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Abstract

The ridge logistic regression has successfully been used in text categorization

problems and it has been shown to reach the same performance as the Support

Vector Machine but with the main advantage of computing a probability value

rather than a score. However, the dense solution of the ridge makes its use un-

practical for large scale categorization. On the other side, LASSO regularization

is able to produce sparse solutions but its performance is dominated by the ridge

when the number of features is larger than the number of observations and/or

when the features are highly correlated. In this paper, we propose a new model

selection method which tries to approach the ridge solution by a sparse solu-

tion. The method first computes the ridge solution and then performs feature

selection. The experimental evaluations show that our method gives a solution

which is a good trade-off between the ridge and LASSO solutions.
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1. Introduction1

The automatic text categorization problem consists in assigning, according2

to its content, a textual document to one or more relevant predefined categories.3

Given a training dataset, where the documents have been manually labeled, the4

problem lies in inducing a function f , from the training data, which can then5

be used to classify documents. Machine learning algorithms are used to find6

the optimal f by solving a minimization problem which can be stated as the7

minimization of the cost of misclassification over the training dataset (Empirical8

Risk Minimization).9

In order to use numerical machine learning algorithm, the Vector Space10

Model is commonly used to represent a textual documents by a simple term-11

frequency vector (Salton et al., 1975). This representation produces datasets in12

which 1) the number of features is often larger than the number of documents,13

2) the vectors are very sparse, i.e., a lot of features are set to zero and 3) the14

features are highly correlated (due to the nature of natural languages). More-15

over, real-life datasets tend to be larger and larger which makes the automatic16

categorization process complicated and leads to scalability problems. As long as17

the datasets only grow in terms of the number of observations, the problem can18

be tackled by distributing the computation over a network of processors (Chu19

et al., 2006). However, when the number of features becomes larger than the20

number of observations, machine learning techniques tend to perform poorly21

due to overfitting, i.e., the model performs well on the training set but poorly22

on any other set. To prevent overfitting, the complexity of the model must be23

controlled during the training process, through model selection techniques. In24

the Support Vector Machine (SVM) algorithm (Vapnik, 1995), the model com-25

plexity is given by the VC-dimension, which is the maximum number of vectors,26

for any combination of labels, that can be shattered by the model. SVMs rely27

on the Structural Risk Minimization (SRM) principle, which not only aims at28

minimizing the empirical risk (Empirical Risk Minimization - ERM) but also29

the VC-dimension. SVMs have been used for text categorization and their per-30
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formance is among the best ones obtained so far (Joachims, 1998).31

The VC-dimension remaining unknown for many functions, the SRM is dif-32

ficult to implement. Another model selection, widely used, is to minimize both33

the ERM and a regularization term: λΩ[f ] where λ is a penalty factor, Ω[f ]34

a convex non-negative regularization term and f the model. For linear func-35

tions: f(x) = 〈w,x〉+b, the regularization term is often defined as Ω[f ] = ‖w‖p36

where ‖·‖p is the Lp-norm (Hoerl and Kennard, 1970; Tibshirani, 1994; Zou and37

Hastie, 2005). This has the effect of smoothing f and reducing its generaliza-38

tion error. The use of the L2-norm is known as the ridge penalization, whereas39

the use of the L1-norm as the LASSO penalization, which has the property of40

simultaneously doing shrinkage and feature selection.41

In this paper, we focus on penalized logistic regression. Logistic regression42

has the main advantage of computing a probability value rather than a score,43

as for the SVM. Furthermore, the ridge logistic regression has been shown to44

reach the same performance as the SVM on standard text categorization prob-45

lems (Zhang and Oles, 2001). Nevertheless, it produces a dense solution which46

cannot be used for large scale categorization. In (Genkin et al., 2007), the47

LASSO logistic regression was used to obtain a sparse solution. However, when48

the number of features is larger than the number of observations and/or when49

the features are correlated, the ridge penalization performance dominates the50

LASSO one (Zou and Hastie, 2005). Taking into account these observations, we51

propose a new model selection which produces a sparse solution by approaching52

the ridge solution.53

The rest of the paper is organized as follows: in the next section we discuss54

related works; we then describe, in section 3, our model selection approach55

before reporting, in section 4, our experimental results; section 5 concludes the56

paper.57
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2. Related work58

In (le Cessie and van Houwelingen, 1992), the authors have shown how ridge59

penalization can be used to improve the logistic regression parameter estimates60

