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Abstract. Community detection has become a very important part in complex 
networks analysis.  Authors traditionally test their algorithms on a few real or 
artificial networks. Testing on real networks is necessary, but also limited: the 
considered real networks are usually small, the actual underlying communities 
are generally not defined objectively, and it is not possible to control their 
properties. Generating artificial networks makes it possible to overcome these 
limitations. Until recently though, most works used variations of the classic 
Erdős-Rényi random model and consequently suffered from the same flaws, 
generating networks not realistic enough. In this work, we use Lancichinetti et 
al. model, which is able to generate networks with controlled power-law degree 
and community distributions, to test some community detection algorithms. We 
analyze the properties of the generated networks and use the normalized mutual 
information measure to assess the quality of the results and compare the 
considered algorithms. 
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1 Introduction 

Complex networks are now a popular tool to model a given system, by representing 
its components and their interactions with nodes and links, respectively. This model 
can then be analyzed or visualized thanks to some of the many tools designed for 
graph mining. Complex networks have been used in very different application 
domains, such as physics, biology, social science or computer networks [1]. 

Among the various approaches used to study complex networks properties, 
community detection has become one of the most popular ones. A community, or 
cluster, is generally defined as a subset of nodes densely interconnected relatively to 
the rest of the network [2]. Many different community detection algorithms have been 
defined to identify these subsets. They are generally based on classical clustering 
principles adapted to graphs, using hierarchical or optimization methods. Hierarchical 
approaches divide or merge communities by considering the distance or similarity 
between them, whereas optimization approaches partition the network according to a 
given criterion. 



Authors traditionally test their community detection algorithms on a few real [3-
11] or artificial [2-6, 10] networks. Limiting these tests to real networks can be 
considered as an issue for several reasons. First, building such networks is a costly 
and difficult task, and determining reference communities can only be done by 
experts. This leads to small networks, where actual communities are not always 
defined objectively, or even known. Second, a complex network is characterized by 
various statistics like its average degree, degree distribution, shortest average path, 
etc. By definition, it is not possible to control these features in a real network. This 
means the algorithm is tested on a very specific and limited set of features. 

Artificial networks seem to overcome these limitations, because it is possible to 
randomly generate many of them, while controlling their properties. All that is needed 
is a generative model able to produce networks with features similar to those of real 
networks. Of course, artificial networks must not be seen as a substitute to real 
networks, but rather as a complement. In the context of testing community detection 
algorithms, the most popular generative model is the one defined by Newman and 
Girvan [4], which is used in all the works cited above. It is a variation of the classic 
Erdős-Rényi random model [12] (or Poisson random model), and it consequently 
suffers from the same limitation: the generated networks do not show a realistic 
topology [13, 14]. 

Some recent works tried to improve this by defining more realistic models, able to 
mimic some of the real networks features. In this work, we use the model proposed by 
Lancichinetti et al. [14], which is able to generate networks with controlled power-
law degree and community distributions. Our purpose is to generate a set of artificial 
networks with various size and properties, and to use it to test the existing community 
detection algorithms. We use the normalized mutual information measure [15-17] to 
assess the quality of the results and compare the considered algorithms. 

In section 2, we explain what the properties of a complex network are. It is of 
course an open question to decide how a complex network can be described by a few 
features, but we kept only the most widely used ones. In section 3, we focus on the 
community detection task. We first describe its general mechanisms, and the 
modularity measure, which is used as an optimization criterion in many algorithms. 
Then, we list the algorithms we chose to compare. In section 4, we explain how we 
generated our test set of artificial networks, and we give some explanation about the 
normalized mutual information measure we used to assess the algorithms 
performance. In section 5, we present and discuss our results, focusing first on the 
observed properties of the generated networks, and then on the comparison of the 
algorithms’ performances. 

2 Complex Networks Properties 

Undirected real networks are known to share some common properties. In this 
section, we present the most prominent ones: small-worldness, transitivity, degree-
related properties and community structure. Many other properties can be used to 
describe a network, either by analyzing some measure, like betweenness-centrality 
distribution [18] or network diameter [19], or by counting the number of occurrences 



of a given substructure like motifs in [20]. But their use is not really widespread, and 
we would consequently lack experimental values to exploit them in this work. 

