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Introduction  

Decompression illness (DCI) is an adverse outcome of decompression and has a wide 
spectrum of signs and symptoms. The treatment plan often depends on the classification of 
DCI, which makes the correct classification of DCI crucial; however, there is no consensus 
on the classification of DCI. [1-4]. We have previously attempted DCI clustering with 
statistical methods [5, 6] and suggested that data mining techniques can be used as a 
decision support tool to determine the type of DCI.  

 
Our recent study was based on a classification of DCI using multivariate statistics to 

assess naturally associated clusters of signs and symptoms based on 1929 cases reported 
by hyperbaric chambers to the Divers Alert Network from 1999 to 2003 [7]. The aim of this 
study is to validate the reliability of the previous work by applying three different alternative 
clustering methods, by comparing the results of two-step clustering analysis with the 
Perceived Severity Index (PSI) [4] and to validate the characteristics of patient clusters using 
association rules. Additionally, we will present the most interesting association rules detected 
by the A Priori algorithm on the same data.   

 
Methods 

 
Below are the details of the algorithms we used as an alternative to our previous work:. 

K-Means Algorithm 
The k-means method is a widely used geometric clustering algorithm based on the article 

proposed by Lloyd in 1982 [7]. Given a set of n instances, the algorithm uses a local search 
approach to partition the instances into k clusters. A set of k initial cluster centers is chosen 
arbitrarily. Each instance is then assigned to the cluster whose center is the closest, and the 
centers are recomputed as centers of mass of their assigned points. This is repeated until 
the clusters stabilize. It can be shown that no partition occurs twice during the course of the 
algorithm, and so the algorithm is guaranteed to terminate. The k-means method is still very 
popular today, and it has been applied in a wide variety of areas ranging from computational 
biology to computer graphics [8]. One of the shortcomings of the k-means algorithm is the 
necessity to specify the number of clusters.  
COBWEB Algorithm 

Unlike the k-means algorithm which iterates over the whole dataset, the COBWEB 
Algorithm [9] incrementally incorporates instances into a classification tree. The incorporation 
of an instance is a process of classifying the object by descending the tree along an 
appropriate path, updating counts along the way, and performing one of several operators at 
each level.  These operators include: classifying the instance with respect to an existing 
class, creating a new class, combining two classes into a single class (merging), and dividing 
a class into several classes (splitting). There are two parameters: acuity (minimum value to 
avoid infinite values) and cutoff (a parameter to suppress growth to avoid overwhelmingly 
large hierarchy) [10]. 

Expectation-maximization Algorithm 
The Expectation-Maximization (EM) algorithm [11] is a statistical approach that makes use 

of the finite Gaussian mixtures model. A mixture is a set of N Gaussian probability 



distributions, where each distribution represents a cluster. Additionally, a latent random 
variable models the probability for an instance to belong to a cluster. The algorithm has to 
estimate the parameters defining each cluster (i.e. mean and standard-deviation) and the 
latent variable distribution. The estimation process is iterative, with an expectation step 
consisting in using the current estimate of the parameters to process the expected value for 
the likelihood function, and a maximization step consisting in processing new estimates for 
the parameters by maximizing the previously processed likelihood. The algorithm terminates 
when cluster quality, i.e. expected likelihood, no longer shows significant improvement. The 
number of clusters can be either set by the user or estimated by the algorithm.  

A Priori Algorithm 
Agrawal et al. [7] introduced association rules by presenting an algorithm which generates 

significant logical rules involving items in a large database.  An item is defined by a field and 
its value, for instance X=x. An association rule takes the form “if X=x then Y=y” where X=x 
and Y=y are items or item sets. Even for a small data set, many different association rules 
can be derived, so interest is restricted to those applying to a reasonably large number of 
instances, and having a reasonably high accuracy on the instances they apply to. The 
support, or coverage, of an association rule is the proportion of instances containing all the 
items used in the rule. Its confidence, or accuracy, is the ratio of the rule support to the 
support of its conditions (items located in the left part) alone. In other terms, the confidence 
corresponds to the proportion of instances for which the rule is correct, relatively to the total 
number of instances it applies to [10]. The association rule mining task is usually 
decomposed in two subtasks. One is to find item sets whose occurrences exceed a 
predefined threshold (minimum support) in the database, called frequent item sets. The 
second task is to generate association rules from those large item sets with a constraint of 
minimal confidence. The process starts with small frequent item sets, and then iteratively 
enlarge them until no frequent item set can be defined [12]. 

