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Abstract

In this paper we propose a new party-system fragmentation measure as equivalent number

of parties that fully takes into account the pivotal power of parties. The novel approach we

adopt in the method of construction for an index of fragmentation allows us to take advantage

of the theory of generalized means. We first construct the (class of) quasi-arithmetic mean(s)

with Banzhaf power weight function for the party sizes and then, given the average size, we

derive an equivalent-number of parties.
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size, Generalized means
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1 Introduction

In this article, we derive a class of fragmentation measures for party systems as equivalent-

number. The method we propose is new in the sense that instead of working directly

on the construction of a fragmentation index, we first derive an average size of parties.

Moreover, we pay special attention to take into consideration the political power in the

size used in our measurement of fragmentation. Even if a wealth of literature on party

∗The authors thanks Patrick Dumont, Donald Saari, Marco Slikker and John Weymark for useful com-

ments and suggestions. The author also thanks Fabrice Valognes and Vincent Merlin for proofreading.
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systems uses the notion of fragmentation, well contoured definition is still missing. For

this reason, we first provide the general feeling drawn from the most influential literature

about measuring fragmentation that will serve as foundation for our own measurement

approach.

The notion of fragmentation is a fundamental concept to classify party systems with

comparative purposes. The notion of fragmentation is often used to study the length

of government formation, the stability of government coalitions, the effect of electoral

systems on the number of elected parties, etc . . . The fragmentation is a key variable in

determining the ease with which parties can agree upon a majority governement coalition.

Since Laakso and Taagepera [16] devised the notion of effective number of parties that

became the most widely used notion in comparative studies, the fragmentation of a party

system is intimately linked to the effective number of parties. The Laakso-Taagepera ef-

fective number of parties is so deeply associated to the measurement of fragmentation that

from that time forward both notions have become synonyms.Hence studying the fragmen-

tation of a party system appears to be equivalent to answer the question of how to count

the number of political parties in a decision-making assembly ?

It is well known that simply counting the number of parties contesting for office (i.e.

in this paper forming a majority government) is often meaningless. Sartori [25] proposes

only to count the “relevant” parties i.e., those parties that may form a coalition in order to

form a government. This procedure implies that small parties ideologically appealing as

coalition partner should be taken into the same account as bigger-sized parties. Despite

this principle is pragmatically compelling, it is nevertheless hard to operationalize.

Political alliances and distribution of political power strongly depend on the distribu-

tion of relative sizes of parties in a parliament. Laakso and Taagepera [16] address this

problem by proposing an effective number of parties (abbreviated ENP) that takes into ac-

count the relative sizes of the parties, so that smaller parties count less than bigger parties.

It is calculated by the following simple formula :

ENP =
1

∑n
i=1(si)2

(1.1)

where n is the total number of parties in the parliament under consideration and si is the

number of seats (in percentage) of party i. An ENP answers the question “how extensive

is the degree of fragmentation in a collective decision-making body ?” by “it is rather
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as if there were x parties of the same size”, with x the value taken by the ENP. The

interpretation is the following : the ENP is the number of hypothetical equal-sized parties

that would have the same effect on fragmentation of the party system as have the actual

parties of varying size.

The “sizes” that enter into the calculation of the ENP are the party seat shares. Alas,

only looking at seat shares conveys partial information about the decision-making proce-

dure. As Laver and Kato state [14]

(. . . ) the political implications of an election result must be interpreted

in terms of their effect on the post-election government formation process,

and that these implications may be much less obvious than they seem at first

sight. What is important is not the ’raw’ distribution of seats between parties

but the decisive structure, the set of winning coalitions generated by this seat

distribution.

An important feature of office-seeking models concerns the decisive structure of govern-

ment formation. A party is said to be pivotal whenever the party can turn a winning coali-

tion into a losing one by leaving or if the party can turn a losing coalition into a winning

one by joining. Laver [18] argues that most coalitions tend to exclude nonpivotal parties

from government formation. The concern is thus first and foremost put on the decisive

structure of a coalition game, that is the set of winning coalitions generated by a given seat

distribution and not the seat distribution only. Several different seat distributions can lead

to the same decisive structure. As Laver [18] states, “elaborating the decisive structure is

by far the most useful way to move from an election result to the strategic complexities

of government formation”. Recent literature using the notion of fragmentation becomes

more and more aware of the importance of the pivotalness power of parties instead of seat

distribution (see Dumont and Caulier [8], Grofman [11], Kline [15]). As any fragmenta-

tion measure solely defined on the distribution of seats fails to take into consideration the

pivotal power of parties, we thus consider as necessary in our work to enrich the domain

on which a fragmentation measure is defined to take into consideration power indices in

order to properly model the decisive aspect of the structure.

For obvious reasons we now present, our approach is more positive then normative.

Drawing inspiration from the measurement of inequality or concentration in industrial
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organization, two different approaches can be pursued in the measurement of fragmenta-

tion. The first one is normative and defines preferences of some benevolent planner over

the set of possible seat distributions and derive fragmentation orderings afterwards. The

preferences of an independent policy-maker provides an independent normative judgment

to assess fragmentation. This approach has a long and venerable tradition in inequality

measurement and even in concentration measurement in industries. Nevertheless, despite

the attractive features of defining consistent preferences of some independent arbitrator,

adopting this approach to the measurement of fragmentation would lead to the somewhat

awkward conclusion that the most (or worst) preferred situation is the dictatorship. How

can we determine by some independent judgement if less or more fragmentation should

be preferred ? If we all agree that dictatorship has to be avoided since it violates the basic

foundations of democracy, it has to be considered as the worst situation, but it would then

mean that extremely high fragmented situations are the most desirable ! Mainly due to

this reason, in this analysis we privilege the second approach, the positive one, that con-

siders measures of fragmentation directly and we attempt to construct it on the basis of

desirable properties without any reference to some underlying preferences.

The organization of the paper is the following : in the next section, we define the

notion of effective-number or equivalent number and make the link with the notion of

effective average size. In the third section, we define more precisely the notion of effective

average size and derive a measure of it from the concept of quasideviation. In the section

4, we propose a modeling of the decision-making structure that have to be taken into

account when one wants to measure the effective size of a party in a parliament. In

section 5, we derive a class of measure of effective number of parties based on properties

or axioms that are considered as desirable or unavoidable in this framework. In section

6, we propose to test the new measure on 106 parliaments and compare them with the

existing indices. Section 7 concludes.

2 The effective average number of seats

Since the seminal paper of Laakso and Taagepera [16], the notion of fragmentation is

better measured as equivalent-number : the effective number of parties (ENP) whose in-
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terpretation is the number of equal-sized parties in a hypothetical parliament that is con-

sidered as equally fragmented to the actual parliament of various size parties. In industrial

economics, the notion of equivalent number has gained considerable currency as inverse

measure of concentration. The relation between both notions is one-to-one, a decrease of

equivalent number indicates an increase of concentration. Adelman [2] goes even further

and states that an equivalent-number of equal-sized firms is the most natural and intuitive

persuasive unit of concentration. An industry is said to be concentrated whenever a small

number of firms own the major part of market shares. The same kind of link is often

made with fragmentation of party systems. For example, in 2004 Bogaards [6] proposes

to use the ENP to identify the presence of a dominant party in Africa. Caulier and Du-

mont [7] present and test empirically four measures of fragmentation to identify cases of

dominance in various cases of party systems. It is thus self-evident that we will be able

to rely upon some properties of concentration measures in industrial economics for the

development of some fragmentation index as number equivalent.

