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A posteriori error estimates, stopping criteria, and adaptivity for

two-phase flows ∗

Martin Vohraĺık‡, Mary F. Wheeler§

October 18, 2011

Abstract

This paper develops a general abstract framework for a posteriori estimates of the dual
norm of the residual for immiscible incompressible two-phase flows in porous media, enabling
to control the overall error. Our estimators also allow to estimate separately the different er-
ror components, namely the spatial discretization error, the temporal discretization error, the
linearization error, the iterative coupling error, and the algebraic solver error. We propose an
adaptive algorithm wherein the different iterative procedures (iterative linearization, iterative
coupling, iterative solution of linear systems) are stopped when the corresponding errors do
not affect significantly the overall error, and wherein the spatial and temporal errors are equili-
brated. Consequently, important computational savings may be achieved while guaranteeing a
user-given precision. The developed framework covers fully implicit, implicit pressure–explicit
saturation, or iterative coupling formulations; conforming spatial discretization schemes such
as the vertex-centered finite volume method or the finite element method and nonconforming
spatial discretization schemes such as the cell-centered finite volume method, the mixed finite
element method, or the discontinuous Galerkin method; linearizations such as the Newton or
the fixed-point one; and general linear solvers.

Key words: two-phase flow, a posteriori error estimate, general framework, discretization error,
linearization error, iterative coupling error, algebraic solver error

1 Introduction

Let an open bounded polygonal (polyhedral) domain Ω ⊂ R
d, d = 2, 3, and a time interval (0, tF),

tF > 0, be given and set Q := Ω × (0, tF). We consider the immiscible incompressible two-phase
flow in porous media in the form

∂t(φsα)−∇·

(

kr,α(sw)

µα

K(∇pα + ραg∇z)

)

= qα in Q, α ∈ {n,w}, (1.1a)

sn + sw = 1 in Q, (1.1b)

pn − pw = pc(sw) in Q. (1.1c)
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Here the unknowns are sα, the phase saturations, and pα, the phase pressures, α ∈ {n,w}. The
subscripts n,w stand for nonwetting and wetting, respectively. Typically, the nonwetting phase is
oil and the wetting one is water. For the sake of simplicity, we suppose that the porosity φ, as well
as the phase viscosities µα and the phase densities ρα are all constant. The permeability tensor
K and the phase sources qα, α ∈ {n,w}, are only supposed to depend on the space coordinate x

and on the time t. For the sake of simplicity, we suppose qα piecewise constant in time on time
mesh defined below. In (1.1a)–(1.1c), z stands for the vertical coordinate and g for the gravitation
acceleration constant. The system (1.1a)–(1.1c) is nonlinear and coupled because of the presence
of pc, the capillary pressure, and of kr,α, the phase relative permeabilities, which are both given
functions of the wetting phase saturation sw. For example, in the Brooks–Corey [11] model,

kr,w(sw) = s4e , kr,n(sw) = (1− se)
2(1− s2e)

and

pc(sw) = pds
− 1

2

e ,

where

se :=
sw − srw

1− srw − srn
.

Here pd is the entry pressure and srw and srn are respectively the wetting and nonwetting residual
saturations. Note that (1.1a)–(1.1c) is degenerate as the phase relative permeabilities kr,α can
become zero.

Define the phase Darcy velocities uα, α ∈ {n,w}, by

uα := −
kr,α(sw)

µα

K(∇pα + ραg∇z). (1.2)

For the sake of simplicity only, we suppose homogeneous Neumann boundary conditions

uα·nΩ = 0 on ∂Ω× (0, tF), α ∈ {n,w}. (1.3)

Conditions (1.3) can be replaced by more realistic ones. The initial condition is imposed through

sw(·, 0) = s0w in Ω (1.4)

and we also fix

(pw(·, t), 1) = 0 ∀t ∈ (0, tF), (1.5a)

(qn(·, t) + qw(·, t), 1) = 0 ∀t ∈ (0, tF). (1.5b)

Here and below, (·, ·) stands for the L2(Ω) scalar product.
The problem (1.1a)–(1.5b) is of fundamental importance in petroleum engineering. Many