Data and Tools  
DCI data were retrieved from the Diving Injury Database maintained by DAN America and 

based on reports provided by participating hyperbaric facilities using a standardized Diving 
Incident Report Form (DIRF). We used 1929 DIRFs (1368 males – 561 females) which were 
collected between 1999 and 2003. The average age of the patients is 37.94 with a range of 
13 to 73. Twenty-five different signs and symptoms were listed: altered consciousness, 
confusion, dyspnea/chockes, cardiovascular signs (CV), pain, skin rash and mottling, 
localized skin swelling, abnormal sensations, hearing loss, vision problems, discoordination, 
muscular weakness, muscular problems, decreased skin sensitivity, bladder-bowel problems, 
headache, fatigue, nausea, dizziness, vertigo, paresthesia, tinnitus, numbness, paralysis and 
malaise. After a first exploratory analysis, an additional pain-only field was added, to improve 
performance for some algorithms.  

The obtained clusters differ by their characteristic signs and symptoms. Our criterion was 
to look for clusters where each cluster have characteristic signs and symptoms that are 
distinct from other clusters. We favored those with features relevant with medical references. 
As a sample design, we used k-fold cross validation with 10 folds, which is the number of 
folds supposed to give best results in general [13]. We used Weka 3.5.7 [10], which is an 
open source software issued under the GNU GPL, as a data mining tool. We also used 
SPSS 16.0.1 for calculating the associations among the classifications and data 
transformation. 

  

Results 

K-Means 
We applied the K-means algorithm for 2 to 6 clusters, and found out 4 clusters was the 

best parameter value according to our criteria. The estimated clusters contain 708, 637, 300 
and 204 patients, respectively.  Table 1 shows the signs and symptoms distribution over the 



clusters. Numbness, paresthesia and decreased skin sensitivity are the most characteristic 
signs and symptoms for Cluster K1. Cluster K2 is characterized by fatigue, headache, skin, 
confusion, nausea, dyspnea/chokes, altered consciousness, vertigo, localized skin swelling, 
hearing loss and vision problems. Cluster K3 is the pain only cluster. Malaise, muscular 
weakness, paralysis and bladder bowel problems are the characteristics for Cluster K4. 

Expectation-maximization 
There is no need to specify the number of clusters for EM. The algorithm yielded four 

clusters containing 905, 253, 471 and 300 patients, respectively. We have set the maximum 
number of iterations to 100 but the iterations already repeated until convergence which did 
not exceed the maximum number of iterations. Table 1 shows the detailed results. Cluster E1 
has numbness, paresthesia and decreased skin sensitivity as characteristic signs and 
symptoms. Weakness, muscular weakness, paralysis and bladder bowel problems are the 
characteristic signs and symptoms of Cluster E2. Cluster E3 is characterized by altered 
consciousness, confusion, dyspnea/chokes, localized skin swelling, skin rash and mottling, 
vertigo and hearing loss while Cluster E4 is the pain only cluster.  