in the cases where the number of features is larger than the number of obser-61

vations or when the variables are highly correlated. They have applied ridge62

logistic regression on DNA data and have obtained good results with stable pa-63

rameters. More recently, the ridge logistic regression was used in (Zhang and64

Oles, 2001) on the text categorization problem where the data are sparse and65

the number of features is larger than the number of observations. The authors66

have proposed several algorithms, which take advantage of the sparsity of the67

data, to solve efficiently the ridge optimization problem. The experimental re-68

sults show that the L2 logistic regression reaches the same performance as the69

SVM. Although the ridge method allows to select a more stable model by doing70

continuous shrinkage, the produced solution is dense and thus not appropriate71

for large and sparse data such as textual data.72

The LASSO regularization (L1-norm) has been introduced in (Tibshirani, 1994).73

The author shows, for linear regression, that the L1 penalization can not only do74

continuous shrinkage but has also the property of doing automatic variable se-75

lection simultaneously which means that the L1 solution is sparse. In (Genkin76

et al., 2007), an optimization algorithm based on (Zhang and Oles, 2001) is77

presented for Ridge and LASSO logistic regressions in the context of text cate-78

gorization. According to their experiments, the lasso penalization gives slightly79

better results than the ridge penalization in terms of the macro-averaged-F180

measure (the micro-averaged results are not given). It has been shown in (Efron81

et al., 2004; Tibshirani, 1994; Zou and Hastie, 2005) that the performance of82

the LASSO is dominated by the ridge in the following cases (we denote by p the83

number of features and by n the number of observations):84

• p > n: the LASSO will only select at most n features,85

• the features are highly correlated: the LASSO will select only one feature86

among the correlated features.87
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To tackle the limitations of the LASSO, the Elastic net method has been pro-88

posed in (Zou and Hastie, 2005) which tries to capture the best of both L1 and89

L2 penalizations. The Elastic net uses both L1 and L2 regularization in the lin-90

ear regression problem. The authors show that the L2 regularization term can91

be reformulated by adding p artificial input data such that each artificial data i92

has only the ith component non-null set to
√

λ2 where λ2 is the L2 regularization93

hyperparameter. This reformulation, which leads to a LASSO problem, relies94

on the particular form of the least square term, and cannot be extended to the95

logistic regression problem. Furthermore, as the L1 and L2 regularizations are96

done simultaneously, it is unclear how the solution of the Elastic net approaches97

the L2 solution. In (Zhao and Yu, 2006), the model consistency of LASSO is98

studied for linear regression and it is shown that the consistency of LASSO99

depends on the regularization parameter. In (Bach, 2008), the author proves100

that for a regularization parameter decay factor of 1√
n
, a consistent model can101

be obtained by applying LASSO on bootstrap samples and by selecting only102

the intersecting features. Nevertheless, using LASSO on bootstrap samples is103

a time consuming process. Moreover, since this method is based on LASSO, it104

also fails to induce a good model when the variables are correlated.105

3. Selected Ridge Logistic Regression106

The logistic regression model is part of the Generalized Linear Model (GLM)107

family (Hastie and Tibshirani, 1990; Mccullagh and Nelder, 1989). The GLM108

is a family of models, parametrized by β, which associate a target variable y to109

an input data x (x ∈ R
p) according to the relation β ·x = g(y) where g is a link110

function and β ∈ R
p. For simplicity, we represent any linear function β′ ·x′ +β′

0111

by β · x, where x is x′ with an extra dimension set to 1, and β is β′ with an112

extra dimension set to β′
0. The logistic regression model is obtained by using113

a logit function g(y) = P (y|β,x)
1−P (y|β,x) . When y ∈ {−1, 1}, the logistic regression114

model can be written as:115
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P (y = 1|β,x) =
1

1 + exp(−β · x)
(1)

β can be obtained by maximizing the log-likelihood over the training set D =116

{(x1, y1), . . . , (xn, yn)}. However, in order to obtain a strictly convex optimiza-117

tion problem and to avoid overfitting, a Tikhonov regularization term (Hoerl118

and Kennard, 1970) is added, leading to the following ridge logistic regression119

problem:120

β∗ = argmin
β

n∑

i=1

log(1 + exp(−yiβ · xi)) + λ‖β‖2
2

︸ ︷︷ ︸

l(β)