Small-World. A network is said to have the small-world property if, for a fixed 
average degree, the average distance (i.e. the length of the shortest path) between 
pairs of nodes increases logarithmically with the number of nodes ݊ [1]. This property 
can be interpreted as propagation efficiency: spreading on the network remains 
relatively fast even if the network grows.   

Transitivity. The transitivity property is measured by a transitivity coefficient, also 
called clustering coefficient [21]. Different versions of this coefficient exist, but they 
all try to assess the density of triangles in a network. The higher this coefficient, the 
more probable it is to observe a link between two nodes which are both connected to a 
third one. Independently of the considered coefficient version, a real network is 
supposed to have a higher transitivity than a Poisson random network (such as those 
generated by the Erdős–Rényi model [12]) with the same number of nodes and links, 
by a factor of order ݊ [1]. 

Degree. Networks can also be described according to their degree distribution. In 
most real networks, this distribution follows either a power or an exponential law. In 
other terms, the probability for a node to have a degree ݇ is either ݌௞~݇ିఊ or 
௞~݁ି௞݌ ఑⁄  [1]. Networks with a power-law degree distribution are the most common. 
They are called scale-free, because their degree distribution does not depend on their 
size (some other properties may, though). Experimental studies showed that the ߛ 
coefficient usually ranges from 2 to 3 [1, 19, 22]. It is known that for values of ߛ 
smaller than 3.48, there is a high probability the network contains one giant 
component and several small ones (a component is a separated subgraph), or even 
only one component (the network being completely connected) [22]. 

In a real network, the average and maximal degrees generally depend on the 
number of nodes it contains. For a scale-free network, it is estimated to be ۄ݇ۃ~݇௠௔௫

ିఊାଶ 
[19, 22] and ݇௠௔௫~݊ଵ

ሺఊିଵሻ⁄  [1], respectively. 
The degree correlation of a network constitutes another interesting property. The 

question is to know how a node degree is related to its neighbors’. Real networks 
usually show a non-zero degree correlation. If it is positive, the network is said to 
have assortatively mixed degrees, whereas if it is negative, it is disassortatively mixed 
[1]. According to Newman, social networks tend to be assortatively mixed, while 
other kinds of networks are generally disassortatively mixed. Nodes with high degree 
are called hubs, because they have a more central position in the network. 

Community. In this work, our focus is on detecting communities in networks. Of 
course, it is important to note that not all real networks have a community structure. 
According to Newman though, it is a common feature in biological and social 
networks [1]. When the community structure is present, the community size 
distribution seems  to follow a power-law distribution [23] with a parameter ߚ 
ranging from 1 to 2 [5, 24]. 



3 Community Detection 

Complex networks have been used widely to model real-world systems in many 
application fields. When analyzing a complex network, the problem of identifying its 
communities is universal, and has consequently been raised in many domains, leading 
to different solutions. Many of them rely on Newman’s modularity to assess the 
quality of their results, so we will first introduce this measure. Then, we will present 
the principles of community detection, and give a short description of the algorithms 
we chose to compare. 

3.1 Modularity 

The modularity measure has been presented by Newman and Girvan [2] to assess the 
quality of a network partition. They first define what could be called a community 
contingency matrix, whose elements ݌௜௝ represent the fraction of total links from a 
node in community ݅ towards a node in community ݆. The fraction of links inside 
community ݅ is therefore ݌௜௜. Moreover, since we are considering undirected 
networks, we have ݌௜௝ ൌ  .௝௜ and the matrix is symmetric݌

Let ݌௜ା and ݌ା௝ be the sums over row ݅ and column ݆, respectively. If the network 
has no community structure, or if the considered communities are not defined 
accordingly to the network structure, then one can suppose the links are randomly 
distributed. Under this hypothesis, the expected fraction of links inside community ݅ 
can be estimated as the probability for a link to start in community ݅, which is ݌௜ା, 
multiplied by the probability to end in community ݅, which is ݌ା௜. The matrix being 
symmetric, we have ݌௜ା݌ା௜ ൌ ሺ݌௜ାሻଶ. The modularity measure is defined as the 
difference between the observed and expected fractions of links in each community, 
summed over all communities: 

ܳ ൌ෍݌௜௜
௜

െ෍ሺ݌௜ାሻଶ

௜

 (1) 

When the communities are not better than a random partition, or when the network 
does not exhibit any community structure, ܳ is negative or zero. Its superior limit is 
1, but it can be approached only if the network has a strong community structure and 
if the communities have been perfectly detected. 

