M n 1 , . . . , M n n ) the new occupation numbers of the urns.

Lemma 7.1. The vector

The coupling is optimal in the following sense:

Lemma 7.2. For every non-negative real numbers x 1 , . . . , x n such that 

LD lower bound Let O be an open subset of M 1 1 (R + ). In order to prove the LD lower bound it is sufficient to prove that for every ρ ∈ O we have lim inf

So let ρ ∈ O and ε > 0 be small enough to ensure that B(ρ, ε) ⊂ O. We can assume that H(ν|Q(λ)) < ∞ for otherwise the LD lower bound trivially holds. According to Lemma A.1 proved in the Appendix for every ρ ∈ M 1 1 (R + ) there exists a triangular array of non-negative real numbers ((

→ ρ and such that for every n ≥ 1 we have

Again, let Z n 1 , . . . , Z n n be independent and identically P(λ n ) distributed random variables and (M n 1 , . . . , M n n ) the vector associated to Z n 1 , . . . , Z n n by the coupling construction described above. In particular

(S n ) n≥1 obeys an LDP on W 1 (R + ) due to the contraction principle, see Theorem 4.2.1 in [START_REF] Dembo | Large deviations techniques and applications[END_REF]. Finally, the announced result follows from Lemma 4.1.5 in [START_REF] Dembo | Large deviations techniques and applications[END_REF] since for every n ≥ 1 S n ∈ M 1 1 (R + ) and the latter is a closed subset of W 1 (R + ).

Proof of Corollary 2.3

Let ν ∈ M 1 (Σ) be such that ν ≪ µ for otherwise we already know that K(ν; µ) = +∞. We have

where, to establish the last inequality and characterize the equality, we proceed as in the proof of Lemma 1.1.

The multivariate hypergeometric bootstrap

Since the W n i 's take values in the finite set {0, . . . , K} the proof of this LDP closely follows the proof of Sanov's Theorem for finite alphabets as exposed in Section 2.1.1 in [START_REF] Dembo | Large deviations techniques and applications[END_REF] . This is the reason why we shall not give all the details of the proof. The main step is to notice that for every (w n 1 , . . . , w n n ) ∈ {0, . . . , K} n such that

we get K k=1 kν n (k) = 1 and

where H(ν) = -K i=1 ν(i) log ν(i), see Lemma 2.1.8 in [START_REF] Dembo | Large deviations techniques and applications[END_REF]. Hence, combining (7.5) and (7.6) for every integer n ≥ 1, every ν ∈ M 1 1 ({0, . . . , K}) of the form ( k1 n , . . . , kK n ) with k 1 , . . . , k K integers we get

with 1 n log R 1,2 (n) → 0. The proof then follows as in Theorem 2.1.10 in [START_REF] Dembo | Large deviations techniques and applications[END_REF] until its conclusion. First we consider α > 0. Let ν ∈ M 1 (Σ) be such that µ-(1-α)ν α ∈ M 1 (Σ). Then ρ ∈ M 1 1 (R + × Σ) defined by ρ 1 = γ while the regular conditional distribution of its second marginal given the first is

A bootstrap generated from deterministic weights

is the only element of M 1 1 (R + × Σ) that satisfies F (ρ) = ν, ρ 1 = γ and ρ 2 = µ. Since for this particular ρ we have

we obtain an upper-bound on K as announced. To prove the reverse inequality let ν ∈ M 1 (Σ) be such that K(ν; µ) < ∞ for otherwise the announced result trivially holds. Necessarily there exists a ρ ∈ M 1 1 (R + × Σ) such that F (ρ) = ν, ρ 1 = γ and ρ 2 = µ. These conditions are only met by the probability measure ρ introduced above. In particular µ-(1-α)ν α must be a probability and the reverse inequality holds.

If α = 0 then γ = δ 1 so the only ν ∈ M 1 (Σ) such that there exists ρ ∈ M 1 1 (R + × Σ) such that F (ρ) = ν and ρ 2 = µ is µ and necessarily ρ = δ 1 ⊗ µ. The announced result follows.

Proof of Corollary 2.6

First we consider

and the announced upper bound on K follows.To prove the reverse inequality let us assume that K(ν; µ) < ∞. Then there exists a ρ ∈ M

In particular (ρ n 1 ) n≥1 is a Cauchy sequence of elements of (M 1 1 (R + ), W 1 ) which is a complete space (see e.g. [START_REF] Bolley | Separability and completeness for the Wasserstein distance[END_REF]) so there exists a So there exists a family ((

Since R × E is dense in R + × Σ for every n ≥ 1 and every 1 ≤ i ≤ n there exists

, ρ) → 0. Since both β BL,δ and W 1, d2,+ metrize the weak convergence topology we have that

we obtain that A.2 An approximation result on (M 1 1 (R + ), W 1 ).

Lemma A.1. For every ρ ∈ M 1 1 (R + ) there exists for every n ≥ 1 an elements ρ n of

δ xn such that ν n W1 → ρ.

Proof By the same kind of argument as in the separability proof above one can construct a sequence ( → ρ. In particular 1 n n i=1 u n i → 1. So we only need to modify the u i 's in such a way that for every n ≥ 1 their total sum equals n. For a fixed n we have three possibilities: • If n i=1 u i = n we take w n i = u i for every 1 ≤ i ≤ n. • If n i=1 u i > n we look at the u i 's as the occupation masses of n cells by a mass u i each. We pick uniformly at random the excess of mass until we get new occupation masses w n 1 , . . . , w n such that n i=1 w n i = n. • If n i=1 u i < n again we look at the u i 's as the occupation masses and add mass uniformly at random into the n cells until they contain a total mass of n. We call w n 1 , . . . , w n the final occupation masses.