 

Signs and symptoms 
K-means EM COBWEB 

K1 K2 K3 K4 E1 E2 E3 E4 C1 C2 C3 

Altered consciousness 5 28 0 10 6 10 27 0 11 8 20 

Confusion 32 78 0 32 35 36 71 0 35 28 77 

Dyspnea/chokes 27 45 0 20 19 26 47 0 27 10 54 

CV 2 1 0 1 1 2 1 0 2 1 1 

Pain 431 159 300 45 370 102 163 300 96 179 652 

Skin Rash and Mottling 20 89 0 13 27 15 80 0 15 30 76 

Localized Skin Swelling 4 17 0 1 4 1 17 0 1 5 16 

Abnormal Sensations 12 17 0 8 10 10 17 0 10 10 17 

Hearing Loss 2 13 0 1 1 2 13 0 1 4 11 

Vision Problems 16 26 0 11 12 16 25 0 15 13 25 

Discoordination 19 24 0 17 18 21 21 0 21 18 21 

Muscular Weakness 63 7 2 186 9 243 4 2 237 10 11 

Muscular Problems 22 25 0 5 23 9 20 0 7 19 26 

Decreased Skin 
Sensitivity 

140 48 0 60 152 72 24 0 73 95 76 

Bladder Bowel 
Problems 

7 2 0 27 1 34 1 0 33 2 1 

Headache 40 96 0 21 59 22 76 0 24 49 81 

Fatigue 59 110 0 26 77 29 89 0 32 60 100 

Nausea 29 57 0 10 41 11 44 0 12 35 46 

Dizziness 46 95 0 27 58 31 79 0 31 55 78 

Vertigo 11 28 0 8 9 10 28 0 9 13 25 

Paresthesia 615 51 0 74 593 132 15 0 128 565   26  

Tinnitus 1 3 0 0 1 0 3 0 0 1 2 

Numbness 753 135 0 115 846 148 9 0 163 649 167 

Paralysis 44 8 0 71 8 111 4 0 107 5 11 

Malaise 74 28 0 204 43 237 26 0 255 20 31 

Table 1. Signs and symptoms for K-Means, EM and COBWEB clusters  

 

COBWEB 
We applied the COBWEB algorithm with acuity and cutoff parameters ranging from 0.1 to 

1 and from 0.2 to 0.35, respectively. The best results according to our criteria were obtained 
for an acuity of 1 and a cutoff of 0.33. Three clusters were estimated, with 264, 721 and 944 
patients respectively. Table 1 shows the characteristic signs and symptoms for each cluster. 



Weakness, paralysis, muscular weakness and bladder bowel problems are the characteristic 
signs and symptoms for Cluster C1. Numbness and paresthesia are the signs and symptoms 
for Cluster C2.  While pain is a significant sign for Cluster C3, it also has other signs and 
symptoms: confusion, altered consciousness, dyspnea/chokes, skin rash and mottling, 
localized skin swelling, hearing loss, headache, fatigue, vertigo. Compared to the other 
classification methods results, we did not find a pain-only cluster, which may be due to the 
incremental nature of the algorithm. 

Analysis 
We analyzed our results by carrying out both whole classification and cluster-to-cluster 

comparisons. First, we used Goodman-Kruskal’s lambda, which measures the association 
level between nominal random variables, to compare classifications from the tested 
algorithms and PSI diagnosis, as shown in Table 2.  The association between the 
classifications from the different algorithms is generally very strong, varying between 0.343 
and 0.827. The association level is higher between the algorithms (including Two-step) than 
between the algorithms and PSI (manual classification). This means firstly that all automatic 
classification methods led to very similar results, and secondly that the resulting clusters are 
close to those defined by medical experts. COBWEB is the most different, because it only 
found three clusters. Two-step clustering is the most similar to PSI classification. 
 