Interestingly enough, the modularity measure is similar to the numerator of chance-
corrected measures used to assess the performance of classic classifiers, such as 
Cohen’s ߢ coefficient [25]. The general formula for these measures is 
ሺ ௢ܲ െ ௘ܲሻ ሺ1 െ ௘ܲሻ⁄ , where ௢ܲ is the observed agreement and ௘ܲ is the expected 
agreement between the classifier results and the classified data. But unlike 
modularity, chance corrected measures are normalized by the dividing term ሺ1 െ ௘ܲሻ, 
which represents a perfect classifier result (reaching a 1 observed agreement). Of 
course, it is not possible to process the corresponding value in the case of modularity, 
because the superior limit for ∑ ௜௜௜݌  depends on the community structure of the 
network, and is usually less than one (whereas 1 is an absolute value for classic 
classifiers).  



The modularity measure is known to have some flaws. For example, it is sensitive 
to community size [26] and it is possible to find partitions of Poisson random 
networks with relatively high modularity values [27] (although they have no 
community strucuture). However, many community detection algorithms use it as an 
optimization criterion, as we will see in the following section. 

3.2 Algorithms for Community Detection 

It is difficult to categorize the community detection algorithms, but one could group 
them in three different families: hierarchical, optimization, and others.  

Early solutions are based on hierarchical approaches whose result is a tree of 
communities called dendrogram. Agglomerative approaches starts with as many 
communities as nodes, each node having its own community, and iteratively merge 
these communities until only one giant community remains. On the opposite, divisive 
approaches start with one community containing all nodes, and iteratively split the 
communities until each node constitute one community. The communities to be 
merged or split are chosen accordingly to some distance or similarity function which 
allows detecting which communities are similar (agglomerative approach) or 
heterogeneous (divisive approach). What distinguishes algorithms in this family is 
mainly the nature of the distance or similarity function. The result being a 
dendrogram, one still needs to find out where to perform a cut in order to get an actual 
partition. For instance, one can compute the modularity at each level, and use the 
partition with maximal modularity. 

The optimization-based approaches use a measure to estimate the quality of a 
network partition. This measure is, most of the time, Newman’s modularity [2]. The 
general algorithm consists in first processing several partitions of the network 
(randomly or by following a fitting function) and second keeping the best one 
according to the quality measure. This partition can then be refined in order to get a 
better quality. Modularity is a costly measure to process, hence the numerous 
algorithms defined for its optimization [3, 6, 24]. 

The last family contains all the remaining approaches. Some use different 
principles coming from classical clustering like density-based clustering [7]; some are 
agent-based [8]; some allows finding overlapping communities (one node can be a 
part of several communities at once) [28]; some use a latent space approach to process 
the probability for a node to belong to a community [9]. 

This work consists in comparing community detection algorithms on many 
generated networks, so we chose to focus first on the following algorithms, which are 
fast and simple.  

Fast Greedy Algorithm. This algorithm was developed by Newman et al. [10, 24]. It 
is modularity-based and uses a hierarchical agglomerative approach. It is called fast 
greedy because thanks to a standard greedy method, it is significantly faster than older 
algorithms. 



Walktrap Algorithm. This algorithm by Pons and Latapy [29] uses a hierarchical 
agglomerative method. Here, the distance between two nodes is defined in terms of 
random walk process. The basic idea is that if two nodes are in the same community, 
the probability to get to a third node ݇ located in the same community through a 
random walk should not be very different for ݅ and ݆. The distance is constructed by 
summing these differences over all nodes, with a correction for degree. 

Eigenvector Algorithm. This algorithm by Newman [30] is modularity-based, and it 
uses an optimization method inspired by graph partitioning techniques. It relies on the 
eigenvectors of a so-called modularity matrix, instead of the graph Laplacian 
traditionally used in graph partitioning. 

Label Propagation Algorithm. This algorithm by Raghavan et al. [11] uses the 
concept of node neighborhood and the diffusion of information in the network to 
identify communities. Initially, each node is labeled with a unique value. Then an 
iterative process takes place, where each node takes the label which is the most spread 
in its neighborhood. This process goes on until one of several conditions is met, for 
instance no label change. The resulting communities are defined by the last label 
values. 

Spinglass Algorithm. This algorithm by Reichardt and Bornholdt [31] is an 
optimization method relying on an analogy between the statistical mechanics of 
complex networks and physical spin glass models.  