The way we develop theoretically our new (class of) equivalent number(s) of parties

in this paper is indirect. We will illustrate the method of construction shortly. We first

remark that even if we know that in order to properly define a fragmentation measure

the domain of definition must not be the distribution of seats, we discard for the moment

this argument and provide a very simple example of our method of construction of an

equivalent-number of parties based on the distribution of seat shares. Keep thus in mind

that we drop this assumption later on for the development of our new class of measures.

Assume a set of elected political parties in a parliament N with cardinality n. The

distribution of seats among the n parties is denoted x = (x1, . . . , xn), with xi ∈ R, i =

1, . . . , n. The set of possible seat distributions is thus Rn.

The total number of seats in this assembly is denoted X ≡
∑n

i=1 xi. We assume that X

is known and fixed for the given assembly.

An equivalent-number of parties can be defined as a function Qn : Rn → R+. Note that

an equivalent-number is a real-valued function and is thus an abstract concept. It may not

exist in the real life, just as it is the case for the concept of average number of children.

For a distribution x ∈ Rn, the equivalent number of parties Qn(x) tells us that the actual

situation is equivalent to a fictious situation where all the Qn(x) parties have the same
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number of seats ! Now, corresponding to the equivalent number of parties Qn(x), we can

construct An(x) ≡ X/Qn(x), the number of seats each of the Qn(x) parties would have. In

Hannah and Kay [12], they regard An(x) as the effective average size of firms. It is defined

as

An(x) ≡ X/Qn(x) (2.1)

where x is a vector of market shares in Rn
+
, X =

∑n
i=1 xi and Qn(x) is the equivalent

number of firms. They call it effective in order to distinguish An(x) from the classical

average, that is the arithmetic mean. In the computation of an effective average size, not

all parties have the same weight in the formula. Following the well-established literature

in mathematics, such an “effective average” is called a “mean” or a “generalized mean”.

Thanks to formula (2.1), we see that any property possessed by a number-equivalent

index will be transmitted through this simple relationship to the effective average size. In

this paper we adopt the detour of determining a set of desirable properties for an effective

average size that then will be transmitted through the linkage (2.1) to an equivalent num-

ber of parties. Since X is fixed for a given assembly, the relation will be straightforward.

In the last section, we present all the properties seemed as desirable for an equivalent num-

ber of parties to display and show that they all are deduced from the properties displayed

by the effective average size. Following the literature on the subject (see e.g. Hardy et

al. [13]), as stated above, an “effective average” is called a “generalized mean”. In our

task to clarify the notion of fragmentation or equivalent number of parties through the

notion of generalized mean, we introduce first some aggregation principles that lead nat-

urally to a broad class of means. On this class, we impose certain properties and narrow

down the set of allowable means considerably. We next show that the yardstick mea-

sure of typical size we obtain gives rise to a measure of equivalent number of parties that

performs well in the context of fragmentation measurement.

3 Quasideviation means

In this section, we recall some useful definitions about means that will be used to build an

effective average size.
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The empirical object under study is a finite set N of cardinality n representing a

decision-making body such as a parliament or any assembly making collective decisions.

The set N is composed of elements to which are attached some measures. Even if we

work on a greater generality so that our measurement of fragmentation can be used to

any decision-making body, we assume that N is a parliament whose elements are political

parties, and to each party is associated a mathematical entity : the size of the party.

The distributions of sizes under study are of the following form : let I ⊂ R+ be an

arbitrary interval in the nonnegative part of the real line. Let x = (x1, . . . , xn) ∈ In denote

a distribution of sizes, with xi is the size of party i.1 The set of possible distributions is

D(I) =
⋃∞

n=1 In, i.e. each party possesses a nonnegative size. The reason why we talk

about sizes instead of seats (or seat shares), is because we have to build up our fragmen-

tation index on a richer domain than seat shares distributions that can only take rational

values when the number of parties is small. As we will see in subsequent sections, seat

shares only are not enough to evaluate the fragmentation. Hence, the sizes of parties we

want to aggregate in the computation of fragmentation may assume any (nonnegative)

real value inside an interval and the sizes we will aggregate are not seat shares.

An effective average, or mean, is a function M : D(I)→ I that associates to each dis-

tribution a value on the interval I. The simplest mean one can think about is the arithmetic

mean U(x) = 1
n

∑n
i=1 xi with x ∈ Rn

+
.2 In order to specify the notion of effective average

size in the particular context of collective decision-making, we need to depart from the

most basic notion of mean. This will lead us to the notion of quasideviation. We first give

a definition for a mean and give an interesting result exemplifying how we can restrict the

class of acceptable means by imposing some conditions.

1Interchangeably we could also call the elements whose sizes are under consideration shareholder i,

agent i, coalition i, . . . Because we are mainly interested in the fragmentation of political party systems, we

stick without loss of generality to the term party.
2Actually the arithmetic mean is also defined for any distribution of real numbers, not only for distribu-

tion of sizes that only achieve nonnegative real values.
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3.1 Discrete symmetric means

For any x ∈ In, let

〈x〉 = 〈x1, . . . , xn〉 =






n∑

i=1

λixi | λi > 0,

n∑

i=1

λi = 1






〈x〉 is the interval between mini xi and maxi xi.

We see that

〈x〉 = {x1}

if x1 = · · · = xn and

〈x〉 =] min
1≤i≤n

xi,max
1≤i≤n

xi[

otherwise.

Definition 3.1. A function M : D(I) → I is an averaging aggregation if it is monotone

non-decreasing in each variable and satisfies

M(x) ∈ 〈x〉

for any x ∈ D(I).

Definition 3.2. A function M : D(I)→ I is symmetric if

M(x) = M(πx)

for any x ∈ D(I) and any permutation matrix3 π of conformable size.

Definition 3.3. A function M : D(I)→ I is a discrete symmetric mean if and only if M(.)

is an averaging aggregator and symmetric.

Classical examples of discrete symmetric means are the arithmetic mean U(x), the

geometric mean O(x) = (x1x2 . . . xn)1/n and the quasi-arithmetic mean :

K(x) = f −1





1

n

n∑

i=1

f (xi)





3A permutation matrix has only one coefficient in each row equal to 1 and only one coefficient in each

column equal to 1.
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with f a strictly monotonic continuous real-valued function on I.

The definition (3.3) gives us the basic requirements for a function to be considered as

a mean.

Considering definition (3.3) as a stepstone, we now define a very broad class of gen-

eralized means that will be used to define an effective average size : the quasideviation

means.

