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Detection and Interpretation of Communities in
Complex Networks: Practical Methods and
Application

Vincent Labatut and Jean-Michel Balasque

Summary Community detection, an important part of network analysis, has be-
come a very popular field of research. This activity resulted in a profusion of
community detection algorithms, all different in some not always clearly defined
sense. This makes it very difficult to select an appropriate tool when facing the
concrete task of having to identify and interpret groups of nodes, relatively to a
system of interest. In this chapter, we tackle this problem in a very practical way,
from the user’s point of view. We first review community detection algorithms
and characterize them in terms of the nature of the communities they detect. We
then focus on the methodological tools one can use to analyze the obtained com-
munity structure, both in terms of topological features and nodal attributes. To be
as concrete as possible, we use a real-world social network to illustrate the appli-
cation of the presented tools, and give examples of interpretation of their results
from a Business Science perspective.

1 Introduction

Network modeling has been used for years in many application fields: biological,
social, technological, communication, information (see [1] for a very comprehen-
sive review of applied studies). The necessity to focus on some subparts has ap-
peared quite soon for instance in sociology [2], and was initially performed manu-
ally, with a qualitative approach. However this type of analysis changed radically
during the last decades, with the coming of the information age. Technology pro-
vided scientists with means to store, access and take advantage of very large
amount of data (databases, internet, computing power). The analysis of very large
networks became possible, provided appropriate techniques were used. Network
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analysis took a quantitative turn, which initiated a very creative phase, leading to
the development of powerful tools.

Large real-world networks are characterized by a heterogeneous structure,
which leads to particular properties. Various subfields of network analysis focus
on different properties: efficiency of information propagation, robustness, stabil-
ity, synchronization, etc. [1]. In particular, an heterogeneous distribution of links
often leads to a so-called community structure [3]. A community roughly corre-
sponds to a group of nodes more densely interconnected, relatively to the rest of
the network [4]. Note this concept has been translated into different more formal
definitions, which we will review later in this document. The way such a structure
can be interpreted is obviously dependent on the modeled system. However, inde-
pendently from the nature of this system, the study of communities constitutes a
mesoscopic analysis, complementary to the microscopic (node-wise) and macro-
scopic (network-wise) approaches one can also adopt. Because of this intermedi-
ary position, the community structure conveys some very important information,
necessary to the good understanding of the system [5]. Consequently, detecting
communities is an essential part of modern network analysis.

In this chapter, we focus on this task with a very practical and operational ap-
proach, and adopt the user’s point of view. To our opinion, someone willing to
perform community detection on his data needs to answer three important ques-
tions: Which algorithms should I apply? How will I compare their results? How
will I interpret the obtained communities? As stated before, networks are used in
many application fields. However, modern community detection tools have not
significantly penetrated certain research areas yet. We believe one of the reasons
for this is the profusion of tools and the lack of information regarding their simi-
larities and differences, which underlines the importance of our first question.
Most articles present new community detection algorithms and compare them to
existing ones, using real-world and artificially generated data. However, the algo-
rithms are generally compared only in a quantitative way, thanks to some perfor-
mance measures [6]. Yet, algorithms rely on different formal definitions of what a
community is. It therefore seems incomplete, or even unfair, to compare algo-
rithms which do not actually try to detect the same objects. Moreover, once com-
munities have been identified, one wants to give them a meaning relative to the
studied system, and this task is largely dependent on the selected algorithm.

We aim at offering the user the information he needs to determine which algo-
rithms are adapted to his data, apply and compare them, and interpret their result
in meaningful terms, relatively to the applicative context. As an illustration, we
will apply the described methods to some data describing a sample of 552 univer-
sity students. These data were gathered during a survey performed in the Ga-
latasaray University at Istanbul, Turkey [7]. Its goal was to retrieve the infor-
mation needed to extract a network representing the students’ social interactions,
and perform an analysis of their purchasing behavior. Thus, besides the social
network itself, the data includes a whole set of nodal attributes describing factual
(age, gender, clubs membership, etc.), behavioral (perceived actions in terms of
human interaction and purchasing behavior) and sentimental (personal thoughts
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and feelings relative to university, friends, desires, favorite brands, etc.) infor-
mation. In this chapter, however, we do not mean to conduct an exhaustive analy-
sis of these data, but simply to use them as a practical example (cf. [7] for the de-
tails regarding the survey and this analysis).

The rest of this chapter is organized as follows. Section two is dedicated to
community detection algorithms: we describe their properties, how to compare
their results, and how to select the most relevant community structure. In the third
section, we show different types of analysis oriented towards the interpretation of
the community structure. We focus on different methods allowing to characterize
communities, based on both topological information and nodal attributes. Finally,
we conclude by mentioning alternative methods which we could not describe in
details.

2 Community Detection Process

Our goal in this section is first to review the existing community detection meth-
ods from the user’s perspective. Usually, these algorithms are presented from the
author’s perspective, with emphasis on process, performance and computational
cost [6]. However, the community detection problem is known to be ill-defined
[3,8,9,5], which is why so many different algorithms exist: they do not define the
concept of community in the same formal way. They consequently do not neces-
sarily detect the same communities. Under these conditions, comparing raw per-
formances obtained from different algorithms seems very little relevant.

We think the final user is basically interested in three properties. First, the type
of information the algorithm is able to process. Indeed, there are various ways of
describing a network and one can embed different sorts of data: link attributes
(weights, directions), node attributes, different classes of links (multiplex net-
works) or nodes (n-mode or multipartite networks), temporal information, etc. The
user may want to select a method able to take advantage of all the available data.
In this chapter, we decided to focus on plain networks, with simple links.

Second, the kind of community structure the algorithm produces. One generally
distinguishes partitions and covers, i.e. mutually exclusive and overlapping com-
munities. We decided to focus on the former, because only a few algorithms are
able to identify covers already. Most algorithms output a single partition, but some
of them are able to produce a collection of community structures estimated for dif-
ferent granularities. In the case of hierarchical algorithms, communities belonging
to neighboring granularities are hierarchically related. In a given level, communi-
ties may correspond to the merging of several lower level communities, while be-
ing a part themselves of larger communities in the upper level. Multiresolution
methods also estimate the community structure at different granularities, but with-
out looking specifically for hierarchical relationships between them. They either
scan automatically various scales or allow to specify them parametrically [10].



Third, the nature of the communities the algorithm is able to identify. As stated
before, there are many ways to define formally what a community is. Yet this con-
cept is at the center of the analysis, and is therefore of utmost importance. The us-
er should select his tool mainly based on this feature.

In order to give the user all the information he needs, we reviewed community
detection methods according to the three properties we mentioned. Note excellent
reviews exist, which describe in great details the points we chose to ignore here
[3,8,9,11]. The rest of the section is more practical. We present a list of publicly
available tools and summarize their features in the previously mentioned terms.
We then consider the very common case where one could estimate several com-
munity structures for a network of interest. We present various ways to tackle the
problem of selecting the most appropriate community structure depending on the
user’s criteria and objectives.

2.1 Concept of Community

A very widespread informal definition of the community concept considers it as a
group of nodes densely interconnected compared to the rest of the network
[3,8,9,11]. In other terms, a community is a cohesive subset clearly separated from
the rest of the network. Formal interpretations try to formalize and combine both
these aspects of cohesion and separation. Note this definition is not always explic-
it: procedural approaches exist, in which the notion of community is implicitly de-
fined as the result of the processing. Although it is not always straightforward to
categorize the definitions, we regroup them in four classes: density-, pattern-, node
similarity- and link centrality-based approaches. The last subsection is dedicated
to methods which did not fit in the previous definitions.

2.1.1 Density

A whole family of formalizations is based on a direct translation of the informal
community definition given above. The general approach consists first of specify-
ing two distinct measures to assess separately cohesion and separation, and then in
defining a global measure by considering their difference or ratio. For instance,
Mancoridis et. al [12] defined their intra-connectivity and inter-connectivity to
measure the cohesion and separation of a community, respectively. The former is
simply the regular density processed when considering only the links located in-
side a community, i.e. connecting two nodes belonging to the community. The lat-
ter is the density processed when considering only the links between a pair of
communities. Let us note n. the number of nodes in community C, and mj, the
number of links between communities C and D. Then, for an undirected network,
the intra-connectivity of community C is:
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Mancoridis et al. proposed to quantify the quality of a whole community structure
by considering the difference between these measures averaged over the network
(@ #J):
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Fortunato gives a different definition of the inter-connectivity in his review [3], by
considering the links between the community of interest and the rest of the net-
work:
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where n is the total number of nodes in the network.