(2)

where λ is a strictly positive scalar. Adding a ridge regularization term is121

equivalent, in a Bayesian framework, to using a Gaussian prior on each com-122

ponent of β, under the assumption that the components are independent, i.e.123

P (β) =
∏

j P (βj) with P (βj) ∼ N (0, 1
2λ

).124

Several algorithms have been proposed in the literature to solve the opti-125

mization problem in 2 (Friedman et al., 2008; Minka, 2003). In (Genkin et al.,126

2007), an efficient algorithm, based on the one presented in (Zhang and Oles,127

2001), is proposed to solve problems with sparse data, such as text documents.128

However, the ridge regression solution is a dense vector which can hardly be129

used in large scale categorization where hundreds of thousand features are used.130

The problem we face is thus the one of finding β̂ such that:131

1. β̂ is close to β∗ and thus behaves well, ie l(β̂) ≃ l(β∗);132

2. β̂ is a sparse solution and thus can be used on large datasets.133

The second order Taylor series expansion on l(β) around β∗ leads to:134

l(β) ≃ l(β∗) + (β − β∗)T∇l(β∗)

+
1

2
(β − β∗)T Hl(β

∗)(β − β∗)

= l(β∗) +
1

2
(β − β∗)T Hl(β

∗)(β − β∗) (3)
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where ∇l(β∗) and Hl(β
∗) are respectively the gradient and the Hessian of l(β)135

at β∗ and where the equality derives from the fact that for β∗, the ridge solution,136

the gradient vanishes. Hence, obtaining a β̂ yielding a value for l close to the137

one of β∗ while being sparse can be achieved by solving the following strictly138

convex optimization problem:139

β̂ = argmin
β

(β − β∗)T Hl(β
∗)(β − β∗) + α‖β‖1 (4)

The L1 regularization term, used to ensure sparsity, corresponds, in the Bayesian140

framework, to the Laplace distribution prior on the components of β: P (βi) ∼141

Laplace(0, 1
α
) with α a strictly positive scalar. We refer to the above approach142

as the Selected Ridge Logistic Regression method.143

The so-called bag-of-words representation used in most text classification144

methods assumes independence between words in documents1. Such an inde-145

pendence assumption naturally leads to assuming that the components of β are146

independent of one another, and thus that the Hessian Hl(β
∗) is diagonal. We147

make this assumption in the remainder of the paper. In this case, an analytical148

solution to equation 4 can be obtained. Indeed, equation 4 can be rewritten as:149

β̂ = argmin
β

p
∑

i=1

(βi − β∗
i )2Hi(β

∗) + α‖β‖1 (5)

with150

Hi(β) =
∂2l(β)

∂β2
i

=

n∑

j=1

xji
2 exp(−yjβ · xj)

(1 + exp(−yjβ · xj))2
+ 2λ (6)

Thus, the overall optimization problem can be solved component by component:151

β̂i = argmin
βi

(βi − β∗
i )2Hi(β

∗) + α|βi| (7)

and its solution is given by theorem 3.1.152

1(Joachims, 2002) for example recommends to use linear kernels, and not polynomial or

Gaussian ones, for text classification.
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Theorem 3.1. The solution, β̂i, of the minimization problem in 7 is given by:153

β̂i =







β∗
i − α

2Hi(β∗)
if β∗

i > α
2Hi(β∗)

β∗
i + α

2Hi(β∗)
if β∗

i < − α
2Hi(β∗)

0 otherwise

(note that β̂i = 0 ifHi(β
∗) = 0).154

Proof Let us assume that β∗
i ≥ 0 and let g(βi) = (βi − β∗

i )2Hi(β
∗) + α|βi|.155

We have: ∀βi ≥ 0, g(βi) ≤ g(−βi), so that β̂i ≥ 0. Setting the derivative of the156

strictly convex function g wrt βi to 0, one gets:157

β+
i = argmin

βi>0
g(βi)

=







β∗
i − α

2Hi(β∗)
if β∗

i > α
2Hi(β∗)

0 otherwise.