4 Method 

In order to compare the selected algorithms, we chose to generate a set of artificial 
networks. If we want the results to hold when the algorithms are applied on real 
networks, our artificial networks properties must be the most similar possible to those 
we previously described for real networks. Another important point is the assessment 
of the results quality, which must be reliable in order to compare efficiently the 
communities detected by the tested algorithms. In this section, we present the model 
we used to generate our test data and the measure we chose to assess the algorithms 
performance. 

4.1 Network Generation 

In many community detection works [3, 32, 33], artificial community-structured 
networks are generated with models similar to the one defined by Newman and 
Girvan [4, 10]. It relies on the principle of the Erdős-Rényi model [12]: each 
community corresponds to a Poisson random network, with a probability ݌௜௡ to have a 
link between two of its nodes (an internal link). Another probability ݌௢௨௧ is used to 
add links between nodes from different communities (external links). The 



probabilities are constrained so that ݌௜௡ ൐  ௢௨௧ and the average degree ݀ of the݌
resulting network tends towards a fixed value.  

This model lacks some of the properties we described earlier: the degree 
distribution and the community size distribution do not follow a power-law, and we 
have no information about the other properties. For this reason, we chose to use a 
more recent model defined by Lancichinetti et al. [14] to generate our test set of 
artificial networks. It allows generating random networks with a community structure 
and a power-law degree distribution. Moreover, the size of the resulting communities 
also follows a power-law distribution.  

This method needs the following compulsory parameters: the number of nodes n, 
the desired average ۄ݇ۃ and maximum ݇௠௔௫ degrees, the exponent ߛ for the degree 
distribution, the exponent ߚ for the community size distribution, and a value ߤ called 
the mixing coefficient. The latter represents the average proportion of links between a 
node and nodes located outside its community, 1 െ  being the proportion of links ߤ
with nodes located in the same community. This leads to the concepts of internal and 
external degrees, corresponding to the number of links a node has inside and outside 
its community, respectively. For a node of degree ݇, we then have the values ሺ1 െ
 for the external degree. Of course, these values ݇ߤ ሻ݇ for the internal degree andߤ
hold in average, but can only be approximated when considering a given node. Two 
additional parameters, the minimum and maximum community sizes, can also be 
optionally precised. If this is not the case, they are automatically set to values smaller 
than the minimal degree and greater than the maximal degree, respectively. This way, 
every node can fit in a community, whatever its degree. 

The generation is performed in three steps. First, the well-known configuration 
model [34] is used to generate a scale-free network corresponding to the specified ߛ 
parameter. Second, the community sizes are drawn in accordance with the ߚ 
parameter, and each node is randomly affected to a compatible community. 
Compatible means here that the community size must be greater or equal to the node 
internal degree. Some specific mechanisms ensure the convergence of the processing, 
see [14] for more details. Third, some links are rewired in order to respect the mixing 
coefficient. For a given node, the total degree is not modified, but the ratio of internal 
and external links is changed so that the resulting proportion gets close to ߤ. 

Our goal was to compare the performance of community detection algorithms, so 
we generated networks with parameters consistent with what is observed in real 
community-structured networks. We used the value 1000 for the number of nodes ݊. 
The ߚ and ߛ exponents ranged from 1 to 2 and from 2 to 3, respectively. We used 
values of ߤ in ሾ0.05; 0.95ሿ with a 0.05 step. For each set of parameters, we generated 
25 networks in order to deal with possible discrepancies in the networks properties 
due to the random generation. 

In rare occasions, we observed that some parameters can cause several components 
to appear in the same network. Some algorithms like Walktrap cannot be applied on 
such networks, so we decided to randomly connect these components in order to be 
able to apply all the algorithms. 



4.2 Performance Assessment 

As we stated before, the modularity measure is a standard for assessing the quality of 
a network partition. But it was designed to be an approximation of the partition 
quality, to guide community detection algorithms when the actual communities are 
unknown. The value computed for a given situation depends on both the quality of the 
detected communities and of the nature of the network community structure.  

This dependence to the network structure prevents from using modularity to 
compare algorithm performances on different networks. Furthermore, we will use 
artificial networks, whose communities are known a priori. In this context, 
modularity is not an appropriate measure, because it does not make use of this 
important information. For interpretation purposes, we nevertheless processed the 
modularity for the various tests we performed (several tested algorithms use 
modularity during their processing). 