3.2 Quasideviations and quasideviation means

The following generalization of the concept of mean was first given by Páles [23] and uses

the concept of quasideviation. This generalization encompasses as special cases several

classes of means and turns out to be very useful in their characterization.

Definition 3.4. Let I ⊆ R+ be an arbitrary interval. The function E : I2 → R+ is a

quasideviation on I if :

(Q1) for all x, t ∈ I,

sgn E(x, t) = sgn(x − t)

where sgn represents the sign function.

(Q2) the function t → E(x, t), t ∈ I is continuous on I for each fixed x ∈ I,

(Q3) the function

t →
E(y, t)

E(x, t)
, t ∈]x, y[

is strictly monotone increasing on ]x, y[ for any fixed x, y ∈ I with x < y.

The class of quasideviations on I is denoted by E(I). A quasideviation is not a mean

since it does not satisfy definition (3.3). For example, for any x ∈ I, any quasideviation

E ∈ E(I) gives sgn E(x, x) = 0 by condition Q1 and thus violates definition 3.1. Never-

theless, as we will see, to each quasideviation is uniquely associated a class of means :

the quasideviation means.

Definition 3.5. Let E ∈ E(I), x ∈ In. The unique solution t ∈ I of the equation

n∑

i=1

E(xi, t) = 0 (3.1)
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is called the quasideviation mean of x generated by E and is denoted ME(x).

The most important examples for quasideviations are E1(x, y) = x − y and E2(x, y) =

f (x) − f (y), where f : I → R is a strictly increasing and continuous function. Then

the E1-quasideviation mean is the arithmetic meanU(x) and the E2-quasideviation mean

generates a quasi-arithmetic mean K(x).

The quasideviation mean is the unique solution to the equation (3.1) as the following

theorem shows :

Theorem 3.1. Let E ∈ E(I), n ∈ N, x1, . . . , xn ∈ I, then there exists a value t0 ∈ I for each

t ∈ I such that

sgn





n∑

i=1

E(xi, t)



 = sgn(t0 − t) (3.2)

for t ∈ I and

t0 ∈ 〈x1, . . . , xn〉. (3.3)

The proof of this theorem can be found in Páles [23], theorem 2.1, p.246. For the sake

of completeness, we provide this proof in the appendix.

Thanks to theorem 3.1, we know that ME(x) exists and is unique. Moreover, it can be

checked that ME(x) fulfills all the requirements to be a discrete symmetric mean on I and

that a particular form of E will generate a specific ME.

A quasideviation is not only a convenient technical tool, it also has a direct interpreta-

tion : it tells us exactly how should be compared a given value drawn from a distribution

x from an interval I with all other values of the distribution. A clue to convince you of

that fact is to remark that a quasideviation fulfills all properties to be a distance with the

exception of positive definitiveness.

Before proceeding to the main aim of this paper, we need to describe some particular

aspects of the framework ensuing from the interaction between decision-makers.
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4 Collective decision-making procedures

4.1 Simple games, voting rules and voting behavior

In order to model the decisive structure of a collective body, we need to take into ac-

count two basic informations of specification : the voting rule and the voting behavior.

These natural requirements guarantee some consistency of the procedure and can easily

be formalized by the class of simple supperadditive games. In order to model a collective

decision-making, we provide the following definitions :

A simple game is a pair (N, v), where N is the set of parties represented in the parlia-

ment (of cardinality n) and v : 2N → {0, 1} is a function whose domain is the power set of

N. We assume v(∅) = 0. Any element of the power set is called a coalition. The number of

players of a coalition S is s. We say that v is monotonic when v(T ) ≥ v(S ) if T ⊃ S . The

set of winning coalitions is denoted W(v) and is defined by W(v) = {S ∈ 2N | v(S ) = 1}.

Accordingly, the set of losing coalitions is N \W(v) and is defined by {S ∈ 2N | v(S ) = 0}.

We always assume that N ∈ W(v) and ∅ < W(v) for any v.

A winning coalition S is minimal if it does not contain any subset S ′ such that v(S ′) =

1. A player i is said to be pivotal for S such that i ∈ S if v(S ) = 1 and v(S \ {i}) = 0. A

player i ∈ N is said to be a null player if v(S ) = v(S \ {i}) for all S such that i ∈ S . The set

of minimal winning coalitions is denoted W∗(S ). A simple game (N, v) is superadditive

if for any S ⊂ N : v(S ) + v(N \ S ) ≤ 1. We denote by S Gn the set of all possible

simple superadditive n-person games. Remark that any of the sets W(v) or W∗(v) fully

characterizes the voting rule provided v is monotonic. Indeed, W = v−1({1}) ≡ {S :

v(S ) = 1} and W∗ ≡ {S | v(S ) = 1 and there is no S ′ ⊂ S s.t. v(S ′) = 1}.

In the particular case under interest in this paper, each elected party i ∈ N is endowed

with some seat (shares) xi ∈ I. We will thus focus our attention to particular cases of

simple games : the weighted voting games. We define a quota as a number q such that

q ∈
[

1
2
, 1

[

. A simple game (N, vw) with vw : 2N → {0, 1} such that W(vw) ≡ {S ⊆ N |
∑

i∈S xi > q
∑

i xi} is a weighted voting game. For example, the simple game (N, vM) ∈

S GN such that q = 1
2

is the simple weighted voting majority game.4 We call the voting

rule the function vw in a weighted voting game that determines the quota and henceforth

4Note that the way we define a quota does not include the unanimity game.
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which coalitions are winning or not. To simplify notation and otherwise stated, we simply

denote by v a weighted voting game.

In order to measure the influence of a party i in the collective decision-making proce-

dure, we define a power index to be a function φ : S Gn → R
n. For each game v ∈ S Gn,

the power of party i is φi(v). The set of all possible power indices (for N given) is denoted

Φ
n(v), for any v ∈ S Gn and Φ(v) =

⋃∞
n=1Φ

n(v).

In our framework, we assume the following voting behavior : each party has an equal

probability to vote yes or no for each proposal. Indeed, in the current state of affair in

a parliament, each party may make a law proposal to be voted upon. If we assume that

proportional representation ensures heterogeneity of representation, parties are scattered

randomly on some ideological space. Without any a priori knowledge about their actual

positions, we may suppose that the set of proposals to be voted upon during the legislature

is uniformly distributed on the ideological space. If parties are driven by the same rule

of accepting or rejecting a proposal by some given distance from their ideal point on the

ideological line, then we may suppose that for each proposal, the probability for a given

party to vote yes is 1/2.5

4.2 The Banzhaf Index of power

Under these assumptions, the most relevant power index φ ∈ Φwe chose is the one named

after Banzhaf, whose following characterization is due to Laruelle and Valenciano [17] :

Theorem 4.1. Let φ : S Gn → R
n, then φ satisfies

(i) Anonymity : for all v ∈ S Gn, any permutation π of N and any i ∈ N,

φi(πv) = φπ(i)(v)

with (πv)(S ) ≡ v(π(S )).