In the case where158

β∗
i >

α

2Hi(β∗)

let159

β∗
i =

α

2Hi(β∗)
+ ǫ

Then, we have:160

g(0) = g(β∗
i − α

2Hi(β∗)
) + ǫ2Hi(β

∗) > g(β∗
i − α

2Hi(β∗)
)

This shows that β̂i = β+
i when β∗

i ≥ 0. The case β∗
i ≤ 0 is treated in exactly161

the same way and completes the proof of theorem 3.1.162

Automatic Setting of the penalty hyperparameter163

In order to reduce the number of hyperparameters to estimate, one can set the164

LASSO penalty α to the universal penalty (or universal thresholding). Indeed,165
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the function to be minimized in 4 can also be interpreted as the penalized loss166

of a Gaussian vector β with mean β∗ and covariance matrix H−1
l (β∗). For167

H−1
l (β∗) bounded in the vicinity of β∗, theorem 4 in (Antoniadis and Fan,168

2001) applies and defines the universal penalty (or universal thresholding) to be169
√

2 log(p)
p

, a value which guarantees that the risk function of β̂ (solution of 4) is170

within a factor of logarithmic order. This leads to the following property:171

Property 3.1. The universal penalty α for minimizing 4 w.r.t. β, for H−1
l (β∗)172

bounded in the vicinity of β∗, is
√

2 log(p)
p

, with p the dimension of β.173

The algorithm associated with the above, overall approach can be described as174

follows.175

Summary of the approach176

The Selected Ridge Logistic Regression method is summarized in algorithm 1.177

Algorithm 1 Selected Ridge Logistic Regression

Input: D - the training dataset

Input: λ - the ridge penalization factor

Input: optionally α - the lasso penalization factor

Output: β̂ - the parameter of the model as defined in eq. 1

1: Compute β∗ by solving eq. 2

2: if α is not given as an input argument then

3: Use property 3.1 to set α

4: end if

5: for all β̂i of β̂ do

6: Use theorem 3.1 to compute β̂i

7: end for

Despite the fact that the Selected Ridge method involves the computation of178

a ridge solution, it is important to note, as we will see in the experimental179

section, that the training time of the Selected Ridge method is usually shorter180

than that of the Ridge method. This is due to the fact that the optimal λ for181

both methods are different and, especially in text categorization, the optimal182
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λ for the Selected Ridge method is larger than the optimal λ for the Ridge183

method. For a small λ close to zero, the training time of the Ridge method will184

be important as more iterations will be needed to reach convergence.185

Relation to the Fisher Information Matrix186

The fisher information matrix I(β) is given, for each entry (i, j), by the following187

equation:188

Ii,j(β) = −E(
∂2 log P (y|x, β)

∂βi∂βj

) (8)

Thus, using the empirical Fisher information matrix Î(β∗), we have:189

Hi(β
∗) = Îi,i(β

∗) + 2λ (9)

The Fisher information matrix summarizes the average amount of information190

brought by the data on β. Hence according to theorem 3.1 and formula 9,191

the more information the data brings on β∗
i (ie the higher Îi,i(β

∗)), the higher192

Hi(β
∗) will be and the closer β̂i will be to β∗

i . In other words, the value obtained193

through the original ridge regression problem is almost not modified. On the194

contrary, if the data brings little information on β∗
i (ie Îi,i(β

∗) is small), then195

Hi(β
∗) will be small and β̂i will be set to zero for a large range of values of β∗

i .196

Thus, sparsity is obtained in the Selected Ridge Regression method by setting to197

0 the dimensions of the ridge solution β∗ which have small values and which198

are not supported by the data, ie for which Îi,i(β
∗) is small. This result reflects199

the intuition that, in many text categorization problems, only a few words are200

crucial and usually correspond to the dimensions for which the ridge values are201

sufficiently large. The development provided here, in particular theorem 3.1,202

shows that one should discard dimensions for which the ridge value is not larger203

than, roughly, the inverse of the Fisher information. Thus, the ridge value is not204

the only parameter one should consider. The information brought by the data205

on this value plays indeed a crucial role: dimensions with small values strongly206

supported by the data should be kept in the final solution.207
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4. Experimental Results208

The proposed model selection method was evaluated over a set of three209

well-known datasets and one large dataset. The first three datasets are Reuters210