Instead of modularity, we used the normalized mutual information measure (NMI). 
It was defined in the context of classical clustering to compare two different partitions 
of one data set [15, 16]. It was shown to be an efficient way to assess the quality of 
estimated network communities by Danon et al. [17]. 

The measure is derived from a confusion matrix whose element ݉௜௝ represents the 
number of nodes put in community ݅ by the considered algorithm, whereas they 
actually belong to community ݆. This matrix is usually rectangular, because the 
algorithm does not necessary find the correct number of communities. 

ܫ ൌ
െ2∑ ∑ ݉௜௝ log൫݊݉௜௝ ݉௜ା݉ା௝⁄ ൯௝௜

∑ ݉௜ା logሺ݉௜ା ݊⁄ ሻ௜ ൅ ∑ ݉ା௝ log൫݉ା௝ ݊⁄ ൯௝
 (2) 

If the estimated communities correspond perfectly to reality, the measure takes the 
value 1, whereas it is 0 when the estimated communities are independent from the 
actual ones. 

5 Results and Discussion 

5.1 Generated Networks 

The model from Lancichinetti et al. [14] allows controlling most of the network 
properties: number of nodes, degree distribution, maximal and average degrees and 
community size distribution. For these properties, we used realistic values in 
accordance with the literature (cf. the Complex Network Properties section). The 
question is to know whether the uncontrolled properties (average distance, 
transitivity, correlation degree), arising from the processing, are realistic too. 
Furthermore, we would like to know if and how changes in the controlled parameters 
affect the uncontrolled ones. This is an important matter, because such a change may 
influence the algorithms’ performances, which could therefore be explained either by 
a direct or an indirect effect. By direct effect, we mean the observed performance 
modifications are related to the changed controlled properties. By indirect effect, we 



mean they are related to a change in some uncontrolled properties, caused itself by the 
change in controlled properties.  

In the following, we will discuss separately the relation between each parameter 
and the uncontrolled properties. The numbers indicated in parenthesis correspond to 
the processed (Pearson’s) correlation values between the considered parameter and 
uncontrolled property, for 1000 nodes networks.  

The variations in the average and maximal degrees have little or no effect on the 
degree correlation and transitivity coefficient (െ0.14 and 0.09, respectively), but 
there is a direct relation with the average distance (െ0.66). Unsurprisingly, it 
decreases dramatically when the average degree increases, certainly due to the rise in 
the number of links.  

The ߚ parameter has little or no effect on the average path length (0.01) and the 
transitivity coefficient (0.05), but it relatively affects the degree correlation (0.37). 
The ߚ parameter controls the homogeneity of the community sizes: when it increases, 
the communities tend to be more uniform in terms of size [14]. Our interpretation is 
that with a small beta, we have many small communities with no hubs, much less 
medium communities with a few hubs, and a few big communities with more hubs. 
Medium community hubs have less chance to get linked with other hubs, because 
there are only a few hubs in their community, and links between communities are 
rarer, which prevents them to get linked with hubs in other communities. When beta 
increases, this chance also increases because the number of hubs in the same 
community gets larger. 

The ߛ parameter has little or no effect on average distance (0.07) and transitivity 
(െ0.06), but it relatively affects the degree correlation (െ0.26). When ߛ increases, 
the network degree distribution becomes more homogeneous, so this is consistent 
with the fact that degree correlation is close to zero in Poisson random networks. 

 

Fig. 1. Influence of the mixing coefficient ߤ on the properties of the generated networks. The 
controlled parameters are ݊ ൌ ۄ݇ۃ ,1000 ൌ 30, ݇௠௔௫ ൌ ߚ ,90 ൌ 2 and ߛ ൌ 3. Each point 
corresponds to an average over 25 generated networks. The dotted and dashed horizontal lines 
represent the expected values for the same properties in networks generated with the 
configuration model [34] and Poisson model [12], respectively, using similar parameters. 