Instead of using the density measure, some authors represent cohesion and sep-
aration in terms of internal and external degrees, respectively. The former corre-
sponds to the number of links a node has with other nodes from its community,
whereas the latter concerns the nodes located out of the community. If we note k;
the number of links a node has with some community i and if we consider a node
belonging to community C, then its internal degree is k. and its external degree is
Yizc k;. This led to the notions of weak and strong communities [13]. The former
is characterized by the fact all of its nodes have a greater internal than external de-
gree, whereas the latter applies the same constraint to internal and external degrees
of the community as a whole. Certain algorithms are based, sometimes implicitly,
on the notion of strong community (or on a related definition), like for instance the
Label Propagation method [14].

Alternatively, in place of deciding what is and what is not a community, it is
possible to use these degrees to quantify how good a community is. The conduct-
ance ®¢ of a community C is the ratio of its external degree to the minimum be-
tween its total degree and that of the rest of the network [15]. In the case of a
community much smaller than the network, it is therefore its proportion of exter-
nal links:
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Although not explicitly, many algorithms optimize this quantity or one of its vari-
ants [3], via spectral analysis of matrices derived from the adjacency matrix [16],
use of certain random walk-based distances, simulation of synchronization pro-
cesses, etc. Lancichinetti ef al. defined a similar measure at the level of the node:
their embeddedness e corresponds to the ratio of the node internal degree k. to its
total degree k [5]:

@c
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It can be averaged over the node community or the whole network, to assess the
quality of the community or the community structure, respectively. In the latter
case, the obtained measure is close to the coverage measure, which is the ratio of
the intra-community links to the total number of links in the whole network [3]:

CV=2% (7)

where m is the total number of links in the network.

Newman’s original modularity [4] can be viewed as a chance-corrected version
of the coverage considered at the level of the communities. Let us note q;; =
m;j/m and q;; = Y q;; then the modularity is:

Q= Z(qii —aiy) ®)

First the proportion of internal links in the whole network is processed over all
communities (}}; q;; = CV), and then the corresponding proportion estimated for a
comparable random network is subtracted (}; g2, ). The null model used by New-
man is a randomly rewired version of the network of interest, with preserved size
(numbers of nodes and links) and degree distribution. Such a network is not sup-
posed to have any community structure because of the uniformly random rewiring.
Therefore, in order to have a significant community structure, the network of in-
terest is required to have a much greater proportion of internal links. The modular-
ity is certainly the most popular measure to assess the quality of a partition com-
munity structure. Many algorithms were designed to optimize it, explicitly or not:
spectral approaches [17], random walk-based distances [18], genetic algorithms,
greedy approaches [4,19-22], simulated annealing [23], mathematical program-
ming [24], extremal optimization, spin glass model [10], etc.

However, the modularity is known to have at least two important limitations.
First, its maximal value is not constant, and depends on the considered network
structure, which makes it impossible to compare modularity values between dif-
ferent networks. It could be normalized using the maximal modularity of the asso-
ciated null model, but this value is itself difficult to process [3]. Second, it has a
resolution limit, meaning it cannot detect perfectly valuable communities if they
are smaller than a critical size depending on the network itself [25]. Several exten-
sions such as [10] were developed to solve this problem.

Most density-based definitions have been extended for weighted and directed
networks (conductance [26], modularity [27,28]). The extension is generally
straightforward, by considering strength instead of degree for weighted links, and
by distinguishing in- and out- degree for directed ones. The adaptation of the algo-
rithms is not always as simple though, for instance spectral approaches are more
difficult to apply when the adjacency matrix is asymmetric, which is generally the
case when dealing with directed networks [26].



2.1.2 Pattern

Another way to define cohesion and separation consists of identifying maximal
subsets composed of small specific interconnection patterns, e.g. cliques. One can
consider a community to be either the largest identified pattern, or a set of patterns
with common nodes [29,3]. This approach can be seen as more qualitative than the
density-based one, because it does not rely only on numeric values to formalize
these concepts. Separation is represented by the fact one is looking for maximal
subsets, which implies these are separated from the rest of the network. The nature
of this separation and the notion of cohesion both depend on the selected intercon-
nection pattern.

The most basic pattern one can use is the clique, a set of completely intercon-
nected nodes. Luce & Perry present a clique as a group of mutual friends [30]. The
connectivity is complete and direct, i.e. for a set of n nodes, each node is connect-
ed to the n — 1 other nodes from the clique, and is consequently at a distance 1 of
anyone of them. However, a clique structure represents a strong constraint, espe-
cially for real-world networks [3,29]. For this reason, many partially relaxed vari-
ants exist, which focus either on the complete or the direct aspects of clique con-
nectivity. The patterns called k-plex and k-core belong to the first kind. For the
latter, k represents the minimal number of neighbors a certain node must have in
the pattern [31]. On the contrary, for the former, it is the maximal number of non-
neighbors [32].

The concept of n-clique relaxes the direct aspect of clique connectivity: it does
not require all nodes to be connected by a direct link, but at least by a path whose
length is at most n [30]. However, this pattern is too relaxed and allows paths to
go through nodes located out of the n-clique, possibly leading to an n-clique made
of disjoint subsets of nodes. This, of course, is not compatible with the intuitive
notion of community, which implies connectedness. For this reason, another pat-
tern called n-clan was defined by adding a constraint on the diameter of an n-
clique, stating it should not be greater than n [33].

The approach can be extended to consider directed or weighted links. For in-
stance, an f-group is a maximal subset of weakly and strongly transitive triads. A
triad is a set of three nodes, and it is considered as transitive if it is completely
connected (i.e. a 3-node clique, or triangle). According to Hanneman, it is strongly
transitive if all three links have the same weight, and weakly transitive if the link
with the smallest weight is at least above a certain threshold [29]. Palla et al. pre-
sented a clique-based method to process both directed and weighted networks
[34]. However, to our knowledge, no extension was designed to deal with individ-
ual information (i.e. nodal attributes).

Most pattern-based algorithms are computationally demanding [3]. Although
this is a drawback in the context of complex networks analysis, due to their size,
the pattern-based approach still has an interesting advantage: it allows specifying
more precisely the internal structure of the communities. If any a priori
knowledge of the studied system is available, it is possible to use it to constraint
the community identification process. Of course, the pattern has to be chosen
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thoroughly: some networks do not exhibit certain patterns. For instance, techno-
logical networks and certain social networks do not contain many cliques [3].

2.1.3 Node Similarity

By using an appropriate similarity function, the topological notions of cohesion
and separation can be translated in terms of intra-community similarity and inter-
community dissimilarity. In other terms: a community is viewed as a group of
nodes which are similar to each other, but dissimilar from the rest of the network.
Once all node-to-node distances are known, detecting a community structure can
be performed by applying a distance-based classic cluster analysis algorithm [35].
Such a tool is designed to minimize the internal and maximize the cluster-to-
cluster distances. Depending on the desired output (overlapping vs. mutually ex-
clusive community, hierarchy of community), different clustering algorithms can
be applied [36,37].

The strong point of this approach is the possibility to include any information
in the definition of the similarity function. Purely topological functions exist, such
as those based on structural and regular equivalence, which state two nodes are
similar if they share the same connection pattern to the same neighbors, or possi-
bly different neighbors, respectively. Structural equivalence can be quantified us-
ing, for instance, Jaccard’s coefficient [38] (ratio of the intersection cardinality to
the union cardinality of two sets of interest) applied to both nodes sets of neigh-
bors (other methods exist, see [3]). If they are structurally similar, two nodes are
supposed to be close (and hence to belong to the same community) even if they
are not directly linked, because they are likely to be indirectly connected through
their neighbors. Note strict equivalence is sometimes too restrictive, and relaxed
versions exist (cf. the appendix of [39]).

Other topological functions rely on paths instead of direct connections. One can
consider the number of paths, or distinct paths (i.e. the same node or link does not
appear twice), or shortest paths between two nodes to assess their similarity: the
highest this number, the more similar the nodes. Some authors rather adopt a
probabilistic approach, considering random walks. The expected path lengths can
be processed, for instance the first passage time is the expected number of steps a
random walker would need to go from the source node to the target one [40],
while the commute time additionally considers the return time [41]. An alternative
is to consider instead the probability value itself: probability to visit the target
node in a given number of steps [42], probability to reach it before coming back to
the source [43], etc.