21578, Ohsumed and 20-NewsGroups (Hersh et al., 1994; Joachims, 1998, 2002).211

All of these datasets have been widely studied in the text categorization litera-212

ture. Reuters 215782 is a collection of news on different domains. Ohsumed3 is a213

collection of medical abstracts originally designed for content-based information214

retrieval, and 20-NewsGroup4 a collection of documents written in the context215

of 20 different news groups. These collections are thus varied in terms of their216

production and content. The last dataset is a subset of documents taken from217

the DMOZ website5. This DMOZ dataset was collected in order to perform218

Large-Scale text categorization experiments. The characteristics of the datasets219

are reported in table 1. This last collection is a collection of web pages, and220

contains documents of various types (scientific articles, business descriptions,221

...) on several domains.222

Table 1: Datasets used for the experiments

Name
Train.

size (n)
Test size

#Features

(p)
#Categories Case

Reuters-21578 7770 3019 6760 90 p < n ( p

n
≈ 1)

Ohsumed 6286 7643 20520 23 p > n ( p

n
≈ 3)

20-NewsGroups 12492 6246 51666 20 p > n ( p

n
≈ 4)

DMOZ 20249 7257 133348 3503 p > n ( p

n
≈ 6)

All the datasets have been pre-processed according to the setting defined223

in (Joachims, 2002), which we briefly describe here. The Vector Space Model224

(VSM) (Salton et al., 1975) is used to represent the textual documents in a vector225

2http://www.daviddlewis.com/resources/testcollections/reuters21578/
3http://ir.ohsu.edu/ohsumed/ohsumed.html
4http://people.csail.mit.edu/jrennie/20Newsgroups/
5http://www.dmoz.org
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space. The VSM is also known as the Bag-of-Words (BOW) representation in226

which a list of terms is used to define a vector space, each term defining an axis227

of the space. A textual document can then be represented as a vector, using for228

each axis, the corresponding term frequency value. In order to obtain an efficient229

vector representation, each document is pre-processed using the following steps:230

1. Cleaning by removing non-Latin characters, numerical symbols and punc-231

tuation marks,232

2. Segmenting terms separated by a white space into a list of words,233

3. Removing stopwords (using a stopword list),234

4. Stemming each word using the Porter Stemming algorithm (Porter, 1980).235

We also used the TF-IDF weighting scheme (Jones, 1988) to give more im-236

portance to terms that are frequent in a document (the TF part) and specific237

to a small number of documents (IDF part). Furthermore, we normalized all238

document vectors.239

For multi-class categorization, we use the one-vs-the-rest strategy based on240

binary logistic regression models. To assign a document to a unique category in241

mono-label problems, we use the following decision function: argmaxc P (yi =242

+1|βc,xi); if a document can be assigned to several categories (multi-label prob-243

lems), we assign it to each category c such that P (yi = +1|βc,xi) ≥ 0.5.244

In the experiments, the F1 measure (van Rijsbergen, 1979) is used to evaluate245

the performance of the classifiers. It is defined as:246

F1 =
2 × TP

2 × TP + FP + FN
(10)

where TP stands for true positive, FP for false positive and FN for false negative.247

For multi-class datasets, we used the micro-F1 and macro-F1 measures. In the248

micro-F1 measure, TP, FP and FN are summed over each category giving thus249

an equal weight to each document. In this case, this measure corresponds to250

the overall precision of the system and provides a measure of the accuracy of251

the classifier. The macro-F1 is the arithmetic mean of F1 across the categories,252
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giving an equal weight to each category. If F c
1 denotes the F1 measure for253

category c, then the micro-F1 is defined by:254

micro-F1 =
K∑

c=1

Nc

N
F c

1 (11)

where K denotes the number of categories, Nc corresponds to the number of255

documents in category c, and N is the total number of documents (N =
∑

c Nc).256

The macro-F1 is defined by:257

macro-F1 =

K∑

c=1

1

K
F c

1 (12)

We also report the degree of sparsity for each model. The sparsity is given258

by :259

s = 1 − avg #features used in the model

#features in the dataset
(13)

A solution based on all the features will thus have a degree of sparsity of 0.260

Moreover, it is important to note that the penalization parameter was fixed261

for each algorithm by cross-validation except for the DMOZ subset where the262

parameter was tuned using a validation set composed of 7256 documents. For263

the Selected Ridge method, the hyperparameter α in equation 4 was automati-264

cally set using property 3.1.265

To solve the LASSO and Ridge regression problems, we used the algorithm266

described in (Genkin et al., 2007). The training and prediction times are given267

as indications. Since, the calculations were distributed over a set of computers,268

the given times are the times spent on calculation plus the times consumed by269

the system (thread swapping, network transfer time, etc.).270

It is also important to note that in all the results below, the training time271

of the Selected Ridge method is always shorter than that of the Ridge method.272

This can be confusing since the Selected Ridge involves the computation of a273

Ridge solution and, thus, one can expect its training time to be at least equal274

to that of the Ridge method. Actually, as we said above, this is due to the fact275
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that the ridge’s training time depends on the Ridge regularization parameter λ.276