(ii) Null Player : for all v ∈ S Gn and any i ∈ N, if i is a null player for v then

φi(v) = 0

5see Felsenthal and Machover [10] about the principle of insufficient reason and Valenciano and Laruelle

[27]: “any information beyond the rule itself should be ignored”.
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(iii) Symmetric Gain-Loss : for all v ∈ S Gn and all S ∈ W∗(v), (S , N), and all i, j ∈ S

(and resp. for all i, j ∈ N \ S ),

φi(v) − φi(v
∗
S ) = φ j(v) − φ j(v

∗
S ).

with v∗S be the game obtained from v ∈ S Gn such that W(v∗S ) = W(v)\S , S ∈ W∗(v),

S , N.

(iv) Average Gain-Loss Balance : for all v ∈ S Gn and all S ∈ W∗(v)(S , N),

1

s

∑

i∈S

(

φi(v) − φi(v
∗
S )

)

=
1

n − s

∑

j∈N\S

(

φ j(v
∗
S ) − φ j(v)

)

with v∗S as defined above.

(v) Unit of Power : for any i ∈ N,

max
v∈S Gn

φi(v) − min
v∈S Gn

φi(v) = 1.

if and only if

φi(v) =
1

2n−1

∑

S⊂N,i∈S

(v(S ) − v(S \ {i})) ≡ Bz∗i (v) (4.1)

for all i ∈ N and v ∈ S Gn.

If we are interested in the assessment of how effective a party is in turning a decision

into its favor, we advocate for the use of the Banzhaf power index

Bz∗(v) = (Bz∗1(v), . . . , Bz∗n(v))

(definition 4.1), characterized by the set of properties above-mentionned as it embodies

how the influence of a given party is affected by some well-defined change in the voting

rule v and how should be compared the influence of two given parties.

The condition of Anonymity simply states that the index i attached to a given party has

no meaning, in weighted voting games it means that what really counts in determining the

pivotal power of a given party is its seat shares and the voting rule.

The formulation of the Null Player property says that whenever a party is never in

position to affect the outcome of a decision, its power should be zero. Laruelle and valen-

ciano [17] precise that this axiom, as stated here and despite its plausibility, only conveys
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its full meaning together with the other axioms. In their paper, in order to avoid any triv-

ial flat measure of power, they propose to modify the property by stating that being a null

player in any game leads to the minimal power measure of power in this game.

(ii∗) Null Player* : for all v ∈ S Gn, and all i ∈ N,

i is a null player in v⇔ for all w ∈ S Gn, φi(v) ≤ φi(w).

If we add the condition of Anonymity and some Normalization principle, their restate-

ment of the null player property is the same as the one stated here. Without normalizing,

null player property as minimal power in a game together with anonymity, imply that two

null players in a game have the same power.

The third property is the Symmetric Gain-Loss. This property is really important to

understand the role of the decision rule. As we say above, a monotonic simple game v is

entirely characterized by its set W(v) of winning coalitions. If one minimal coalition is

removed from W(v), what would be the effect on the power of players ? The answer is

given by the Symmetric Gain-Loss property : any two player belonging to the removed

winning coalition from the set of winning coalition suffers equally, and any two players

not belonging the removed coalition equally gain from the removal. To keep track of the

influence of a party, we list the minimal winning coalitions to which it belongs to. If the

player quits a minimal winning coalition, the coalition is losing. Suppose that we remove

this minimal winning coalition from the list of winning coalition, then any two players

belonging to this coalition have logically to be affected in the same fashion. A similar

line reasoning explains why any two players outside a removed coalition have also to be

affected equally.

The Average Gain-loss Balance gives some insights about the transfer of power among

players consecutively to the deletion of a minimal winning coalition. It states that the

average loss of the players in the removed minimal winning coalition equals the average

gain of the players outside it.

The last property Unit of Power is a normalization principles that fixes to unity the

range of values taken by the power index.

If we drop this last normalization principle and replace the Null Player property by the

Null Player* one, Laruelle and Valenciano [17] (Theorem 2, p.96) obtain the following
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characterization of a class of power indices :

Theorem 4.2. A power index Bzn : S Gn → R
n satisfies Anonymity, Null Player*, Sym-

metric Gain-Loss and Average Gain-Loss Balance if and only if Bzn
= αBz∗+κ1 for some

α > 0, κ ∈ R , 1 ≡ (1, . . . , 1) ∈ Rn and Bz∗ ∈ Rn the vector of Banzhaf power indices

defined by equation (4.1).

Any two power indices belonging to this class rank the power of any two parties in

any two games identically. Laruelle and Valenciano express some indices that have been

proposed in the literature belonging to this class of indices : The Banzhaf index is obtained

by putting α = 1 and κ = 0, the “raw” Banzhaf with α = 2n−1 and κ = 0 while the Rae

index is derived by putting α = 2n−1
= κ while the normalized Banzhaf index does not

belong to this class of indices. In the sequel, we call this class the class of Banzhaf power

and denote it

Definition 4.1. In a given parliament N, the class of Banzhaf power Bzn ∈ Φn is defined

by

Bzn(v) ≡ αBz∗(v) + κ1

for any v ∈ S Gn and the same notation as in Theorem 4.2.

By consequence, we see that to determine the effective average size of parties in some

decision-making assembly, it is necessary to combine the seat shares distribution with the

voting rule and voting behavior. This is the work done by a power index defined on simple

games modeling the decision procedure. A class of power indices at hand, we are now

ready to state the main result of our paper, proposing a class of fragmentation measures

as equivalent numbers.

5 Characterization of a class of Effective Number of Par-

ties indices

5.1 Effective number of parties as quasideviation means

The discussion in the previous section has proved that more information than seat distri-

bution was needed in order to model collective decision-making : voting rule plays a key
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role in determining the influence of parties. Properly defining an effective average size

of parties, and hence, an effective number of parties, needs to extent its domain of def-

inition in order to take into account the parties power indices in simple weighted voting

games. As we have seen, simple weighted games are sufficient to represent voting rules

and necessary to measure influence. An effective average size is thus a function

An : In × Φn(v)→ I

for any n ∈ N and v ∈ S Gn is a weighted voting game, with I ⊂ R+ an arbitrary in-

terval, and Φn : S Gn → R
n the set of possible power indices on v. An effective aver-

age size An attaches thus a positive real number to each vector of the following form :

(x1, . . . , xn, φ1(v), . . . , φn(v)) where xi ∈ I and φi(v) ∈ R, i = 1, . . . , n, and accordingly, by

equation (2.1), any effective number of parties will be a function Qn(x,Φn).

Our objective in this section is to use the notion of quasideviation mean to build up a

relevant effective average size which takes into account the size of the parties as well as

their associated power indices.

On this purpose, we first provide the following definition and lemmas :

Definition 5.1. Let I ⊂ R+ be an arbitrary interval and x ∈ In a distribution of sizes

among n players. Let a simple weighted voting game v and Bzn(v) the corresponding

distribution of Banzhaf powers (definition 4.1). We define x̃ a permutation of x such that

x̃1 ≤ x̃2 ≤ · · · ≤ x̃n and B̃z
n
(v) the corresponding permutation of the vector of Banzhaf

powers.