 EM COBWEB K-Means Two-Step PSI 

EM - 0.621 0.759 0.827 0.405 

COBWEB 0.621 - 0.449 0.549 0.350 

K-Means 0.759 0.449 - 0.802 0.343 

Two-Step 0.827 0.549 0.802 - 0.444 

PSI 0.405 0.350 0.343 0.444 - 

Table 2. Association between clusters measured with Goodman-Kruskal’s lambda  
 
 We performed a cluster-to-cluster comparison to check if these similarities were also 

present at this level. Table 3 shows the Pearson product-moment correlations between 
clusters from EM (E), k-means (K), COBWEB (C), Two-step (T), and PSI (P) classifications. 
Just by observing the characteristic signs and symptoms in Table 1, one may infer that 
correspondences exist between some clusters. This is confirmed by the strong correlations 
shown in Table 3, leading us to define four typical clusters. Typical cluster α correspond to 
clusters K1, E1, C2, T2 and P3 which are highly correlated (>0.9687), and all characterized 
by numbness and paresthesia. Typical cluster β corresponds to clusters K4, E2, C1, T3 and 
P1 which are highly correlated (>0.8808) and present muscular weakness, bladder bowel 
problems, paralysis and weakness. Typical cluster γ corresponds to clusters K2, E3 and T4, 
highly correlated (0.8120) and sharing altered consciousness, confusion, dyspnea/chokes, 
skin rash and mottling, localized skin swelling,, hearing loss and vertigo. Typical cluster δ is 
the pain only cluster, corresponds to clusters K3, E4, T1 and P4 (>0.9913). Cluster C3 is 
correlated to all K2,E3,T4 (>0,7441) and K3,E4,T1,P4 (0.9518), meaning it is likely a merge 
of typical clusters γ and δ. Cluster P2 is correlated with K2 (0.6230) and T4 (0.6065), and 
corresponds certainly to typical cluster γ, although it is not highly correlated with E3 (0.4928). 
Note that some PSI clusters are also non-trivially correlated to other clusters (E1:P1=0.6991, 
K1:P1=0.7387, E3:P4=0.7458), so the correspondence between PSI and the clustering 
methods is not straightforward. 

 

Cluster α Cluster β Cluster γ Cluster δ 
E1:K1=0.9910 
E1:C2=0.9817 
E1:T2=0.9957 
E1:P3=0.9951 
K1:C2=0.9687 
K1:T2=0.9937 

E2:K4=0.9814 
E2:C1=0.9975 
E2:T3=0.9916 
E2:P1=0.9151 
K4:C1=0.9881 
K4:T3=0.9738 

E3:K2=0.8120 
E3:C3=0,7864 
E3:T4=0.8693 
E3:P2=0.4928 
K2:C3=0.7489 
K2:T4=0.9765 

E4:K3=1 
E4:C3=0.9518 
E4:T1=1 
E4:P4=0.9913 
K3:C3=0.9518 
K3:T1=1 



K1:P3=0.9933 
C2:T2=0.9815 
C2:P3=0.9730 
T2:P3=0.9950 

K4:P1=0.8808 
C1:T3=0.9954 
C1:P1=0.9235 
T3:P1=0.9455 

K2:P2=0.6230 
C3:P2=0.5802 
C3:T4=0.7441 
T4:P2=0.6065 

K3:P4=0.9913 
C3:P4=0.9704 
C3:T1=0.9518 
T1:P4=0.9913 

Table 3. Correlations between clusters measured with Pearson’s correlation 

A priori algorithm 
We used the A priori algorithm to find out association rules linking symptoms and signs to 

the estimated cluster, in order to have a better understanding of the characteristic signs and 
symptoms. We applied the algorithm with minimum support and minimum confidence ranging 
from 0.1 to 0.9 and from 0.4 to 0.9, respectively. Our goal was to get simple rules, 
appropriate for human interpretation, and not necessarily the most accurate ones. 