The most influent parameter is the mixing coefficient ߤ, as shown in Fig. 1. The 
computed correlations are not necessarily high, but the plots show a non-linear 
relationship between ߤ and all three uncontrolled properties. As shown on the plot, 
the average distance decreases when ߤ increases. However, we performed additional 
measurements on networks with sizes between 100 and 100000 nodes, and observed 
a clear logarithmic relationship between the size and the average distance, which is 
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consistent with real networks features. The transitivity is very high for low ߤ values, 
but gets down to the level of Poisson random networks when ߤ reaches 0.7. In the 
same way, for low ߤ values, the degree correlation is relatively high, but quickly 
decreases until ߤ reaches 0.4 or 0.5, and then stays close to zero. Interestingly, 
ߤ ൌ 0.5 corresponds to a limit above which the proportion of external links is higher 
than the proportion of internal links. In other terms, when ߤ goes above this limit, the 
communities are not well defined anymore, and we have a scale-free network with no 
community structure. Here, we must recall Lancichinetti et al. method consists in 
using the configuration model to generate a scale-free network, which is then partially 
rewired to create a community structure. For a given node, there are usually many 
more nodes outside than inside its community. Therefore, the higher ߤ and the lesser 
the original network is modified. Put differently: when ߤ grows, the generated 
networks get more similar to scale-free networks generated by the configuration 
model. The configuration model is known to produce networks with no degree 
correlation [35]. Furthermore, Newman [1] showed that when it is used to generate 
scale-free networks, for ߛ ൐ 7 3⁄  the transitivity tends toward zero as the number of 
nodes is increasing. Our measures show close to zero degree correlation and 
transitivity when ߤ gets close to 1, which is consistent with the previous remarks. The 
average distance is also close to what is expected from a configuration model-
produced network [36]. Using smaller ߤ values, i.e. defining more distinct 
communities, makes all three properties grow. The effect on degree correlation could 
be due to the apparition of hub-to-hub links between communities. The definition of 
community used here relies on stronger inner density, and is therefore related to the 
concept of transitivity, which may explain its increase. The disappearance of shortcut 
links between the communities could explain the observed decrease in average 
distance. 

To conclude these observations, we can state the generated networks show some 
reasonably realistic properties when ߤ is relatively small. However, increasing this 
parameter not only causes communities to become less distinct, but also makes the 
whole network becoming less realistic, its average distance, transitivity and degree 
correlation decreasing rapidly. 

5.2 Algorithms Performance 

The results from the five algorithms are presented in Fig. 2. We can distinguish three 
kinds of results: Spinglass and Walktrap perform generally very well; Label 
Propagation also performs well, but is more sensitive to decreases in ߤ; Eigenvector 
and Fast greedy are clearly below the others, especially for networks with high 
degrees. More generally, all the algorithms are sensitive to changes in the average and 
maximal degree, and have better performances when it increases, as Lancichinetti et 
al. previously noticed on different algorithms [14]. But this sensibility is not the same 
for all of them, as we can observe different decreases in performance when ߤ is 
increasing. This general sensitivity to ߤ is not surprising, since an increase in ߤ means 
the communities are vanishing. Spinglass and Walktrap are the most robust, with 
NMI results remaining at 1 until they suddenly drop between ߤ ൌ 0.6 and 0.8 for the 



two higher values of ۄ݇ۃ and ݇௠௔௫ (last two rows). For the lower degrees values (first 
row), the decrease is more regular and starts from ߤ ൌ 0.05. 

 

Fig. 2. Comparison of the five algorithms results for ݊ ൌ 1000. On the left column: ߚ ൌ 1 and 
ߛ ൌ 2, on the right column ߚ ൌ 2 and ߛ ൌ 3. On the first row ۄ݇ۃ ൌ 5 and ݇௠௔௫ ൌ 15, on the 
second one ۄ݇ۃ ൌ 15 and ݇௠௔௫ ൌ 45, and on the third one ۄ݇ۃ ൌ 30 and ݇௠௔௫ ൌ 90. Each 
point corresponds to an average over 25 generated networks. 

For Eigenvector and Fast greedy, the performance drop takes place sooner, and is 
almost linear starting from ߤ ൌ 0.05, with all three tested degree values. Label 
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Propagation behavior is apart: it performs almost as well as Spinglass and Walktrap, 
but its performance drop happens sooner, between ߤ ൌ 0.5 and 0.6, and is more 
sudden. 

When observing the joint effect of the mixing coefficient and the average and 
maximum degrees on the performance, it is interesting to observe the reversal taking 
place around ߤ ൌ 0.75, as illustrated by Fig. 3 for Walktrap and Spinglass. Below this 
limit, the higher the degree and the better the performance. Above this limit, the lower 
the degree and the better the performance. This means high density helps discovering 
community structure when it is strong, whereas it hides it when it is weak. But as we 
stated in the previous section, the generated networks become less realistic when ߤ 
increases, so the observed change in performance could actually be caused not 
directly by the degree variations, but by consequent decreases in the transitivity or 
degree correlation. 

