Relative Evaluation of Partition Algorithms for Complex Networks

Günce Keziban Orman

Galatasaray University C.S. Department / TUBITAK UEKAE keziban.orman@uekae.tubitak.gov.tr

Vincent Labatut

Galatasaray University C.S Department vlabatut@gsu.edu.tr

I. Introduction

- I. Complex networks
- 2. Community detection
- 3. Testing algorithms
- 2. Method
 - I. Selected algorithms
 - 2. Lancichinetti et. al generative model
 - 3. Normalized mutual information
- 3. Results & Discussions
- 4. Conclusion

I.I Complex Networks

- Large graphs with non-trivial topological features
- Model systems of interacting objects.
- ex: Internet, www, protein web, friendship networks ...

I.2.I Community Detection Definition

- Community: group of nodes with dense inner links and sparse outer links
- Community detection: find the best graph partition according to this definition

I.2.2 Community Detection Solution Approaches

- Hierarchical Approaches
 - Divisive vs Agglomerative
- Optimization Approaches
 - Partition: stochastic vs heuristic
 - 2. Quality evaluation

I.2.3 Community Detection -Modularity

• Newman's modularity measure:

$$Q = \sum_{i} (e_{ii} - a_i^2)$$

- e_{ii}: observed fraction of links inside the ith community
- a_i : estimation of e_{ii} under the hypothesis of uniformly randomly distributed links.
- Values:
 - Q=0: networks without community structure and/or random partition
 - Q≈I: network with strong community structure and good partition
 - $Q \in [0.3, 0.7]$ is generally considered a good result

I.3 Testing Algorithms

	Real networks	Artificial Networks		
Size	Usually small	No theoretical limit		
Network properties	Uncontrollable, depends on the modeled system	depend on the generation model parameters		
Construction	Expensive and/or difficult to build	Computer generated		
Community structure	Possibly subjective or unknown community structure	Communities created and controlled		

I.3 Testing Algorithms

Real Network Properties:

- Scale-free (power-law degree distribution)
- Power-law community size distribution
- Small average distance
- High transitivity
- High degree correlation

2.1 Selected Algorithms

2.2 Lancichinetti *et. al* generative model

$n,\beta,\gamma,\langle k\rangle, k_{max},\mu$

Rewire some links in order to respect μ , without changing the nodes degrees

Draw community sizes with power-law exponent β and affect each node to a community

Apply configuration model with average degree **<k>**, max. degree **k**_{max} and power-law exponent γ

2.2 Lancichinetti *et. al* generative model

PARAMETER	VALUE		
n	{100,500}		
β	{I,2}		
γ	{2,3}		
$\langle k \rangle$	{5,15,30}		
<i>k</i> _{max}	{15,45,90}		
μ	[0.05,0.95]		

2.3 Normalized mutual information (NMI)

- Quality assessment for a dataset partition
 - *m*: confusion matrix
 - n: dataset size

$$I = \frac{-2\sum_{i}\sum_{j}m_{ij}\log(nm_{ij}/m_{i+}m_{+j})}{\sum_{i}m_{i+}\log(m_{i+}/n) + \sum_{j}m_{+j}\log(m_{+j}/n)}$$

• Values:

- 0: random partition
- I: perfect partition

average degree 30

average degree 30

3. Results & Discussions

WALKTRAP gamma 3 beta 2

3. Results & Discussions

- Parameters effects:
 - β and γ : almost no effect (ρ <0.06)
 - <k>: higher average degree improves performance

• Algorithms:

- Partition quality:
 - MC ,WT and SG performs better
 - EB and MC good for high μ
 - LP is not robust
- Speed:
 - SG is slow, EB is very slow
 - LP, FG and WT are fast
 - EV and MC lie somewhere in between

4. Conclusion

Further experiments

- on larger networks
- with more realistic networks
- with more algorithms
- with different performance measures

Questions

6/27/2009

Algorithms complexities

LP	FG	EV	WT	MC	SG	EB
O(m+n)	$O(nlog^2n)$	0 (n ²)	$O(n^2 logn)$	$O(nk^2)$	unknown	$O(m^2n)$

n: node number; **m:** link number; **k:** number of ressource allocated

You can also give the complexities for sparse networks, they're simpler $(m \approx n)$. This k is weird, isn't it the average degree?

Results

- Add a nmi plot with dispersion values, in case someone ask to see it
- Also, add a slide with only one NMI plot, in order to have something big to show the audience (in case they can't see what's on your 4-plots slides). And do the same with the corresponding modularity plot