Finally, similarity can also be defined using both topological and individual in-
formation. In [44], Handcock et al. make the assumption the nodes of a network
can be characterized by their location in an unobserved so-called social space.
This location depends on topological information and nodal attributes. Communi-
ties are identified by clustering nodes depending on their distance in this social
space.



2.1.4 Link Centrality

The concept of community can also be defined in terms of link centrality. There
are several definitions for this notion, but link centrality is basically related to two
properties: the number of pairs of nodes the link is connecting (directly or not) and
how likely these connections are to be used. Under these terms, links located be-
tween communities are supposed to be very central, since they allow to connect
the nodes from one community to those from the other one, and there are only few
of them (by definition inter-community links are sparse) so they are very likely to
be used. On the contrary, the links located inside communities connect compara-
tively few nodes (mainly those from the same community), and the community is
supposed to be densely connected, so many different path exist to connect two
nodes, making it less likely for a link to be used. In other words, the high centrali-
ty of inter-community links and the low centrality of intra-community links relate
to separation and cohesion, respectively.

Tyler et al. explicitly defined a community as a set of nodes whose links cen-
trality must not be greater than a certain threshold [45]. They consider the most
isolated node a community can contain is a leaf (degree 1 node), whose only link
has the maximal centrality in this community. They consequently define their
threshold as the centrality exhibited by this link. The fact some node set contains a
link more central than this threshold means this link connects two subsets both
larger than one node. These subsets could be separated, leading to two communi-
ties.

Various edge centrality measures were defined using principles not unlike
those employed for path-based node centrality measures. Some of them are not
adapted to this case though: number of paths (generally infinite), distinct paths
(inefficient on degree 1 nodes). Girvan and Newman defined their edgebetween-
ness measure by considering the total number of shortest paths going through a
link [46]. They also used the non-deterministic approach and defined a random
walk centrality based on the probability a link has to be passed by the walker, av-
eraged over all pairs of source and target nodes. The extension to directed links is
straightforward (one consider only directed paths). Newman proposed extensions
of both measures for weighted links [27], by normalizing edgebetweenness with
the considered link weight, and by using weights to process the random walker
transition probabilities. Although not explicitly stated, the approach described in
[47] is related to link centrality, this time defined in terms of currents flow. The
network is view as a resistor network and inter-community links are characterized
by significant voltage differences.

Radicchi et al. proposed an alternative link centrality called edge clustering
[13]. It corresponds to the ratio of the number of existing cycles containing the
link of interest, to the number of possible cycles given the existing links. There-
fore, unlike betweenness centrality, a high value means here the link is likely to be
inside a community, since cycles are much more likely to happen there. The
measure was extended to weighted links similarly to what was done for the edge-
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betweenness, i.e. using a normalization based on the weight of the considered link
[48].

2.1.5 Others

Certain definitions of the concept of community do not fit the classes we de-
scribed in the previous subsections. We present here only two of them, because
they are used in some of the publicly available algorithms we present in the fol-
lowing section. The reader should notice other specific approaches exist, though
(see [3]).

To define the concept of community, Rosvall & Bergstrom [49] do not use an
approach based on cohesion and separation like all the previous community defi-
nitions. They adopt a data compression perspective and consider the community
structure as a set of regularities in the network topology, which can be used to rep-
resent the whole network in a more compact way. The best community structure is
therefore the one maximizing compactness while minimizing information loss.
They implement this definition through the use of the mutual information measure
applied to different representations of the network based on the adjacency matrix
[49] and on a node nomenclature [50]. Ziv et al. adopted a comparable approach,
but used instead a diffusion process to represent the network [51].

Van Dongen proposed to simulate another kind of diffusion process in the net-
work to detect communities [52]. This approach relies on the transfer matrix of the
network, which describes the transition probabilities for a random walker evolving
in this network. Two specific transformations are iteratively applied on this ma-
trix. First, it is raised to some specified power, in order to get a transfer matrix
containing probabilities for longer paths. Second, each element in the matrix is
raised to some specified power, in order to favor the higher probability values,
which correspond to nodes presumably belonging to the same community. The re-
sulting matrix is then normalized to get a new transfer matrix. Both steps are re-
peated until convergence. The resulting matrix can be interpreted as the adjacency
matrix of a network with disconnected components. These correspond to commu-
nities in the original network.

2.2 Publicly Available Tools

In this section, we present publicly available implementations of community de-
tection algorithms. Table 1 shows them in order of publication, with their main
features. A large part of these algorithms are dedicated to modularity optimization.
The first is Fast Greedy, a C implementation of a greedy approach by Newman &
Clauset [4,19] (http://cs.unm.edu/~aaron/research/fastmodularity.htm). It is able to
process large networks, however it suffers from a bias toward large communities.
Several variants were defined to correct this: Wakita-Tsurumi [22] (Java imple-
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mentation at http://ken-wakita.net/research/en/software), Multistep Greedy [20]
(C++ implementation at http://www.biochem-caflisch.uzh.ch/public/5). The Lou-
vain algorithm [21] (C++ code at http://sites.google.com/site/findcommunities)
implements a different greedy approach designed for very large networks. New-
man also proposed his Leading Eigenvector algorithm [17] to optimize modularity
by applying a spectral approach on a specific matrix. The NetCarto algorithm [23]
(C code available on demand to its authors) implements a simulated annealing ap-
proach, which allows it to get very close to the actual optimum, but makes it in
turn very slow. Reichardt and Bornholdt reformulated the modularity optimization
problem using a Spin Glass model [10]. Their approach actually generalizes mod-
ularity in order to overcome its resolution limit, and let the user specify a resolu-
tion parameter. With TimeScale [18] (C++ source code available at
http://www.lambiotte.be/codes.html) Lambiotte et al. proposed to apply a related
extension of the modularity on their Louvain algorithm. Finally, the version of
Agarwal & Kempe [24] (C++ and Java codes at http://www-scf.usc.edu/~gaurava)
adopts a mathematical programming approach to the same modularity optimiza-
tion problem.

Besides the modularity, other density-based definitions of the community con-
cept are used. CommFind adopts a spectral approach to optimize a partition quali-
ty measure related to the conductance [16,53] (C code at
http://wdb.ugr.es/~donetti). VBmod [54] (Matlab code at
http://www.columbia.edu/~chw?2) relies on a Bayesian approach whose probabilis-
tic model is related to the embeddedness measure. Label Propagation [14] simu-
lates the spread of values in the network until convergence, and identifies commu-
nities as sets of nodes associated to the same value. At the end of the process, the
value associated to a node is the majority one amongst its neighbors, so this can be
seen as a relaxed version of the strong community concept [13].

Node similarity-based approaches are also fairly represented. WalkTrap [42] is
based on a random walk distance which considers the probability to go from one
node to another in a given number of steps. This parameter affects the resolution
of the resulting communities, so the tool can be considered as multiresolution.
Zhou also used a random walk based distance, but this time considering the ex-
cepted number of steps to from one node to another [40] (Fortran implementation
at http://www.mpikg-golm.mpg.de/th/people/zhou). Jerarca [55] uses an original
distance definition based on the detection of patterns (C++ implementation at
http://jerarca.sourceforge.net). Three distinct distance functions with different
computational complexities are defined based on different patterns.

The EdgeBetweenness algorithm [46] was the first link centrality-based tool.
Radicchi et al. proposed a variant relying on their edge clustering measure [13,48]
(C code at http:/filrad.homelinux.org). Hu & Huberman used a different approach
based on currents flow [47].

Several approaches are based on a compression view of the community struc-
ture (cf. section 2.1.5): InfoMod [49] and InfoMap [50] C++ implementations are
available at http:/www.tp.umu.se/~rosvall/code.html (the latter was recently ex-
tended to output dendrograms), whereas the Matlab code for /Tmod [51] can be
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downloaded at http://www.columbia.edu/~chw?2. Finally, the diffusion-based ap-
proach  implemented in  MarkovCluster [52] can be found at
http://www.micans.org/mel (C code). An inflation parameter allows setting the
granularity of the search, making the approach multiresolution.