Then we define the function h : I × S Gn → Bzn(v) by

h(x, v) = B̃z
n

1(v) if x ∈ [0, x̃1],

h(x, v) = B̃z
n

2(v) if x ∈ ]x̃1, x̃2],

. . .

h(x, v) = B̃z
n

n(v) if x ∈ ]x̃n−1, x̃n].

Lemma 5.1. Let I ⊂ R+ be an arbitrary interval, x, y ∈ I, Bzn(v) : S Gn → R the class

of Banzhaf power (definition (4.1)) and f : I → R+ is a strictly increasing continuous
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function. Then the function

EBz(x, y) = h(x, v) ( f (x) − f (y)) (5.1)

is a quasideviation for any v ∈ S Gn if κ ≥ 0 and h(., .) the function defined in definition

5.1.

Proof. The function (5.1) is a quasideviation if it satisfies (Q1), (Q2) and (Q3). By the

monotonicity of v, Bzn
i
(v) is increasing in x for all i ∈ N. By Anonymity and Null Player*

of Bzn(v), its lowest value is κ. By assumption sgn(0) ∈ {+,−} , then equation (5.1)

obvisouly satisfies (Q1). (Q2) follows directly from the continuity of f (.) and condition

(Q3) follows from

∂

(

EBz(y, t)

EBz(x, t)

)

/∂t > 0

for any x, y ∈ I with x < y and t ∈
]

x, y
[

. �

The lemma (5.1) gives us the way how should be compared a given x ∈ I drawn

from a distribution in In with any other y ∈ I in the distribution. Whenever x = y, the

quasideviation between them is zero. If x appears to be a null-player’s size in the game,

it should count for nothing and can then be disregarded, its quasideviation measure being

flat. The triangular inequality is also satisfied by property Q3. If two parties belong to the

same set of winning coalitions, then only their difference in term of size matters. Equation

(5.1) is thus a way to compare two different party size in a given distribution taking into

account their voting behavior and the voting rule. We now show that this quasideviation,

fulfilling all properties defined in Theorem (4.1) leads to a unique class of generalized

means.

Lemma 5.2. Let EBz as defined in equation (5.1) and x ∈ In, then the unique solution to

equation (3.1) is given by

MEBz
(x, v) = f −1

(∑n
i=1 Bzn

i
(v) f (xi)

∑n
i=1 Bzn

i
(v)

)

(5.2)

Proof. Let EBz(xi, y) = Bzn
i
(v) ( f (xi) − f (y)) for all i ∈ N, xi, y ∈ I. By definition 3.5 and

theorem 3.1, there exists a unique solution y∗ :
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n∑

i=1

EBz(xi, y
∗) =

n∑

i=1

Bzn
i (v)( f (xi) − f (y∗)) = 0

⇔

n∑

i=1

Bzn
i (v) f (xi) =

n∑

i=1

Bzn
i (v) f (y∗)

⇔

∑n
i=1 Bzn

i
(v) f (xi)

∑n
i=1 Bzn

i
(v)

= f (y∗)

⇔ f −1

(∑n
i=1 Bzn

i
(v) f (xi)

∑n
i=1 Bzn

i
(v)

)

= y∗.

By definition 3.5, y∗ ≡ MEBz
(x, v) is the unique quasideviation mean generated by E.

�

An effective average size An(x,Bzn) is thus a quasideviation mean with weight func-

tion Bzn satisfying all the properties described in section 4.2 if and only if it has the form

(5.2).

In order to qualify a reasonable measure of effective number of parties, there are still

a number of desirable properties that the family

Qn(x,Bzn) =

∑n
i=1 xi

An(x,Bzn)

should satisfy and that will narrow the admissible forms of f .

We now turn to a presentation of these properties considered as unavoidable that will

characterize the final form prescribed for Qn(x,Bzn).

5.2 Null-player independence

For all x ∈ In, v ∈ S Gn and all n ∈ N, if there exists a party i ∈ N such that i is a

null-player (see definition in section 4.2) in v, then

Qn(x,Bzn) = Qn (

x1, . . . , xi, . . . , xn, Bzn
1(v), . . . , Bzn

i−1(v), 0, Bzn
i+1(v), . . . , Bzn

n(v)
)

.

The presence of a null-player, a party that is never in position to affect the decision,

should not affect the effective number of parties.
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Proposition 5.1. For all x ∈ In, v ∈ S Gn and all n ∈ N, Qn(x,Bzn) satisfies the null player

independance property with An(x,Bzn) a quasideviation mean with weight Bzn if and only

if Bzn satisfies property (ii) in Theorem 4.1, that is if κ = 0 in definition 4.1.

Proof. Evident. �

The null player property independance is the key property that makes a concentration

index different from an inequality index : zero-size parties on the distribution have no im-

pact on the value taken by the concentration index whereas their presence would strongly

aggravates inequality. For this reason, it has been argued that a concentration index is a

function of both the inequality in the distribution and the number of elements in the dis-

tribution. It has also a strong implication : the knowledge of Qn will be enough to recover

the knowledge of Qn−1, as it is sufficient to add a zero-sized party in Qn to have a measure

in Qn−1.

5.3 Homogeneity of degree zero

For all x ∈ In, v ∈ S Gn and all n ∈ N, Qn(x,Bzn) is homogeneous of degree zero (or

nullhomogeneous) in x if

Qn(t.x,Bzn) = Qn(x,Bzn)

for any t > 0.

Since an effective number is the inverse of a measure of concentration and that mea-

sures of concentration are relative, that is they only depend on shares, an effective number

of parties should not be affected by a global rescaling of the seat distribution.

Now, we see directly that for all x ∈ In, v ∈ S Gn and all n ∈ N, Qn(x,Bzn) is nullho-

mogeneous in x if and only if An(x,Bzn) is homogeneous (of degree 1) in x.

Definition 5.2. For all x ∈ In, v ∈ S Gn, Bzn ∈ Φn(v) and all n ∈ N, An : In ×Φn(v)→ I is

homogeneous of degree 1 in x if and only if

An(t.x,Bzn) = t.An(x,Bzn) (5.3)

for any scalar t > 0.
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In order to characterize the form of An(., .) that is homogeneous among the class of

possible An(., .), we need to explore first some properties of the class of Banzhaf power

Bzn.

Definition 5.3 (Isomorphic simple games). Let v and v′ be simple games in S Gn with

respective parliaments N and N′. An isomorphism from v to v′ is a bijection σ from N to

N′ such that for any S ⊆ N,

S ∈ W(v)⇔ σ(S ) ∈ W(v′)

with σ(S ) = {σ(i) : i ∈ S ⊆ N}.

If such a σ exists, v and v′ are isomorphic.

An isomoprhism from v to v is an automorphism.

