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.l Complex Networks

* Large graphs with non-trivial topological
features

* Model systems of interacting objects.

* ex: Internet, www, protein web, friendship
networks ...
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|.2.]1 Community Detection
Definition

o Community: group of nodes with dense
inner links and sparse outer links

 Community detection: find the best graph
partition according to this definition




|.2.2 Community Detection

Solution Approaches
* Hierarchical Approaches
° Divisive vs Agglomerative

e Optimization Approaches
|. Partition: stochastic vs heuristic

2. Quality evaluation

e Others




|.2.3 Community Detection -
Modularity

* Newman’s modularity measure:

Q :Z(eu - a;)

> e;: observed fraction of links inside the it community

° a: estimation of e. under the hypothesis of uniformly
randomly distributed links.

* Values:
> Q=0: networks without community structure and/or
random partition
> Q=I: network with strong community structure and
good partition
> Qe[0.3,0.7] is generally considered a good result



|.3 Testing Algorithms

Real networks Artificial Networks

Usually small No theoretical limit
Uncontrollable, depends on depend on the generation
the modeled system model parameters

Expensive and/or difficult to

build Computer generated

Possibly subjective or
unknown community Communities created and
structure controlled




|.3 Testing Algorithms

Real Network Properties:

* Scale-free (power-law degree distribution)
* Power-law community size distribution

e Small average distance

* High transitivity

* High degree correlation s Law Distibution

Number of nodes with k links

Number of links (k)



2.1 Selected Algorithms

&

*Pons and Latapy’s
Walktrap
*Girvan and
Newman’s

*Van Dongen’s

A

Edgebetweenness

Markov Clustering

J

Using modularity
to select the best

cut

Not using
modularity

internally
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Label
Propagation
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Raghavan et al’s
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Using modularity

Newman et al.’s
Fastgreedy
*Newman’s
Eigenvector
*Reichardt and
Bornholdt’s
Spinglass

<
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2.2 Lancichinetti et. al generative

model

n,B; ) & <k>J‘ kmaxr L

® Apply configuration
model with average

Rewire some links in
order to respect p,

without changing the
nodes degrees

Draw community sizes
with power-law exponent
B and affect each node to
a community

degree <k>, max. degree
k... and power-law

max
exponent 7y



2.2 Lancichinetti et. al generative

model
1 {100,500}
p {1,2}
Y {2,3}
(k) {5,15,30}
Koax {15,45,90}
1l [0.05,0.95]




2.3 Normalized mutual information
(NMI)

* Quality assessment for a dataset partition
> m: confusion matrix

o n: dataset size

-2y, Z}- m,; log(?’lmij/mHmH)

] =
. Valugsi:m” log(m;,./n) + X, my; log(mﬂ/n)

° 0: random partition

o |: perfect partition



3. Results & Discussions
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nmi value
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3. Results & Discussions
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3. Results & Discussions

e Parameters effects:
> B and y: almost no effect (p<0.06)

o <k>: higher average degree improves performance

o Algorithms:

° Partition quality:
MC ,WT and SG performs better
EB and MC good for high p
LP is not robust

° Speed:
SG is slow, EB is very slow
LP, FG and WT are fast

EV and MC lie somewhere in between



4. Conclusion

Further experiments
° on larger networks
> with more realistic networks

> with more algorithms

o with different performance measures



Questions
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Algorithms complexities

LP

FG

EV

WT

MC

SG

EB

O(m+n)

0(nlog*n)

0(n*)

0(n*logn)

0 (nk?)

unknown

0(m*n)

n: node number; m:link number ; k: number of ressource allocated

You can also give the complexities for sparse networks, they’re simpler
(m = n).This k is weird, isn’t it the average degree!?




Results

* Add a nmi plot with dispersion values, in
case someone ask to see it

* Also, add a slide with only one NMI plot,
in order to have something big to show
the audience (in case they can’t see what’s
on your 4-plots slides). And do the same

with the corresponding modularity plot