Table 1. List of publicly available community detection tools, and their main features. The in-
puts are simple (S), weighted (W) or directed (D) networks. The outputs can be a simple partition
(P), or a collection of partitions hierarchically ordered (H) or not (multiresolution, M). Only the
class of community definition is indicated, see the text for more details. The complexities are ex-
pressed for sparse networks, i.e. the number of links is of the order of the number of nodes
(Param. dep. stands for parameter dependent). Implementations can be author-made (A, see the
text for details and URL) or belong to the igraph library (I) [56] (R and Python languages), the
Jung package (J) [57] (Java) or the Gephi software (G) [58] (Java).

Name Input  Output Community Complexity Impl.
Edge Betweenness [46] S,D H Link centrality  0(n®) LJ
Zhou [40] S, W H Node similarity 0(n3) A
Radetal [13,48] SSW H Link centrality  0(n?) A
Fast Greedy [4,19] S,SW H Density O(nlog?n) A
CommPFind [16] S H Density o(n?®) A
NetCarto [23] S P Density Param. dep. A
Wu-Huberman [47] S,W,D P Link centrality O(nlogn) J
WalkTrap [42] S, W H,M Node similarity O(n?logn) A,l
ITmod [51] SSW H Compression - A
Leading Eigenvector [17] S H Density 0(n%logn) 1
SpinGlass [10] S, W M Density Param. dep. [
Label Propagation [14] S,W P Density o(n) I
InfoMod [49] S P Compression - A
Wakita-Tsurumi [22] S H Density O(nlog®n) A
Agarwal-Kempe [24] S P Density 0(n?) A
Louvain [21] S, W H Density o(n) Al
MarkovCluster [52] S,W,D M Diffusion on3) A, G
VBmod [54] S P Density 0(n?) A
InfoMap [50,59] S,W,D H Compression - A
Multistep Greedy [20] S,W,D H Density O(nlog?n) A
TimeScale [18] S,W H,M Density - A
Jerarca [55] S H Node similarity O(nlogn) A

Pattern-based implementations are mainly used to detect cover and not parti-
tions (e.g. Cfinder [60]), which is why they are not represented here. Note some of
these algorithms are also very conveniently implemented in libraries dedicated to
network analysis, such as igraph [56] and Jung [57] (see Table 1), which gives the
user a uniform access to their functionalities.
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Most of these algorithms were individually tested on both real-world and ran-
domly generated networks, and several review articles directly compared some of
them [6]. However, these performance assessments have to be considered with
caution. Concerning real-world networks, the reference communities have to be
manually defined, and are therefore subjective. On the contrary, in the case of
generated networks, they are objective because they are a part of the generative
process. However, this process itself is biased in direction of one definition of the
community concept (e.g. embeddedness for [6]), and the resulting benchmark
therefore favors algorithms based on the same definition. The only relevant com-
parison concerns algorithms all based on the same community definition, like for
instance the various ways of optimizing the modularity.

2.3 Comparing Partitions

Thanks to the information provided in the previous sections, the user should be
able to choose an appropriate tool based on the data to process, the desired kind of
community structure, and most of all a relevant definition of the community con-
cept. However, various situations can lead to results taking the form of several
partitions, when one is generally interested in a single one. First, given the profu-
sion of algorithms, several of them might be adapted to a given study, probably re-
sulting in several different partitions. Second, even if a single algorithm is used,
one can obtain a collection of community structures if this algorithm has a hierar-
chical or multiresolution output. In both cases, the user has to make a choice in
order to select the community structure he is going to interpret. In this section, we
present methods to make this choice.

2.3.1 Different Algorithms

In the case where one has several partitions coming from different algorithms, the
simplest way seems to be comparing the quality of the partitions through the use
of a quality measure, and ultimately selecting the partition with the highest quali-
ty. However, different problems can arise. First, if the algorithms rely on different
community definitions, the quality measure, which has itself to implement such a
definition, will be biased towards certain algorithms. Second, even when compar-
ing algorithms using the same definition, e.g. modularity optimization methods,
the quality measure may present limitations. For instance, the modularity is known
to have a resolution limit, which means it will disadvantage partitions displaying
communities below this limit, even if these are the actual communities.

A complementary approach consists of comparing the partitions themselves in-
stead of their qualities. The goal is then to assess how much algorithms agree ra-
ther than to identify the best partition. This is particularly relevant in the context
of an exploratory analysis where one could not choose a community definition
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adapted to his data and decided to use several algorithms based on various defini-
tions. The fact these algorithms identify similar partitions is a sign of the stability
of the community structure, whereas if they are very different, one should question
his results.

We propose to use the adjusted Rand index (ARI), which is rather popular in
cluster analysis. The original Rand index (RI) [61] is defined as:

a+d

Rl=—F—
a+b+c+d

(€))
where a (resp. d) corresponds to the number of pairs of nodes belonging to the
same (resp. different) community in both partitions, and b (resp. c¢) to the number
of pairs whose nodes belong to the same community in the first (resp. second) par-
tition, whereas they belong to different communities in the second (resp. first) one.
The adjusted version [62] is defined as:

ARI = (10)

where E is the amount of similarity expected to be due to chance, estimated by
considering  the  products of  marginals: E=(a+b)(a+c)/n?
+ (b + d)(c + d)/n?. The upper limit of this measure is 1 (the two partitions are
exactly the same). The value O indicates a partial overlap, equivalent to what
would be observed if both partitions were random (i.e. RI = E). Negative values
indicate a strong divergence between the partitions. Note there are other measures
one can use to assess the similarity of two partitions [36,3]. We can also mention
the normalized mutual information, which has been used in recent community de-
tection works [6].

Table 2. Agreement measured by the ARI for a selection of community detection algorithms.

Algorithm Fast Greedy SpinGlass Label Prop. InfoMod MarkovCluster

Fast Greedy - 0.80 0.52 0.30 0.36
SpinGlass - - 0.57 0.26 0.40
Label Prop. 0.57 0.57 - 0.14 0.68
InfoMod 0.26 0.26 0.14 - 0.09
MarkovCluster 0.40 0.40 0.68 0.09 -

As an example, we applied several community detection algorithm to our social
network of university students. Table 2 gives the ARI values for some of these re-
sults. One can notice the maximal agreement is reached for the two modularity-
based algorithms (Fast Greedy and SpinGlass). Moreover, their ARI values when
compared to the other algorithms are very close, so we can conclude both parti-
tions are certainly highly similar. The other algorithms differ in the definition of
community they rely on, and this shows through the ARI values: InfoMod, with its
information theory-based approach, is isolated and largely disagrees with the oth-
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ers. Although they do not use the same approach at all, Label Propagation and
MarkovCluster partially agree. Their partitions are nevertheless significantly dif-
ferent from those estimated by the modularity-based approach.

2.3.2 Different Granularities

Consider now the case where one wants to compare several partitions correspond-
ing to different granularities output by the same algorithm. If the algorithm is hier-
archical, the agreement approach is not relevant, because agreement measures take
the hierarchical aspect into account, i.e. two partitions corresponding to different
levels in the same hierarchy will necessarily be very similar. The approach can be
applied to multiresolution outputs though, in order to check if the partitions ob-
tained at different granularities are really different. If they are similar, on the con-
trary, one can conclude they are related by a partial hierarchical order.

In both the hierarchical and multiresolution cases, partitions can be compared
through their quality, like in the previous subsection. Moreover, here only one al-
gorithm is involved, so it makes sense to rely on the quality measure it optimizes.
However, not all algorithms use such a measure, in which case one has to select a
measure which would be compatible in terms of community definition. For in-
stance, using the modularity to select the best cut in a dendrogram produced by the
EdgeBetweenness algorithm seems rather inappropriate, because the algorithm
was not designed to maximize it. But there are not so many quality measures, and
in practice the modularity is used most of the time.