Since an isomorphism does not alter the set of (minimal) winning coalitions, any

power index must be invariant under isomorphism. The most evident (and well-accepted)

example is the invariance under parties label permutation, known as the anonymity prin-

ciple. This procedure is obviously an automorphism. If we consider a weighed voting

game (v,N), what would be the effect on the distribution of power according to any index

belonging to the class Bzn(v) of rescaling by a common factor t all the sizes xi, i = 1, . . . , n

? To restate the question, do we expect a change on power distribution if we express the

party sizes in shares instead of seats ? Obviously no. We don’t feel warmer if the temper-

ature is expressed in Fahrenheit instead of Celsius. The power index has to be insensitive

to any rescaling of the sizes of the parties. What really matters is the relative magnitude

between parties, not the absolute ones. The power index must be homogeneous of degree

zero in the x’s. Any index in Bzn(v) is homogeneous of degree zero.

Proposition 5.2. For all x ∈ In, v ∈ S Gn any weighted voting game and all n ∈ N, any

ϕ ∈ Bzn(v) is homogeneous of degree zero.

Proof. Take any x ∈ In, any weighted voting game v ∈ S Gn, fix n ∈ N and take any

ϕ ∈ Bzn(v). Fix i ∈ N.

By definition (4.2) and equation (4.1) in Theorem (4.1),

ϕi(v) =
α

2n−1

∑

S⊆N
S∋i

[v(S ) − v(S \ {i})] + κ1
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for some α > 0, κ ∈ R, 1 ≡ (1, ..., 1)
︸   ︷︷   ︸

n

, with

v(S ) =






1 if
∑

j∈S x j ≥ q.
∑

i∈N′ xi

0 otherwise

for any S ⊆ N and 0 < q ∈
[

1
2
, 1

[

.

Define σ : N → N′ such that txi = xσi, t > 0, i ∈ N, σi ∈ N′.

Let v′w ∈ S Gn be such that

v′w(S ) =






1 if
∑

j∈S x j ≥ q.
∑

i∈N′ xi

0 otherwise

for any S ⊆ N′. By construction, v and v′w are isomorphic.

Then

ϕσi(v
′
w) =

α

2n−1

∑

S⊆N′

S∋σi

[

v′w(S ) − v′w(S \ {σi})
]

+ κ1

=
α

2n−1

∑

σ−1S⊆N
σ−1S∋i

[

v(σ−1S ) − v(σ−1S \ {i})
]

+ κ1

= ϕi(v)

�

To prove that An(x,Bzn) is homogeneous, by the Theorem 2 of Pàles [24] (p.137), we

only have to show that EBz(txi, ty)/EBz(xi, y) is constant on {xi ∈ I | txi ∈ I, xi , y}, for any

fixed y ∈ I, ty ∈ I, t > 0 and An(x,Bzn) = MEBz
.

Proposition 5.3. Let I ⊂ R+ be an arbitrary interval, xi, y ∈ I, Bzn(v) : S Gn → R ,

f : I → R+ is a strictly increasing continuous function and v a simple weighted voting

game. Define the following quasideviation :

EBz(xi, y) = Bzn
i (v) ( f (xi) − f (y))

and let An(x,Bzn) = MEBz
be the quasideviation mean generated by EBz. Then, MEBz

is

homogeneous of degree 1 if and only if the function f in EBz has one of the following

forms :
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1. f (xi) = axc
i
+ b

with a , 0, c , 0 and b constants, or

2. f (xi) = a log xi + b

with a , 0 and b constants

for any xi ∈ I.

Proof. Denote the value of EBz(txi, ty)/EBz(xi, y) by α(y) for any y ∈ I, ty ∈ I. We also

assume that t ∈ I and 1 ∈ I.

Then
Bzn

i
(txi, v) ( f (txi) − f (ty))

Bzn
i
(xi, v′) ( f (xi) − f (y))

=
f (txi) − f (ty)

f (xi) − f (y)
= α(y)

by proposition 5.2.

⇔ f (txi) − f (ty) = α(y) ( f (xi) − f (y)) (5.4)

Let θ(t) = f (ty) − α(t) f (y), then (5.4) becomes

f (txi) = α(t) f (xi) + θ(t) (5.5)

We pose xi = 1 in (5.5) to get

f (t) = α(t) f (1) + θ(t) (5.6)

By substracting (5.6) from (5.5), and with

g(xi) = f (xi) − f (1) (5.7)

we get

g(txi) = α(t)g(xi) + g(t) (5.8)

We distinguish two cases :

First, if α(t) = 1 for all t > 0,

g(txi) = g(xi) + g(t) (5.9)
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The general solution of the functional equation (5.9) is given by

g(xi) = a log xi + b

with a and b arbitrary constants, a , 0.

From (5.7) we get

f (xi) = a log xi + b

The remaining case is when α(t) . 1 for all t > 0. Then the general non-constant and

continuous solution of the functional equation (5.8), by (5.7) is given by

f (xi) = axc
i + b

with a , 0, c , 0 and b constants (see for example Aczél and Daróczy [1], p.25).

�

The properties we have so far proposed appear to be enough to characterize a satisfy-

ing class of measure of fragmentation, that we present in the next result.

Theorem 5.1. For all x ∈ In, v ∈ S Gn and all n ∈ N, Qn(x,Bzn) is a nullhomogeneous

effective number of parties satisfying independence to null players with An(x,Bzn) an

effective average size with weights in the class of Banzhaf power if and only if

An(x,Bzn) =

(∑n
i=1 φi(v)(xi)

p

∑n
i=1 φi(v)

) 1
p

≡ An
H (5.10)

p , 0 and φi(v) a power index belonging to the class of Banzhaf power with κ = 0, that

is φi(v) is proportional to the non normalized Banzhaf index Bzi(v) as defined in equation

(4.1).

The proof of the theorem follows logically from the above propositions. We thus see

that An
H

is the only family of mean measures homogeneous and independent from the

presence of null-player parties. Moreover, it lets some choice to the researcher with the

parameter p, the higher the latter, the less small parties are taken into consideration in the

computation.

To fully validate Qn ≡ X/An
H

among all possible measures, we now show that Qn
H

may

also satisfy other basic requirements for a measure of effective number of political parties.

The next property will restrain our choice of the parameter p in An
H

.
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5.4 The transfer principle

In the context of (income) inequality measurement, the transfer principle or regressive

transfer requires inequality not to fall when a transfer of income is performed from a poor

person to a richer one, without altering their ranking and affecting the other persons. The

principle is also known as the Pigou-Dalton transfer principle by reference to the first

two authors who proposed such concept. If the sole concern of inequality measurement

is the distribution of income, the idea that inequality should be aggravated by a regressive

transfer is very well founded ; but the transposition of this principle in the context of frag-

mentation measurement is not without difficulty. Two main reasons can be put forward

for explaining this difficulty. The first difficulty is to interpret à la lettre the principle.

A distribution of seats is usually the result of elections and one party is thus not legally

allowed to secede some of its seats to another party. Of course this difficulty is not hard

to surmount as in fact what the principle tells us is how to compare two distributions that

differ only on two entries ; it does not tell that one distribution must be deduced from the

other one from an actual transfer. Both distributions can be the result of elections and

still be compared according to the principle. A second difficulty, the most important one

according to us, refers to the interdependence between the seat distribution and power

distribution. Requiring fragmentation no to fall whenever a small party transfers some

seats to a bigger party implies that seat and power distribution are linearly related to each

other. If this is the case, what would be the reason of existence of power indices ? Fortu-

nately, as the following simple example shows, power indices remain an invaluable tool

that cannot (always) be inferred from the seat distribution.