 

Fig. 3. Joint influence of the mixing coefficient ߤ and the average degree ۄ݇ۃ on the 
performance of two algorithms: Walktrap on the left and Spinglass on the right. Each point 
corresponds to an average over 25 generated networks, with ߚ ൌ 2 and ߛ ൌ 3. 

The ߚ and ߛ parameters do not seem to affect any of the algorithms (correlation 
smaller than 0.06 for all five), except for Walktrap, for which it looks like ߛ has an 
effect similar to the degree effect observed before. In other terms, the scale-free 
property makes it easier for Walktrap to discover communities when the community 
structure is strong, but makes it more difficult when it is weak. 

6 Conclusion 

In this paper, we compared five different community detection algorithms. We used a 
set of artificial networks generated with the model defined by Lancichinetti et al. [14], 
which allows randomly producing networks with a community structure and power-
law degree and community size distributions. To our knowledge, this type of 
comparative study was never conducted on such realistic networks before. We used 
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the normalized mutual information measure [15-17] to assess the performance of the 
algorithms. Our results show that among the Fast Greedy [10, 24], Walktrap [29], 
Eigenvector [30],  Label Propagation [11] and Spinglass [31] algorithms, Walktrap 
and Spinglass get generally the best results. They succeed in identifying the 
communities even for high mixing coefficient values. Label Propagation has also 
excellent results, but its performance drop happens before Spinglass and Walktrap. 
Fast greedy and Eigenvector are clearly outclassed by all three other algorithms.  

After having analyzed the data, we concluded the mixing coefficient and average 
and maximum degrees have a strong joint effect on the algorithms results. A higher 
density tends to improve community finding when the communities are distinct, but 
makes it harder to find them when the community structure is weak. In these 
algorithms and in the modularity measure, a community is defined as a subset of 
nodes densely interconnected relatively to the rest of the network. This definition does 
not hold anymore when ߤ ൐ 0.5, which means above this limit, the network structure 
does not reflect the community structure. In other terms, the information conveyed by 
the network links is not pertinent anymore, and this can explain the observed joint 
effect. Moreover, increases in the mixing coefficient also make the networks 
becoming less realistic, which could as well be a cause for the observed drop in 
performance. 

Our work can be seen as a first attempt at comparing community detection 
algorithms, and can be extended in several ways. The generative model we used is 
more realistic than earlier ones, but we observed that increasing the mixing coefficient 
 ,makes the produced networks less realistic (strong decrease in the average distance ߤ
degree correlation and transitivity). We suppose this is due to the use of the 
configuration model [34] by Lancichinetti et al. [14] to produce an initial network, 
which is then modified to create the community structure. Maybe this could be 
corrected by using another model instead, such as preferential attachment [37] (or one 
of its variations), able to generate networks with more realistic properties. Of course 
there is no certainty about whether or not these properties would resist the 
modifications performed on the initial network.  

We only considered a few properties to analyze the artificially generated networks, 
and some additional properties, maybe more community-oriented (see [19]) could be 
used to have a more precise idea of their realism. Moreover, real networks properties 
are usually described commonly, but there may be strong differences between the 
various types of real networks such as social networks, biological networks, 
information networks, etc. [1]. In that case, a proper test should compare algorithms 
on different types of corresponding artificial networks. 

We compared the algorithms on networks containing only 1000 nodes. Real 
networks are generally much bigger, in the order of tens of thousands or millions of 
nodes. For more significance, the algorithms should be tested on this type of 
networks, but this raises two problems: 1) processing community detection on such 
huge networks is significantly more time expensive, and 2) determining realistic 
average and maximal degrees is difficult because of the heterogeneity observed in real 
networks for these properties. The second point is important, since we observed the 
performance of a given algorithm could vary strongly in function of these sole 
properties. We also limited this comparison to the fastest algorithms, again for 



computability and time reasons. A proper exhaustive test should consider more 
expensive algorithms (see [17, 19]). 

Finally, we sometimes observed extreme disagreements between the final 
modularity measure processed by the various algorithms and the information measure 
corresponding to their performance. It should be interesting to process the optimal 
modularity over all the tested algorithms and to study how it evolves relatively to the 
networks properties and the measured performances. 
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