The partition quality is important, but is not necessarily the only criterion to
take into account. Indeed, one generally wants to identify a community structure
in order to subsequently interpret it. He will therefore be interested in the number
of communities and in their size: too large or too small values are likely to prevent
any meaningful interpretation. Alternatively, some knowledge concerning the
studied system might allow for the definition of preferences regarding these quan-
tities. Under these conditions, the selection of the most appropriate partition
should result from a compromise between the measured quality and the nature of
the community structure.
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Fig. 1. Modularity values obtained for three hierarchical algorithms when applied to our data.
Only the higher levels of the hierarchy are represented. The dotted lines indicate the partitions of
maximal modularity.
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The partition quality measured over the dendrogram output by a hierarchical algo-
rithm often follows the evolution displayed in Fig. 1 for three hierarchical algo-
rithms we applied on our data. In particular, one may notice the partitions sur-
rounding the partition of maximal quality (dotted line) have very similar quality
themselves. This situation is favorable to the compromise we mentioned, because
it supports the selection of a neighboring partition without losing too much quali-
ty. Suppose we want to select a partition containing fewer communities than the
optimal one, i.e. a partition located a few merges away. We have to consider can-
didates relatively to two criteria: the loss of quality compared to the maximal qual-
ity partition, and the number of nodes concerned by the merges. This optimization
problem is extremely context-dependent, and it is therefore difficult to propose a
general method. A reasonable approach consists of defining two limits based on
the modeled system and the user’s objectives: first the maximal acceptable loss in
quality, and second the maximal size allowed for a merged community. The user
can then select the partition with fewest communities respecting both constraints.
Let us consider the hierarchy estimated by Fast Greedy on our data. The best parti-
tion has 22 communities, with a modularity of 0.8780. Suppose we allow a quali-
ty loss of 0.01 and the merge of communities representing up to 5% of the net-
work nodes. Then we could select the 13-community partition, with a modularity
of 0.8696 (loss 0.0084), the largest community merged containing 4.2% of the
nodes.

3 Interpretation of the Communities

Community detection is not an end in itself: once communities have been identi-
fied, one wants to understand what they mean. Two kinds of analysis can be per-
formed for this matter. First, it is necessary to study the topology of the communi-
ty structure. This allows assessing the structural significance and quality of the
community structure, but also starting the interpretation process, by discussing the
similarities and differences observed between the communities, and by identifying
nodes with specific roles. The second phase of the analysis relies on the exploita-
tion of nodal attributes. It is guided by the structures identified during the first
phase thanks to the topology of the network (communities, nodes of interest). It
consists of characterizing and discussing these structures in terms of the numeric
or nominal data specific to the considered system and application domain. In this
section, we present consensual tools allowing to perform these analysis. We illus-
trate their use on our data, commenting from a Business Science perspective the
communities identified by Fast Greedy, which are represented on Fig. 2. In this
field, detecting communities is a very valuable task with huge implications, espe-
cially if these communities can be characterized in terms of specific purchase be-
haviors.
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3.1 Topological Properties

Classical network analysis can be performed both at a macroscopic and micro-
scopic levels, i.e. by considering respectively topological properties of the net-
work as a whole, or of some specific nodes taken individually. Networks can be
characterized by a whole set of measures such as density, transitivity (a.k.a. clus-
tering coefficient), degree distribution, etc. (see [63] for a very comprehensive re-
view). However, in this chapter, we rather focus on the community structure,
which adds an intermediary level. It allows not only a mesoscopic analysis, but al-
so brings a new point of view regarding individual nodes: one can consider their
position in their respective communities or in the community structure (by opposi-
tion to their position in the whole network). In this section, we first introduce tools
allowing to assess the quality of the communities collectively and separately, and
then we consider the characterization of nodes relatively to the community struc-
ture. When not indicated differently, we used the igraph library [56], which also
contains several community detection algorithms (cf. section 2.2), to process the
topological properties. Figures have been produced using igraph and the Java open
source software Gephi [58].

21

Fig. 2. Community structure obtained with Fast Greedy (maximum modularity cut). Each one of
the 22 communities is represented by a different color. The two stars stand for the nodes with
minimal embeddedness (e = 0.33).

3.1.1 Communities
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Before starting the analysis of the community structure, it is important to evaluate
its significance. Various methods were rather recently proposed for this purpose
[3], but the one described in [64] has the advantage of being independent of the
modularity measure, and to allows evaluating the communities separately (instead
of the whole distribution). The C++ implementation is available at
http://filrad.homelinux.org. This method relies on a null model similar to the one
used in the modularity measure (cf. section 2.1.1). The authors propose two
measures to quantify the community significance. The first one is called the C-
score and corresponds, for a given community, to the probability of appearance of
a community with similar topological features in the null model. It is based on the
so-called worst node of the community, i.e. the node with lowest internal degree.
The C-score is estimated by considering the probability for its counterpart in the
random network to have an equal or larger internal degree. The second measure,
called B-score, extends the C-score by considering several nodes instead of a sin-
gle one. The resulting measure is supposedly more relevant, but also computation-
ally more demanding [64]. We applied it to our data, and Table 3 shows 21 com-
munities out of the 22 identified by Fast Greedy are significant (B < 0.05), the
only exception being the 16™ (B = 0.089). Note the significance of the communi-
ty structure can be considered as an additional criterion in the community structure
selection problem introduced in section 2.3.2.

The first step in the analysis of the community structure is generally to charac-
terize the distribution of community sizes (expressed in nodes), which is supposed
to follow a power-law in many real-world networks [19,3]. In our case, the num-
ber of communities is too small for this distribution to be statistically tested. It can
be noticed (cf. Table 3) it is right-skewed though, with a single large community
and many small ones. However, the difference between the smallest and largest
communities is not comparable to what can be observed in other networks [5].
Consequently, we can conclude our community structure is relatively homogenous
regarding the community sizes.

One of the most important aspects of the identified communities is their quality
in terms of cohesion and separation. Several properties can be used for this as-
sessment. In terms of cohesion, one can consider the density of each community,
when considered separately from the rest of the network. By definition, communi-
ties are denser subgraphs, so their density is supposed to be much larger than for
the whole network. Table 3 shows this is very much the case for our data, with a
network density of 0.01 when most communities are 10 times denser. We remind
the reader real-world networks are generally sparse, which explains the low densi-
ty observed on our data. Moreover, sparsity is actually a prerequisite for the exist-
ence of a community structure [3]. The density varies much between our commu-
nities. It is strongly correlated to their size (r = —0.72), which indicates the
smaller the communities, the denser they are.

A small average distance between nodes of the same community is also a sign
of good cohesion. In our data, the average distance of a community is much small-
er than its size. Of course, it is also much smaller than the distance averaged over
the whole graph, due to its community structure and sparsity. Communities are
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supposedly small-world, which means the average distance increases logarithmi-
cally with the community size [5]. In our case, the distances are highly correlated
with the logarithm of the community sizes (r = —0.77), however we could not
perform a significant test due to the small number of communities.

Table 3. Topological properties of the network and its communities: n is the number of nodes, d
the density, (e) the average embeddedness, ¢ the average distance, k.4, the maximal degree, h
the hub dominance and B the B-score.

Community n  d (e} #¢ Kmax B B

1 32 0.07 096 3.57 10 0.32 0.012
2 39 0.06 093 399 10 0.26 0.018
3 28 0.08 0.99 3.20 10 0.37 0.001
4 30 0.11 098 299 10 0.34 0.001
5 23 0.09 094 345 8 0.36 0.014
6 46 0.07 097 328 11  0.24 0.001
7 34 0.08 093 3.05 11  0.33 0.002
8 23 0.09 097 3.14 10 0.45 0.002
9 20 0.11 095 336 9 0.47 0.001
10 39 0.07 096 3.43 10 0.26 0.013
11 20 0.12 093 2.64 9 0.47 0.034
12 15 0.13 099 259 9 0.64 0.002
13 28 0.11 096 2.53 12 0.44 0.001
14 13 0.15 099 221 8 0.67 0.003
15 14 0.16 095 244 9 0.69 0.038
16 13 0.19 086 2.15 7 0.58 0.089
17 28 0.11 096 2.63 10 0.37 0.002
18 22 0.15 097 2.53 10 0.48 0.005
19 20 0.16 097 2.60 8 0.42 0.006
20 12035 097 1.74 9 0.82 0.012
21 15 024 099 190 10 0.71 0.001
22 38 0.09 097 291 12 0.32 0.000

Network 552 0.01 0.96 8.48 12 - -

A small average distance can be explained by a high density and/or the pres-
ence of hubs, i.e. nodes connected to most of the other nodes belonging to the
same community [5]. Hub dominance can be assessed using the following ratio:

h = mcax(k)/(nc -1) (11)

where max(k) and n. represent the maximal degree and number of nodes in
community C, respectively. When at least one node is connected to its whole
community, it reaches unity. Table 3 shows only a few communities have a domi-
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nant hub (ratio greater than 0.5), and these are the smallest. Indeed, the correlation
between community size and hub dominance is very strong (r = —0.9). This is
due to the fact the maximal degree a node can reach is biased by construction of
the network. Indeed, a student can cite a maximum of 10 friends, which makes it
rather easy to get a degree of 10. But to get past this value, the student must be
cited by persons he did not cite himself, which proved to be rather rare. Conse-
quently, the maximum degree in a community is always very close to 10, inde-
pendently from its size. The fact small communities are dominated by hubs while
the large ones are not is a common feature of social networks [5].