If λ is very close to 0 then the training time will be important as more iterations277

will be needed to reach convergence. In all our experiments, the optimal λ for278

the Ridge method was always smaller than that for the Selected Ridge method.279

For example, for the DMOZ dataset in subsection 4.4, the optimal λ for Ridge280

is 0.0001 (training time: 13299.43s) but the optimal λ for the Selected Ridge281

is 0.001 (training time: 10996.80s). This difference can also be seen in table 6:282

when the L1-parameter (α) is zero (Selected Ridge=ridge) then the optimal λ283

for the Selected Ridge method is 0.0001, but when α is greater than 0 then the284

optimal λ is always 0.001.285

4.1. Experiments on Reuters-21587286

The Reuters-21587 dataset is a collection of newswire articles. Each docu-287

ment was manually assigned to one or more categories, according to its subject.288

In this collection, we used the standard “ModApte” split, which provides train-289

ing and test sets. The results are reported in Table 2. The LASSO and the290

ridge reach the same level of performance; however, the ridge method yields a291

dense model whereas the LASSO one only selects 0.0043% of the features. The292

feature selection method used on the ridge model (Selected Ridge Regression293

method) allows to reach the same micro-F1 performance than the ridge method,294

but with a number of features reduced by 95%.295

Table 2: Categorization Result on Reuters-21587(ModApte)

Algorithm Micro F1

Macro

F1

Sparsity
Training

time (sec)

Pred. time

(sec)

LASSO 0.8711 0.5167 0.9957 164.07 0.44

Ridge 0.8690 0.5099 0.0 257.96 13.20

Selected Ridge 0.8645 0.4563 0.9447 180.24 1.55
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4.2. Experiments on Ohsumed296

The Ohsumed corpus (Hersh et al., 1994) is a subset of the medical biblio-297

graphic database MEDLINE. Each document is a reference of a medical article298

published in a medical journal. Following the settings defined in (Joachims,299

1998, 2002), we only kept the first 20,000 references which had abstracts and300

were published in 1991. This set is split into a training set composed of the first301

10,000 documents and a test set composed of the rest. Only abstracts are used302

for the categorization task. After the pre-processing, the training set is reduced303

to 6,286 unique documents and the test set to 7,643. Each document belongs304

to one or more cardiovascular categories.305

As shown in table 3, the LASSO method performs well on this dataset ; not306

only it has the best performance in terms of micro and macro-F1 but it also307

gives a very sparse solution. The Selected Ridge method slightly improves the308

micro-F1 performance of the ridge method while removing 88% of its features.309

Table 3: Categorization Result on Ohsumed

Algorithm Micro F1

Macro

F1

Sparsity
Training

time (sec)

Pred. time

(sec)

LASSO 0.6533 0.6053 0.9800 81.16 1.83

Ridge 0.6387 0.5897 0.0 144.06 31.20

Selected Ridge 0.6409 0.5802 0.8827 107.08 5.32

4.3. Experiments on 20-Newsgroups310

The 20-NewsGroups is a collection of emails taken from the Usenet news-311

groups. Each email is assigned to a unique category according to its topic. The312

experiment on 20-newsgroups, reported in table 4, clearly shows that the ridge313

penalization outperforms the LASSO method. In fact, the variable selection314

of the LASSO is too aggressive and eliminates interesting features. However,315
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our variable selection method (Selected Ridge) achieves micro-F1 and macro-F1316

scores similar to those obtained by the ridge, while relying on only 10% of the317

features used in the ridge solution.318

Table 4: Categorization Result on 20-NewsGroups

Algorithm Micro F1

Macro

F1

Sparsity
Training

time (sec)

Pred. time

(sec)

