Business-oriented Analysis of a Social Network of University Students

Informative value of individual and relational data compared through group detection

Vincent Labatut¹ & Jean-Michel Balasque²

Presented by Günce Orman¹

¹Computer Science Department

²Business Science Department

Galatasaray University, Istanbul, Turkey

Overview

- I. Social Network Analysis in Business Science
- II. Data Collection
- III. Methods
- IV. Results
- V. Discussion
- VI. Conclusion
- VII. Perspectives

SNA in Business Science Main ideas

- Utilitarian perspective: benefits of SN analysis for a person or firm
 - Understand/influence personal judgment and decision making
 - Improve organization and management
- Points of interest
 - Information propagation (nature, efficiency, speed...)
 - Identification of groups of persons
- Usual method: local focus
 - One person (or a small group) is studied
 - Generalization to the rest of the network

SNA in Business Science Limitations

- Local vs. global approach
 - Propagation depends on the SN overall properties
 - Necessity to consider larger structures
 - Local and global approaches are complementary
- Non-systematic approach
- Possible causes
 - CN tools relatively new
 - SN extraction can be costly and difficult

	Factual	Behavioral	Sentimental
Individual		-	+
Relational	+	++	+++

Information gathering difficulty/cost level

SNA in Business Science Proposed Approach

- **Problematics**: is it worth using relational data?
- Focus on group identification
- Systematic and global study
- Systematic approach:
 - Cluster analysis on individual data
 - Community detection on relational data
 - Analysis:
 - Group comparison
 - Community membership prediction

Data Collection: Galatasaray University

- Small public university (~2000 students)
- Top 5 Turkish universities
- Mainly French-speaking
- Entrance: national vs. internal exam
- Very efficient alumni network
- Strong image

Data Collection: Survey

- Spring 2009
- 224 respondents
- Anonymous
- Themes:
 - Personal attributes
 - Social interactions
 - Purchasing behavior
 - Favorite brands/products
- Factual, behavioral & sentimental individual data
- Sentimental relational data

Data Collection: Fields of Interest

• Individual Data (Factual)

Attribute	Value	
Gender	Male vs. Female	
Department	12 different departments	
Class	6 different years	
Entrance exam	National vs. internal	
High-school category	6 different categories	
High-school city	Istanbul vs. other	
High-school specialization	17 possible specializations	
Club membership	40 different activities	

- Relational Data (Sentimental)
 - Names of important students
 - Intensity of the relationship, from -5 (hatred) to +5 (love)

Results: Clusters

- Exhaustive search
 - all combinations of factual attributes were tested
- Best separation (BIC) for 3 attributes:
 - Gender
 - Department
 - Class
- Result: 4 Clusters
- Other attributes lead to poor partitions

Results: Communities

- Unweighted, undirected, trimmed network
- Stable results over all tested algorithms (ARI)
 - Edge-Betweenness [Girvan & Newman]: 23
 - Fast Greedy [Newman & Girvan]:
 22
 - Spinglass [Reichardt & Bornholdt]: 29
 - Walktrap [Pons & Latapy]: 37
- Optimal partition (Q=0.88): 22 communities (FG)

Results: Groups Comparison

- 4 optimal clusters vs. 22 optimal communities
 - ARI = 0.043
- 4 optimal clusters vs. 4 forced communities
 - ARI = 0.001
- 22 forced clusters vs. 22 optimal communities
 - ARI = 0.423
 - Best separation using Gender, Department, Class, Entrance, Category, City, Specialization
- Conclusion:
 - Low overlap between communities and clusters
 - Tenuous link between communities and attributes

Results:

Community Prediction

- Communities are the reference class
- Exploratory approach: all combinations of attributes considered
- Correlated attributes automatically discarded
- Significantly discriminant attributes:
 - Class (year of study)
 - Entrance examination (national or internal)
 - University department
- Classification test: 37.2% success rate

Discussion:

Discriminant Attributes

- Department less important than class/entrance exam
 - Department:
 - Expected
 - Students from the same department interact more
 - Preparatory years:
 - Development of cross-departmental relationships
 - Strong bounds due to context (new location, friends, language, no family)
 - Internal examination:
 - French-speaking students tend to stick together
 - Come from high-schools with strong identities
 - Significant social differences with other students

Discussion:

Non-discriminant Attributes

- Seemingly important factor are not discriminant
 - Gender
 - Young students
 - New context
 - No family
 - High-school city
 - No discrimination between students from Istanbul and the others

Conclusion

- Groups built from a survey:
 - Clusters from individual factual data
 - Communities from relational sentimental data
- Low overlapping between the groups
 - Complementary data
- Link between the two kinds of data
 - Community can be predicted from attributes for 1/3 students

Perspectives

• Limitations

- Small population: collaborations
- Insufficient response rate: additional surveys
- Take advantage of the individual sentimental and behavioral data
 - ► Will possibly lead to different clusters
- Consider relationships asymmetry and intensity
 Directed and weighted network
- Allow overlapping groups
 - One student can belong to several groups

Data Categories

- Individual: related to only one person
 - Weight, mood, income...
- Relational: related to several (usually 2) persons
 - Friendship, being colleagues...
- Factual: acknowledge information
 - Individual: gender, age...
 - Relational: emails, collaborations...
- Behavioral: observations
 - Individual: reaction to some situation...
 - Relational: social interactions...
- Sentimental: feelings, thoughts
 - Individual: tastes...
 - Relational: friendship, hate...

Adjusted Rand Index

• Rand Index

- *a*: number of pairs whose elements belong to the same group in both partitions
- *b*: number of pairs whose elements belong to the same group in the first partition, whereas they belong to different groups in the second one
- *c*: number of pairs whose elements belong to different groups in the first partition, whereas they belong to the same group in the second one
- *d*: number of pairs whose elements belong to different groups in both partitions

$$RI = (a+d)/(a+b+c+d)$$

- Adjusted Rand Index
 - *E*: expected (chance) similarity

$$ARI = (RI - E)/(1 - E)$$