Community separation can be measured by considering the proportion of links
laying in-between them. In our case, only 52 out of the 791 links (6%) connect
nodes of different communities. In other terms, the average number of links be-
tween two communities is only 0.23. This affects the embeddedness, as seen on
Table 3. The values are averages over each community (and over the network, for
the last one). The fact they are all very close to 1, including the network value, in-
dicates nodes are very dominantly connected to other nodes from the same com-
munities. This remark holds for all communities, independently from their size
(r = —0.02). It is worth noticing the only non-significant community in terms of
B-score (16™) exhibits the lowest maximal degree and embeddedness. The em-
beddedness distribution is also interesting, because unlike what is generally ob-
served in social networks [5], it is not uniform at all. Instead, most nodes are very
strongly embedded in their community: only 4% of them have an embeddedness
of 0.5 or less. We suppose this is due to the size of our network, which is much
smaller than those studied in [5].

3.1.2 Nodes

Weakly embedded nodes are remarkable because they are generally located in-
between communities: their small embeddedness reflects the fact there is no clear
dominance among the communities of their direct neighbors. For example, Fig. 2
shows the two nodes with smallest embeddedness (e = 0.33), under the form of
stars. Both are clearly lying at the interface of several communities. How these
nodes can be used depends largely on the modeled system, but they generally con-
stitute very valuable information. For instance, in the context of Business Science
there are two main uses for them. First, these in-between nodes can be used as a
base for certain communication strategies [65], consisting of making these persons
as active as possible, in order to have them propagating messages to their contacts
[66]. In this diffusion process, they can be considered as bridges between commu-
nities, and can play the role of accelerators. Second, these people can often be
characterized by specific purchase behaviors, constrained by the fact they try to
improve part of their social image in order to increase their membership to a group
[67].

Other methods exist to characterize the position of a node relatively to the
community structure. Guimera & Amaral defined two measures for this purpose
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[39]: the first concerns the node community whereas the second focuses on the
rest of the network. The within-community degree z has more or less the same in-
terpretation than the embeddedness: it quantifies how well a node is connected to
the rest of its community. Its expression is different though, since it is defined as
the z-score of the node internal degree relatively to its community C:

2= (ke — (k) /o (12)

where (k) is the internal degree averaged over all nodes in community C, and o
is the corresponding standard deviation. A large within community degree means
the node has many more links inside its community than most other nodes belong-
ing to this community. The second measure is the participation coefficient P,
which is defined as:

P:l—Z(ki/k)z (13)

where k is the node total degree, k; is its number of links with some community i
(possibly its own community) and the sum is processed over all communities. It
quantifies how much the node of interest is connected to multiple communities,
and gets close to unity when it is evenly connected to all of them. On the contrary,
when all the neighbors are in the same community (k. = k), the participation co-
efficient is zero.

Guimera & Amaral use both measures to characterize a node, and distinguish
seven different roles depending on the observed combination of values, and to a
set of thresholds. The choice of these thresholds is arbitrary [3] and we present
here those determined empirically in [39]. First, nodes with a within-community
degree smaller than 2.5 are considered as hubs, whereas the remaining ones are
non-hubs. Finer roles are then defined by applying different thresholds on the par-
ticipation coefficient. Hubs can be provincial (almost all neighbors in the same
community, P < 0.3), connector (a majority of neighbors in the same community,
P < 0.75), or kinless (less than half the neighbors in the same community,
P > 0.75). The first can be considered as having an important local role for the
cohesion of the community, the second allows connecting communities, and the
third does not clearly belong to the community it was assigned to. Non-hubs can
be: ultra-peripheral (all neighbors in the same community, P < 0.05), peripheral
(a large majority of neighbors in the same community, P < 0.62), connectors (ap-
proximately half the neighbors in the same community, P < 0.80), kinless (a large
majority of neighbors in other communities, P > 0.80).

If we consider our data, we get the distribution represented in Fig. 3, which is
rather similar to the results obtained by Guimera & Amaral on metabolic networks
(appendix of [39]). A large majority of nodes have a zero participation coefficient,
which means all their neighbors belong to their community. This is of course re-
lated to the fact only 4% of the nodes have an embeddedness smaller than 0.5.
These nodes only differ in their within community degree, and only a few of them
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are hubs. Consequently, most of the nodes in our network are ultra-peripheral
(84%) or peripheral (12%). Three nodes are non-hub connectors, only one is a
connector hub, and we have no kinless hub. The rest (3%) are provincial hubs.
This is consistent with the community structure of our network, since non-modular
networks exhibits many kinless and very few (ultra-)peripheral nodes [39]. How-
ever, it is interesting to notice the hub distribution is not completely compatible
with the hub dominance measure. For instance, on the one hand community 20 has
the maximal hub dominance, however it does not contain any according to the role
approach. On the other hand, community 1 has very low hub dominance, when it
contains two hubs, including the only connector of the network. In both cases, the
hub dominance might be fooled by the community sizes (very small for the first,
much larger for the second). Besides these cases, roles and hub dependence agree
on most communities. However, this highlights the fact that, when several alterna-
tive tools are available, one should confront their results. Another interesting point
is the fact community 16 not only contains one of the two minimal embeddedness
nodes, but also one of the three connector non-hubs. This seems to confirm our as-
sumption for this community to be an artifact of the detection algorithm.
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Fig. 3. Distribution of roles (a) in terms of within-community degree z and participation coeffi-
cient P; and (b) in the network. The colors are the same than in [39]: grey, red and green for ul-
tra-peripheral, peripheral, and connector non-hubs; yellow and pink for provincial and connector
hubs, respectively.

3.2 Attribute-based Interpretation

After having described and analyzed the community structure, one is generally in-
terested in giving a context-dependent interpretation, allowing for instance to ex-
plain why or how this structure appeared, or to perform some prediction regarding
some data not available at the moment of the study. For this matter, in many situa-
tions, one has to focus solely on the topological properties described in the previ-
ous section. However, it is sometimes possible to associate tabular data to the
studied network, defining various attributes for each node. This is particularly true
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for domains in which the objects composing the networks are complex enough to
need being described according to several informative dimensions (e.g. social sci-
ences). When such information is available, one can discuss the topological prop-
erties in terms of nodal attributes, which can help a lot understanding the system.
In this section, we present both descriptive and inferential tools adapted to this
purpose. Note most of them are implemented in statistical softwares such as SPSS
or R, and even Microsoft Excel for the descriptive methods.

3.2.1 Description

The formation of communities, especially in social networks, can sometimes be
explained by homophilic relationships, i.e. a tendency for nodes to connect with
other nodes more or less similar to them, relatively to some criteria of interest. Let
us consider the sequence of all links present in the network: the values of some at-
tribute for the corresponding source and target nodes can be viewed as two distinct
series. The homophily can be measured as the level of association between these
two series. For instance, Newman proposed to use the Cohen’s Kappa statistic and
Pearson’s correlation coefficient for nominal and numeric attributes, respectively
[68]. It is generally processed over the whole network, but in our case it can also
be used to characterize the communities: there is no reason for them to exhibit the
same homophily. Table 4 shows some results for the gender (G) and class (C) at-
tributes. Most communities have close to zero homophily for gender, except for a
few ones for which it reaches a value close to 0.5 (10, 13, 17). This means stu-
dents do not bond depending on their gender, except for these communities. Ho-
mophily values are more contrasted for the class, with values either very close to 0
(3,9,15,17...) or to 1 (8, 20).

Another approach consists of considering the community structure instead of
the links as the relevant topological information. Under this assumption, commu-
nities are simply groups of nodes one wants to characterize relatively to their at-
tributes. This problem is much more general than network analysis, since it also
occurs in classic cluster analysis [69]. As an example, we present in Table 4 some
of the most characteristic attributes of our data. Of course, all communities are not
characterized by the same attributes, which is why we selected different types of
data: factual (class and department), behavioral (hobbies, mobile phones, digital
players) and sentimental (best friend consideration and loan inclination).