Example 5.1. let N be an eight-party assembly with the following seat shares distribu-

tion : (45, 30, 20, 1, 1, 1, 1, 1). If we set the quota at 51 we observe a total of 196 swing

positions out of which the first party has 65 (hence 33, 16% of the total) and last five

parties have only 1 swing position (0, 51%). Suppose now that the first party gives away

one percentage of its seats to the third one, a “progressive transfer”, such that inequality

should not be aggravated. The new distribution is now : (44, 30, 21, 1, 1, 1, 1, 1). With the

same quota (51) we now observe a total of 194 swing positions out of which 64 is for the

first party (hence 33, 33%) and last five parties don’t hold any more a swing position.
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The striking aspect of this example is that by giving away some seats to a smaller

party, the biggest party diminishes the total number of swing possibilities and hence, even

if the first party looses a swing opportunity, having 64 instead of 65, it can nevertheless

improve its relative position by going from 33, 16% to 33, 33% of the total swing positions

after the transfer. This situation is explained by the fact that due to the transfer, the five

small parties become dummies. In conclusion we see that seat and power don’t always

behave in the same way !

Do we thus have to discard any transfer principle for a fragmentation measure ? Of

course not. An alternative way to state the transfer principle can be found in the literature

under the name of majorization (see e.g. Marshall and Olkin [20]).

Definition 5.4 (Majorization). A vector x is majorized by a vector y if and only if there

exists a bistochastic matrix6 P such that x = yP.

Equivalently, a vector x is majorized by a vector y if and only if y is obtained from

x by a finite number of regressive transfers (or x is obtained by y by a finite number of

progressive transfers).

If two vectors can be compared through majorization then undoubtedly one vector is

less unequally distributed than the other one. If x is majorized by y, then x1, . . . , xn is less

“spread out” than y1, . . . , yn. Post-multiplication of a vector by a bistochastic matrix is an

averaging operator i.e. has the effect to move some vector entries closer to the arithmetic

mean of all entries. In the context of fragmentation measurement, if a given vector x in

the domain of definition of a fragmentation measure, is majorized by a vector y and f is

a fragmentation measure, then we want f (x = yP) ≥ f (y). Such function is said to be

S-concave. Formally, a function f : In → I is S-concave if and only if for any bistochastic

matrix P and x ∈ In, we have f (xP) ≥ f (x).

We are now able to formally state the transfer principle in the context of fragmentation

measurement :

Definition 5.5. For all x ∈ In, v ∈ S Gn and all n ∈ N, Qn (x,Bzn) satisfies the Pigou-

Dalton transfer principle if and only if

6or doubly stochastic matrix. A bistochastic matrix P has only nonnegative entries and each row and

each column sums to 1.
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Qn ((x,Bzn)P) ≥ Qn (x,Bzn)

for any 2n × 2n bistochastic matrix P,

that is, if and only if Qn (x,Bzn) is S-concave.

The explanation of this definition is simple : a fragmentation measure depends on a

2n-long vector consisting of a distribution of seats and the corresponding distribution of

power indices. When comparing two different 2n-long vectors, if one can be deduced

from the other one by post-multiplication of a bistochastic matrix, then the former vec-

tor is obviously less “spread-out” than the latter one and has to be considered as more

fragmented by any measure of fragmentation consistent with the transfer principle. To

guarantee that Qn ≡ X/An
H

with An
H

defined by equation (5.10) is S-concave we need to

impose some restrictions on the parameter p, as shown in the next theorem.

Theorem 5.2. For all x ∈ In, v ∈ S Gn and all n ∈ N,

Qn (x,Bzn) =
X

An
H

(x,Bzn)

with

An(x,Bzn) =

(∑n
i=1 φi(v)(xi)

p

∑n
i=1 φi(v)

) 1
p

and φi(v) proportional to the non normalized Banzhaf index Bzi(v) (equation (4.1))

is S-concave if and only if p ≥ 1.

Proof. To have that Qn ((x,Bzn)P) ≥ Qn (x,Bzn) for any bistochastic matrix P, since X is

fixed, we must have An
H

((x,Bzn)P) ≤ An
H

(x,Bzn), that is we need to have An
H

S-convex.

By theorem 4 in Berge [5], p.220, to have An
H

S-convex it is sufficient to have An
H

symmetric and convex. That An
H

is symmetric is evident. Finally, to have

An
H (x,Bzn) =

(∑n
i=1 φi(v)(xi)

p

∑n
i=1 φi(v)

) 1
p

convex, denote
∑n

i=1 φi(v) by Φ and φi(v)(xi) by yi. Then An
H

(x,Bzn) = 1
Φ

(∑n
i=1 y

p

i

) 1
p
,

which is convex if and only if p ≥ 1 (see Berge [5] p.214).

�
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5.5 Normalization

The normalization principle just imposes some conveniant value that a fragmentation

measure should take under particular circumstances : when all the political parties have

the same size, an effective number should be equal to the actual number of parties.

Proposition 5.4. For all x ∈ In, v ∈ S Gn and all n, k ∈ N, Qn (x,Bzn) satisfies normaliza-

tion.

Proof. We have Qn (x,Bzn) = X
An

H
(x,Bzn)

for any n ∈ N.

Since An
H

(., .) is a mean by definition (3.3), if x ∈ In is composed of n identical entries,

that is if x = (x, . . . , x
︸  ︷︷  ︸

n

), then An
H

(x,Bzn) = x and thus

Qn
H (x,Bzn) =

X

x
=

n.x

x
= n

�

We then conclude by remarking that since the form we propose for Qn
H

(x,Bzn)

satisfies normalization, the transfer principle, is homogenous and symmetric, then it is

bounded where the lower and upper bounds are given by 1 and n. Any value less than n

indicates a unequal distribution of seats.

6 Empirical comparison of the main effective number of

parties indices

As an illustration of the computation and working of the newly introduced class of effec-

tive number of parties QH, we calculate QH for two different values of the parameter p on

106 post World War II parliaments in 5 selected countries.7 We also calculate the ENP

(see equation (1.1)) and the Effective Number of Relevant Parties (ENRP) as proposed by

Dumont and Caulier [8], which is simply the ENP using the relative Banzhaf power (that

sum to one) of parties instead of their seat shares. We summarize the formula we use in

the following table :

7Data’s for Japan are taken from Mackie and Rose [19] and for the others countries from Müller and

Strøm [22].
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ENP 1/
∑

s2
i

ENRP 1/
∑

Bz∗2i

Q1
H

∑

xi/
∑

φi xi
∑

φi

Q2
H

√
∑

xi/
∑

φix
2
i

∑

φi

Table 1: Formula’s used : ENP = the Laakso and Taagepera Effective Number of parties, ENRP : the

Effective Number of relevant parties and Q
p

H
the newly introduced index for parameter p = 1 and p = 2.

with xi the number of seats of party i, si the seat shares of party i, Bz∗i the normalized

Banzhaf power of party i and φi the power of party i measured by any index in the class

of Banzhaf power such that κ = 0.