 
 Signs and symptoms Cluster Cvrg Cnf 

K-means 

Altered consciousness, Localized skin swelling, 

Hearing loss, Numbness, Malaise 
K1 0.41 0.84 

Hearing loss, Bladder Bowel problems, Tinnitus, 

Numbness, Malaise 
K1 0.42 0.84 

EM 

Altered consciousness, Localized skin swelling, 

Hearing loss, Muscular Weakness, Vertigo, 

Paralysis 

E1 0.80 0.56 

Skin rash and mottling, Hearing loss,  Muscular 
Weakness 

E1 0.80 0.56 

COBWEB 

Altered consciousness, Localized skin swelling, 

Dyspnea/chokes, Muscular Weakness, Bladder 

Bowel problems, Vertigo  

C2 0.79 0.45 

Malaise, Paralysis, Bladder Bowel problems, 

Dyspnea/chokes, Localized skin swelling 
C2 0.58 0.45 

Two-step 

Consciousness, Pulmonary, Hearing, Muscular 

Weakness, Numbness, Weakness 
T2 0.40 0.87 

Dyspnea/chokes, CV, Hearing loss, Tinnitus, 

Malaise, Muscular Weakness, Numbness, Bladder 
Bowel problems 

T2 0.40 0.87 

Table 4. Some of the association rules mined with the A priori algorithm 
 

Table 4 shows the main rules mined for typical cluster α, for each algorithm where  signs 

FALSE (does not exist). Interestingly, rather than the presence of cluster α most prominent 
features, A priori used the absence of the other clusters’ features to discriminate the 
instances. Numbness is required for K-means and Two-step, but decreased skin sensitivity 
and paresthesia are not considered. Instead, instances must not present malaise (a cluster β 
feature) or hearing loss, altered consciousness, dyspnea/chokes, skin rash and mottling, 
localized skin swelling (γ cluster)., The rules mined for the other clusters are also in 
accordance with our interpretation of the clustering results: they focus on the characteristic 
symptoms and signs we found to be characteristic, either by requiring their presence or by 
requiring their absence in the case of those characteristic of another cluster (details 
documented elsewhere [14]) 

Discussion 
In this work, we applied three clustering algorithms to the DCI classification problem. Each 

one is based on different approaches: K-means is distance-based, Cobweb is categorical 
and EM is probabilistic. We compared the clusters estimated by these three algorithms, 
those manually defined by the PSI medical experts [3] and those previously estimated by 
Ozyigit et al. by Two-step clustering [6]. We used Goodman-Kruskal’s lambda to measure 
the association level between the different approaches, revealing all classifications shared 
similarities. We consequently performed a detailed cluster-to-cluster comparison with 



Pearson’s correlation coefficient. It appears some typical clusters characterized in terms of 
signs and symptoms appear whatever the considered classification method is. Typical cluster 
α is characterized by numbness and paresthesia. Typical cluster β is characterized by 
muscular weakness, bladder bowel problems, paralysis and malaise. Typical cluster γ is 
characterized by altered consciousness, confusion, dyspnea/chokes, skin rash and mottling, 
localized skin swelling, hearing loss and vertigo. Typical cluster δ is the pain only cluster, 
except for COBWEB, where this cluster was merged with typical cluster γ. To confirm these 
interpretations, we performed an association rule mining with the A priori algorithm, and 
focused only on rules with cluster as a conclusion. The results are consistent with our 
analysis, except the rules focus more on the absence of the signs and symptoms 
characteristic of other clusters, than on all the signs and symptoms we marked as 
characteristic. 

The similarities observed between the estimated clusters and those defined manually 
show that different clustering methods can successfully classify DCI statistically. We can 
therefore conclude cluster analysis is a suitable technique to diagnose DCI type according to 
the patient’s signs and symptoms. The long-term goal of this project is to optimize the 
treatment plan for a given DCI case, so the next step is to determine whether clustering is 
enough to define a treatment plan. Yet, we processed lambda between outcome and 
classifications and observed a close to zero association level (Documented elsewhere,[14] ). 
This means diagnosis alone (be it manual or automatic) is not enough to predict the success 
or failure of the DCI treatment plan. Further studies will have to consider other data, such as 
patient age and sex, and treatment modalities to be able to perform a correct prediction. 
Such a prediction would then allow studying the relationships between symptoms, signs and 
other factors, and the outcome of the treatment plan, allowing to determination which data 
are relevant to select an adapted treatment plan. 
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