For space matters, we focus our comments only on a few communities. Let us
consider first community 7. It contains only students of 3™ and 4" year of License,
but this holds for other communities too (3, 17), so this property alone is not suffi-
cient to characterize it. However, unlike community 17, its dominating department
is Business Science. Communities 3 and 7 can be distinguished by considering the
former has no dominant hobby, and their dominant mobile phone brands are dif-
ferent. Students from community 15 are more inclined to take a loan, they have
the highest average score for that question (LI). They will certainly be the most
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receptive to commercial pressure. Detecting such a community can have quite
huge implications in the Business field.

Table 4. Description of the network and its communities in terms of attributes. The G and C col-
umns represent the homophily for the gender and class attributes, respectively. The Class (resp.
Dept.) columns describe the two most represented classes (resp. department) in each community:
the left column is the number of concerned students and the right one is the class (resp. depart-
ment) name. The represented classes are Preparatory (P1-2) and License (L1-4), the departments
are Business Science (BS), Computer Science (CS), Economics (Ec), Industrial Engineering
(IE), International Relations (IR), Law (La), Literature (Li), Mathematics (Ma), Philosophy (Ph),
Sociology (So). H is the most popular hobby: music (M), cinema (C), sport (S), photography (P),
reading (R), theater (T). The next two columns are the most widespread brands of mobile phones
(MP) and digital players (DP): Nokia (No), Samsung (Sa), Sony-Ericsson (SE), Apple (Ap),
Creative (Cr), Sony (So). The two last columns indicate if a student thinks he has his best friends
in the university (BF) and his inclination to take a loan (LI), respectively. Both answers are ex-
pressed on a scale ranging from 1 (clear no) to 5 (clear yes).

Com.n G C Class1 Class2 Dept.l1 H MP DP BF LI

1 32 024 030 25P2 6 LI 7 BS M No Ap 3.80 2.60
2 39 036 0.54 I5L2 12L3 10IE C No - 3.00 1.78
3 28 0.12 0.00 2514 3 L3 12BS - No - 325250
4 30 0.11 -004 26P1 3 P2 6 So M No Cr 278 1.78
5 23 019 -005 17L2 - - ISRI S Sa Ap 2.75 225
6 46 0.01 0.65 1912 18L3 14So R Sa Ap 343 1.54
7 34 025 0.19 25L3 9 L4 24BS C Sa Ap 3.78 2.67
8 23 0.17 0.74 12P1 10L1 9 IE S Sa Ap 3.00 3.00
9 20 0.19 0.00 18Pl 2 P2 5 BS - No Ap 2.17 1.67
10 39 051 0.55 31L2 6 L1 17BS C No Ap 292 192
11 20 -0.15 0.16 1704 2 L3 11 IE M No - 3.80 2.00
12 15 0.11 0.61 7 L1 7 L2 7 La - SE Ap 4.00 1.50
13 28 046 0.60 14L1 13L2 12Ma M No So 3.64 1.64
14 13 0.00 0.56 6 L3 5 L4 7 CS - No - 350 2.00
15 14 -0.12 0.00 13 L3 - - 8 RI - - - 267 350
16 13 -0.10 -0.03 11 L1 - - 10Ph P - - 3,67 133
17 28 048 0.00 2514 3 L3 14IE C No Ap 3.11 2.22
18 22 -0.09 0.54 12L3 - - - - - No - 371 117
19 20 -0.06 0.00 9Ll - - 9 Ma - No - 371 171
20 12 -0.14 1.00 12pP1 - - 2 - R No Ap 2.14 1.71
21 15 -0.16 0.00 13P2 2 L1 11 La T No - 400 1.67
22 38 -0.05 -0.02 34L1 2 P2 22BS C Sa Ap 4.00 2.00
Net. 552 0.25 0.78 124L1  107L2 96 BS S No Ap 3.29 1.94

Community 16 contains almost exclusively first year Licenses from the philos-
ophy department, which is already discriminant when considering the other com-
munities. Moreover, from an application point of view, it is interesting to notice
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the dominant hobby is photography and there is no dominant brand for electronic
devices. Community 20 is very interesting because its students tend to think their
best friends are not in the university (BF column): they have the lowest average
score for the corresponding question. Nevertheless, this community is quite simi-
lar to others regarding hobbies and brands. This may be due to the fact those stu-
dents are in first year, often in a new city, far away from their family and high-
school friends. A similar observation can be on the communities containing a
majority of first year students (e.g. 9), and the effect tends to disappear for the
communities of older students (12, 21, 23).

As we shown, the visual inspection of the community composition allows to
detect attributes of interest. This inspection can be enhanced by a graphical repre-
sentation of the network. Fig. 4 gives an example based on the distribution of the
class attribute in the network of communities. This figure includes, among other,
the columns Class 1 & 2 from Table 4. It confirms our remarks regarding the rela-
tively discriminant power of the class attribute, and the fact it is not enough to
uniquely characterize all communities. However, these somewhat subjective ob-
servations must be confirmed objectively in order to be relevant and useful. In
other terms, one has to assess statistically the significance of the differences ob-
served between the communities. For this matter, the selection of an adapted sta-
tistical tool depends on the nature of the attribute of interest.

Fig. 4. Class distribution in the community network. Each node represents a community from
Fig. 1, with matching number values and colors. Node diameters and link widths are proportional
to community sizes (expressed in number of students) and to number of inter-community links,
respectively. Each pie chart represents the class attribute distribution in a community. Possible
classes are Preparatory (P1-2), License (L1-4) and Master (M).
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First, suppose we want to determine if community membership depends on
some nominal attribute. In other terms, we want to assess the significance of the
association between two nominal variables: the community and the attribute [70].
In this case, the most popular test is the well-known Pearson's chi-square test.
Note that extensions exist for tables of higher dimension, allowing to test for asso-
ciation using several attributes. Also, association measures derived from the y?
statistic (Pearson’s @, Cramér’s V, etc.) allow quantifying the strength of the as-
sociation, by opposition to its simple existence. They have been questioned
though, and alternatives exist, such as the A coefficient [71], which has the ad-
vantage of being asymmetrical. In our example, the associations between class and
department on one side, and community membership on the other side, are very
significant (p < 0.001), which means those attributes are generally good to char-
acterize our communities.

In the case of a quantitative attribute, one can perform a classic Anova to test
whether its means are significantly different across communities [69], under the
assumptions of independence, normality and homoscedasticity (variance homoge-
neous across communities) [70]. Note if several attributes have to be considered at
once, an extension called factorial Anova must be used instead. As an example,
we performed an Anova on the sentimental attributes (best friend consideration
and loan inclination). We first tested for homoscedasticity using Levene’s test and
got low p-values (respectively 0.068 and 0.085), but not enough to reject the ho-
moscedasticity assumption for &« = 0.05. For the Anova itself, on the contrary, the
p-values were small enough to reject the hypothesis of uniform mean (0.032 and
0.049, respectively). In other words, significant differences exist between commu-
nities for both attributes. To identify precisely which communities differ, one has
to perform a post-hoc test such as Tuckey’s or Least Significant Difference (LSD)
tests [70]. We applied the latter to our data, which expose several significant dif-
ferences, but we limit our comments to the communities on which we focused in
this section. It turns out the sentiment of having his best friend at the university is
significantly lower in community 20 compared to most others, especially the 16™
and 7™ so it can be considered as a characteristic of this community. Students
from the community 15 are significantly more inclined to take a loan or to delay a
payment than most of the other communities, especially the 16™ and 20", whose
students are significantly inclined not to take a loan.

Besides the communities, the nodes of interest detected in the previous section
can also be interpreted in terms of nodal attributes. In our data, we highlighted 5
students with very low embeddedness or specific roles (three non hub connectors
and one hub connector). We will here only give some points and remarks to illus-
trate our purpose. First, it is worth noticing two out of three non-hub connectors
are girls, and moreover two of them belong to the same community (16) and de-
partment (Philosophy). One of them is in 4™ year of License. She is an outlier on a
question concerning the intention to stay in touch with university friends. Students
strongly agreed to this assertion in average, whereas this person clearly thinks the
opposite. Moreover, she also states she has a high probability to use old-fashioned
products, when she owns cutting edge mobile phone and digital player. This in-
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formation is of major interest in the context of a marketing strategy, for instance it
will allow orienting communication towards social image and acceptance matters.
The hub connector is also interesting: he is a boy, in second year of preparatory
class in the Law department. Most of his answers to the questions are very close to
the average for all the respondents. Nevertheless, contrary to the others, he gives a
very high importance to his friends’ advice regarding computer and mobile phone
purchases. Moreover, contrary to the majority of students, he states he would re-
duce his other expenditures to be able to afford some products of interest. The
marketing strategy has to differ from the case of the previous girl, because he is
certainly very well installed socially and possibly aims at keeping a very good so-
cial image.