All the four indices share the common characteristic to be equal to n whenever all

parties have the same number of seats. The ENRP takes the special value of 1 whenever

a party owns more than 51% of seat shares. In the table 2 we display summary statistics

of our calculations.

Mean St Deviation MIN MAX

ENP 2,95 0,66 1,98 4,41

ENRP 2,03 0,98 1 4,19

Q1
H 2,6 0,75 1,58 4,04

Q2
H 2,41 0,6 1,58 3,85

Table 2: Summary statistics

In the table 3, we display the arithmetic mean values for each index by country.

ENP ENRP Q1
H Q2

H

UK 2,11 1,34 2 1,92

Ireland 2,83 2,22 2,69 2,45

Sweden 3,32 2,33 2,9 2,64

France 3,46 2,55 3,06 2,81

Japan 2,8 1,33 2,08 2,01

Table 3: Mean values by country
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The ENRP is systematically the measure that has to the lower mean value over all

observations (by country or for a given country over time) since it reaches the value of

1 when there is a majority party. Since we have especially selected countries for having

dominant parties during the time-span chosen, this result is not surprising. The ENP

generally leads the larger values and confirms Dunleavy and Boucek [9] or Molinar [21]

that the ENP overestimates the fragmentation especially in presence of a dominant party.

The case of Japan is illustrative. In the 15 seat distributions examined, we observe 10

cases in which a party owns more than the majority of the seat shares. Nevertheless,

the average value of ENP is 2,8 (it even takes a value of more than 3 under a given

majority party configuration). If the ENRP is an adequate tool to identify the majority

cases, it nevertheless does not provide the intensity of dominance of the majority party :

if a party has 51% or 99% of the shares leads to the same value of ENRP. In that case,

Taagepera [26] suggested to supplement the ENP by the seat shares of the largest party

(or its inverse). This index has also the advantage not to overestimate fragmentation in

such cases. But this is precisely the value given by any member of the family Q
p

H
for any

p when a party owns a majority of seats ! It is thus more convenient to use directly Q
p

H
as

we don’t have to look at two different indices and moreover in term of interpretation, Q
p

H

gives us an idea of the degree of dominance of the majority party : the lower the value,

the less dominant the party. It is well accepted that a party with bare majorities (slightly

higher than the majority) are in weaker dominant position than one with a supermajority :

if the party losses some seats on the next election, the larger its majority, the more chance

it has to remain dominant.

The difference between Q1
H and Q2

H is observed in the presence of small parties : Q1
H

accords more importance to them and Q2
H disregards them more. This is why Q2

H leads

generally to smaller values, since it gives less weight to small parties.

Finally, any Q
p

H
is a continuous value, responding to any change in the distribution of

seats. It is thus a more precise (in a sense) measure than the ENRP that remains stuck at

some values for some changes in the configurations.

To summarize, both Q1
H and Q2

H are continuous values that don’t overestimate the

fragmentation where the ENP does. Moreover, they give us directly the intensity of dom-

inance of a majority party without the need of another measure, or remaining fixed at
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some value as the ENRP does. By the way they have been constructed, they also take into

consideration the coalitional potential of the parties in the parliament, they thus embody

more information, as the voting behavior and voting rule, than any other measure whose

domain of definition is solely the seat shares distribution.

Given these optimistic preliminary results, we advocate for more tests on the adequacy

of Q
p

H
to depict party systems.

7 Conclusion

In this paper, we derive an effective number of parties from an average effective size

of parties in a parliament. The effective average size is built as a quasideviation mean

with weight function taking into account the decisive structure of the assembly. Imposing

properties that we see as relevant in this framework, we find a class of measures that

resemble to the general class of inequality measures of Atkinson [3] but weighted by

the Banzhaf index of power of the parties (see [4] or [17]). By the way it has been

constructed, whenever all parties have the same number of seats, the effective number

of parties corresponds to the actual number of parties. Some preliminary tests on actual

data’s we have conducted show that even in its simplest form (for f (x) = x), it seems that

our new class of indices outperforms the existing measures in the sense that all criticisms

raised so far look like to be answered.

8 Appendix

Proof of Theorem (3.1). Without loss of generality, we may assume x1 ≤ · · · ≤ xn. If

x1 = xn, then t0 = x1 = xn and (3.2) follows from (Q1). Thus, we may assume that

x1 < xn.

Using (Q1), we have

n∑

i=1

E(xi, x1) =

n∑

i=1

E(xi, min
1≤i≤n

xi) > 0,

n∑

i=1

E(xi, xn) =

n∑

i=1

E(xi,max
1≤i≤n

xi) < 0. (8.1)

By (Q2),
∑n

i=1 E(xi, .) is a continuous function, hence there exists a value t0 ∈]x1, xn[=

〈x1, . . . , xn〉 such that
∑n

i=1 E(xi, t0) = 0. Thus (3.3) is satisfied. To prove (3.2) let t < t0
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be an arbitrary element of I. If t ≤ x1 then the inequality
∑n

i=1 E(xi, t) > 0 (equivalent to

(3.2)) follows from (Q1). Otherwise we may assume that

x1 ≤ · · · ≤ xk < t ≤ xk+1 ≤ · · · ≤ xl ≤ t0 < xl+1 ≤ · · · ≤ xn. (8.2)

Let 1 ≤ i ≤ k and l + 1 ≤ j ≤ n. By (Q3) the function

t →
E(x j, t)

E(xi, t)
, t ∈]xi, x j[

is strictly monotone increasing, hence,

E(x j, t)

E(xi, t)
<

E(x j, t0)

E(xi, t0)

because xi < t < t0 < x j. Rearranging the last inequality, we have

E(xi, t0)E(x j, t) < E(x j, t0)E(xi, t). (8.3)

Using (Q1) it can be verified that (8.3) is valid if k + 1 ≤ i ≤ l and l + 1 ≤ j ≤ n. Adding

the inequalities obtained and applying the equation
∑n

i=1 E(xi, t0) = 0 we have

l∑

i=1

E(xi, t0)

n∑

j=l+1

E(x j, t) <

n∑

j=l+1

E(x j, t0)

l∑

i=l

E(xi, t) =

n∑

i=l+1

E(xi, t0)

l∑

j=1

E(x j, t) =



−

l∑

i=1

E(xi, t0)





l∑

j=1

E(x j, t).

Thus
l∑

i=1

E(xi, t0)

n∑

j=1

E(x j, t) < 0 (8.4)

By (Q1) and (8.2),
∑l

i=1 E(xi, t0) < 0 thus by (8.4) we get
∑n

i=1 E(xi, t) > 0.

When t0 < t it can be analogously be seen that
∑n

i=1 E(xi, t) < 0. This completes the

proof.
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