LASSO 0.8663 0.8644 0.9861 384.16 1.72

Ridge 0.9038 0.9018 0.0 157.96 71.25

Selected Ridge 0.8966 0.8939 0.9050 136.01 7.51

4.4. Experiments on DMOZ319

In order to assess the behavior of the different methods in a large scale cat-320

egorization setting, we have collected 34,762 html documents from the DMOZ321

website. DMOZ (www.dmoz.org) is an open directory project that aims to322

classify the whole web into categories. In the collected dataset, we only used323

3,503 categories and we split the corpus into 3 parts: a training set composed324

of 20,249 documents, a validation set composed of 7,256 documents and a test325

set composed of 7,257 documents. The validation set is used to tune the hy-326

perparameters. For the pre-processing of the documents, we removed the html327

tags and the script parts to keep only the text and we applied the standard328

pre-processing steps described above. For illustration, figure 1 shows a part of a329

document from the corpus before and after the pre-processing. In this dataset,330

each document belongs to a unique category.331

As expected in the case where the number of features is largely greater than332

the number of documents, the ridge method clearly outperforms LASSO as333

shown in table 5. However, the ridge solution being dense, the categorization334

of large sets is a time consuming process which makes the ridge solution inap-335

propriate. The LASSO and the Selected Ridge methods both produce a sparse336
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Figure 1: A part of an html document taken from the DMOZ corpus (a)

before and (b) after the pre-processing. The address of the document is

http://www.oopweb.com/Algorithms/Files/Algorithms.html and it is referenced in DMOZ as

“OOPWeb Algorithms Directory” at http://www.dmoz.org/Computers/Algorithms.

solution with a degree of sparsity of 99%. The selected ridge performs better337

than the LASSO in terms of the micro-F1 measure, but however has a macro-F1338

value slightly lower than the value obtained by LASSO.339

Table 5: Categorization Result on DMOZ

Algorithm Micro F1

Macro

F1

Sparsity
Training

time (sec)

Pred. time

(sec)

LASSO 0.2936 0.1661 0.9999 9805.78 41.51

Ridge 0.3434 0.2020 0.0 13299.40 31084.90

Selected Ridge 0.3124 0.1586 0.9993 10996.80 42.52

In table 6, we report the performance of the Selected Ridge method according340

to the value of the L1 penalty term in equation 4. The results show that341

property 3.1 provides a good penalty value in terms of trade-off between micro-342

F1 performance and sparsity. It is also interesting to note that with α set to343

10−7, one obtains a method yielding results on a par with the ones obtained by344

the ridge (which provides the best results in terms of both micro- and macro-F1)345

while being twice sparser and almost four times faster.346
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Table 6: Performance of the Selected Ridge Method on DMOZ according to the penalty value

in equation 4. The results corresponding to the optimal universal penalty value (property 3.1)

are indicated in bold.

Penalty (α) Micro-F1 Macro-F1 Sparsity
Training

time (sec)

Prediction

time (sec)

1 0.1188 0.0353 0.9999 11103.9 8.33

0.1 0.2604 0.1209 0.9999 11065.8 32.81

0.05 0.2835 0.1343 0.9998 11325.1 39.82

0.03 0.2953 0.1436 0.9997 11013.4 39.34

0.02 0.3040 0.1524 0.9996 11164.6 49.07

0.0133 0.3124 0.1586 0.9993 10996.8 42.52

0.01 0.3156 0.1604 0.9992 10965.5 52.97

10−7 0.3434 0.1949 0.5423 11090.2 8858.31

0 0.3434 0.2020 0.0 13299.40 31084.90

5. Conclusion347

As pointed in (Zhao and Yu, 2006): Sparsity or parsimony of statistical mod-348

els is crucial for their proper interpretations. In this paper, we have proposed a349

model selection method to “sparsify” the ridge logistic regression solution. This350

method first solves the classic ridge logistic regression, then sets less informative351

features with low values to zero, while ensuring that the resulting sparse solution352

remains in the vicinity of the ridge solution. This latter property is obtained353

by using a Taylor expansion of the likelihood function around the solution of354

the ridge, penalized with the L1 norm. The experimental text categorization355

results obtained on well-studied datasets and on a large-scale dataset collected356

from www.dmoz.org show that our method produces a solution which offers a357

good trade-off between the performance of the ridge solution and the sparsity358

of the LASSO solution. In particular, when p > n (the number of features is359
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greater than the number of observations), our method leads to a sparse version360

of the ridge which is both accurate (in terms of both micro- and macro-F1) and361

fast.362
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