3.2.2 Prediction

The descriptive tools presented in the previous section allow characterizing a
community in terms of nodal attributes. This type of analysis is already interesting
in terms of interpretation, but predictive methods can bring more precise models
regarding the way communities are constituted. First, a model is estimated using
the communities as reference groups and taking advantage of the available attrib-
utes. Its quality can be assessed in various ways, the simplest being to measure its
prediction success rate on instances whose community is known. If the model is
considered to fit the data well enough, it can be interpreted by considering which
attributes it uses and how it combines them to estimate communities.

We present here two families of statistical tools which can be used to build a
predictive model: linear discriminant analysis (LDA) and sigmoid regression. The
former was initially designed to predict the value of a nominal variable using nu-
meric attributes, and was later extended to the nominal case under the name of
discriminant correspondence analysis. The idea sustaining the method is close to
PCA (Principal Component Analysis) and other dimension reduction methods. It
consists of projecting the data in a new space maximizing the separation between
the communities. The result of the projection is defined by a set of discriminant
factors, corresponding to linear combinations of the initial attributes. These factors
are then used instead of the attributes to estimate the community of an object. The
model is valid under the assumptions of multinormality of the attributes condi-
tionally to the communities and homoscedasticity between communities [70].
Note extensions exist for both non-linear combinations and heteroscedasticity sit-
uations.

Two methods exist to derive the discriminant functions: processing all attrib-
utes at once (direct approach) or selecting them iteratively (stepwise approach).
The second method allows using different criteria [70] to select the attributes and
limit their number, it thus results in more parsimonious models. The number of
factors is limited by the number of communities and of selected attributes. Each
factor can be characterized in terms of its discriminant power, and by interpreting
the coefficients associated to the attributes in the corresponding function.



28

As an example, we tested all the numeric attributes related to our behavioral
and sentimental data, which represents a total of 57 attributes. The model obtained
with the direct approach has 21discriminant functions and can correctly classify
99.1% of the students. This very high rate has to be nuanced by the fact the model
includes many functions, based on all 57 attributes. Obviously, the interpretative
value of this model is very weak. We processed separately the behavioral and sen-
timental attributes, and obtained models based on 21 functions using 31 attributes
with a prediction rate of 70.5% for the former, whereas the latter led to 21 func-
tions using 26 attributes with a 69.8% prediction rate. The Anova results of the
previous sections were rather promising when considering the discriminant power
of the two behavioral and sentimental attributes we tested. However, when con-
sidering the discriminant analysis results obtained in this section, it does not seem
to be the case for the rest of our data. This suggests both kinds of data do not con-
vey sufficient information to efficiently predict community membership. Howev-
er, note it is possible to go further, for instance by preprocessing the data to reduce
its dimension before performing the discriminant analysis. This could allow im-
proving the readability of the model without losing much predictive power.

The second family of predictive methods is the sigmoid regression, for which
one can use two different models: logit or probit. This type of regression is able to
predict the value of a dichotomous variable based on numeric and dichotomous
variables (its application to nominal variables therefore requires to recode them).
It was extended to the prediction of nominal variables, e.g. communities. The two
approaches differ mainly in terms of the assumptions and estimation methods they
rely on [70]. Probit allows colinearity in the attributes but requires normality,
which is not the case of logit. Unlike for discriminant analysis, homoscedasticity
is not required.

We applied a multinomial logit regression to the department and class attrib-
utes, which are both nominal. The model could be estimated with significantly
good fit for both attributes (compared to a null model implementing the hypothesis
of no influence of the attributes on the communities). The overall prediction rate is
46.8%, but varies very much depending on the community. For 4 communities (3,
4,17, 22), it is greater than 80% (with 89.3% as a maximum), and for 9 others (8,
9,11, 12, 14, 15, 19-21) it is 0%. For the communities we previously focused on
(7, 16 and 20) it is of 64.7%, 61.5% and 0%, respectively. This confirms our pre-
vious observation: some communities can be efficiently characterized using these
factual attributes, but they are not relevant for others. In marketing, this kind of in-
formation is at the origin of classic segmentation approaches. In our case, a mar-
keting strategy based only on factual data would have very different effects de-
pending on the targeted communities. It would certainly perform well on
communities 3, 4, 17 and 22, but be inefficient on communities such as the 15"
Yet, we previously showed this community was very attractive from a commercial
point of view. The fact the network analysis managed to detect this community il-
lustrates how it can be used to complement classic data analysis.
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4 Conclusion

In this chapter, we tackled the problem of community detection from the user’s
point of view. The research is very active in this domain, and so many different
tools exist that it is difficult to make an accurate and informed choice. Our aim
was to present them, with the will of being as operational as possible. We re-
viewed the various definitions of the concept of community, and discussed public-
ly available community detection tools from this perspective. We emphasized oth-
er features allowing the user to make an appropriate choice regarding his data and
goals, such as the inputs and outputs these tools are able to process. Our goal was
to complete the very detailed existing reviews, which already deal with matters
concerning the community detection process itself and related computational
properties [3,8,9,11]. We also presented practical means of solving secondary
problems such as comparing community structures output by different algorithms
or corresponding to different levels estimated by a hierarchical algorithm.

We then considered a practical application of community detection to real-
world data describing a population of university students. We first concentrated on
the topological properties of the network. We chose to ignore general complex
network measures, because there again, reviews already describe them in details
[63]. Instead, we focused on measures related to the community structures. We il-
lustrated how one can determine the significance of the communities and assess
their quality. We also discussed various ways of characterizing individual nodes
relatively to the community structure. We then looked at the various methods al-
lowing to take advantage of nodal attributes, which are rather common in some
fields such as social sciences. We reviewed descriptive tools and showed how to
characterize and interpret the communities. We also illustrated how the applica-
tion of predictive methods enhances the understanding of the community composi-
tion.

However, due to lack of space, we could not perform an exhaustive review and
had to discard some methods at each section of our chapter. First, we ignored
community detection algorithms able to identify overlapping communities [3,34].
Although there are not many of them yet, compared to those outputting partitions,
these approaches are very promising, because many real-world networks include
nodes located in-between communities (this was illustrated in the analysis of our
data). Second, we only presented general families of definitions of the community
concept, when specific variants exist among the hundred community detection al-
gorithms one can find in the literature. The same remark holds for the measures
designed to study the significance [72,73] and topological properties [15] of the
community structure. Finally, we only mentioned statistical tools in our analysis
of the nodal attributes, but some machine learning based approaches are also
adapted. For instance, it would be possible to build a very informative predictive
model for each community by applying an association rule mining tool [74].
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Appendix: Notations

The table bellow summarizes the notations used through this chapter, and indicates the first oc-
currence of each one of them.

Table 5. Summary of the notations used in this chapter.

Notation Meaning 1™ occurrence
(m) Average of the quantity m Eq. (3)
n Total number of nodes in the network Eq. (4)
m Total number of links in the network Eq. (7)
n; Number of nodes in community i Eq. (1)
my; Number of links between communities i and j Eq. (1)
4q; Proportion of links between communities i and j Eq. (8)
k; Number of links between some node and community i Eq. (4)
e Embeddedness of some node Eq. (6)
A, Intra-connectivity of community i Eq. (2)
By Inter-connectivity of communities i and j. Eq. (2)
B ij, Alternative inter-connectivity of communities i and j. Eq. (4)
MQ Mean quality of a community structure, according to [12] Eq. (3)
D, Conductance of community i Eq. (5)
cv Coverage of a community structure Eq. (7)
Q Modularity of a community structure Eq. (8)
RI Rand Index Eq. (9)
ARI Adjusted Rand Index Eq. (10)
B B-score for community significance Table 3
d Density Table 3
h Hub dominance of a community Eq. (11)
' Average distance Table 3
k Degree (number of links) of a node Table 3
z Within-community degree of a node relatively to its community Eq. (13)
P Participation coefficient of a node to a community structure Eq. (12)
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