results on this problem and on its numerical approximation have been derived in the past. The
analysis of (1.1a)–(1.5b) including the existence, uniqueness, and well-posedness results has been
in particular carried out in [40, 17, 5, 18, 19, 20, 13], see also [3, 45, 51]. For the use and analysis
of mixed finite element methods for the numerical approximation of (1.1a)–(1.5b) we refer to, e.g.,
[23, 6, 58] and the references therein, for discontinuous Galerkin methods, to, e.g., [27, 28, 29]
and the references therein, for cell-centered finite volume methods to, e.g., [34] and the references
therein, and for vertex-centered finite volume methods to, e.g., [36] and the references therein.
Multiscale and mortar techniques, efficient parallelization, and multinumerics and multiphysics
formulations have been investigated in [48]. Linearization, linear solver techniques, and stopping
criteria for multiphase flows are discussed in, e.g., [57, 42, 41].
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The purpose of the present paper is to derive a posteriori estimates for numerical approxima-
tions of the problem (1.1a)–(1.5b). Our estimates give a guaranteed and fully and easily computable
upper bound on the selected error measure, the dual norm of the residual augmented by the dis-
tance of the approximate global and complementary pressures to proper function spaces. Recall
that such error measure leads to the energy error for linear problems (cf., e.g., [31]), and it is shown
in [14] that this is an upper bound on the error between the exact and approximate saturations,
global pressures, and complementary pressures for conforming discretizations. Our estimates also
allow to distinguish, estimate separately, and compare different error components. The principal
error component is the discretization error, due to the numerical scheme chosen, the local space
mesh size, and the local time mesh size. This can be decomposed into space discretization error
and time discretization error. The subsidiary error component is the error due to various iterative
procedures involved in the calculation. This includes linearization error, iterative coupling error,
or linear solver error. We next devise adaptive algorithms where all the iterative procedures on a
given time level are stopped whenever the individual errors drop to the level at which they do not
affect significantly the overall error. Simultaneously, the space and time discretization errors are
adjusted so that they are of similar size.

The benefits of such a procedure are twofold. Firstly, the overall error is controlled and strate-
gies for obtaining a user-given final precision at the end of the simulation can be devised. Secondly,
it is likely to lead to important computational savings, as performing an excessive number of un-
necessary linearization/iterative coupling/linear solver iterations and using too fine (with respect
to the other components of the error) space or time meshes can be avoided. These concepts have
been known for long time in the engineering practice but only recently, rigorous mathematical
analysis has been started in model cases. In particular, linear solver error estimation and linear
solver stopping criteria have been developed in, e.g., [9, 46, 7], nonlinear solver error estimation
and nonlinear solver stopping criteria are treated in, e.g., [35, 15, 16], and spatial and temporal
errors are estimated and balanced in, e.g., [49, 50, 52, 44]. Inexact Newton methods have been
studied in, e.g., [24, 25]. Herein, we build upon the results of [37, 26, 31, 32] which give guaranteed
and robust a posteriori estimates.

The present paper gives a posteriori error estimates in a very general setting without a specifi-
cation of the underlying numerical treatment. Examples of the application of the present abstract
framework to different discrete formulations, spatial and temporal discretizations, linearizations,
and linear solvers are given in [21, 14]. In order to unify the presentation, we have chosen once and
for all as the primary unknowns the pressure and saturation of the wetting phase. Adjustments
to all other choices are easily possible.

2 Preliminaries

We specify here the notation and function spaces used, characterize the weak solution, give our
assumptions on the approximate solutions, and define the error measure.

2.1 Function spaces and space and time meshes

We denote by H1(Ω) the Sobolev space of those functions from L2(Ω) which admit a weak gradient
in [L2(Ω)]d. The functions from H1(Ω) are continuous in the trace sense, so that H1(Ω) is a perfect
mathematical space for representing continuous scalar physical quantities. A counterpart of H1(Ω)
for vector functions is the space H(div,Ω) of those functions from [L2(Ω)]d which admit a weak
divergence in L2(Ω). The functions from H(div,Ω) have a continuous normal trace (in appropriate
sense), so that H(div,Ω) is a perfect mathematical space for representing mass-conservative vector
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physical quantities. We will also need below the space

X := L2(0, tF;H
1(Ω)); (2.1)

for ϕ ∈ X, we set

‖ϕ‖X :=

{

∫ tF

0

‖∇ϕ‖2dt

}
1

2

and observe thatX is the usual energy space for parabolic problems and that ‖ϕ‖X is the associated
energy norm.

We consider a strictly increasing sequence of discrete times {tn}0≤n≤N such that t0 = 0 and
tN = tF, together with a set of meshes {T n

h }0≤n≤N . For all 1 ≤ n ≤ N , we define the time interval
In := (tn−1, tn] and the time step τn := tn − tn−1. For all 0 ≤ n ≤ N , we assume that T n

h covers
exactly Ω. The meshes T n

h can be composed of general polygonal (polyhedral) elements. For all
T ∈ T n

h , hT denotes the diameter of the mesh element T . The discrete times and meshes can be
constructed by a space–time adaptive time-marching algorithm such as those of Sections 4.1, 4.3
and 5.1, 5.2, 5.4 below.

Let W be a vector space of functions defined on Ω. We then use the notation P 1
τ (W ) for the

vector space of functions v defined on Q such that v(·, t) takes values in W and is continuous
and piecewise affine in time. Functions in P 1

τ (W ) are uniquely defined by the (N + 1) functions
{vn := v(·, tn)}0≤n≤N in W . Similarly, P 0

τ (W ) denotes the vector space of functions defined on Q
such that v(·, t) takes values in W and is piecewise constant in time; for 1 ≤ n ≤ N , we then set
vn := v(·, t)|In . Functions in P 0

τ (W ) are uniquely defined by the N functions {vn}1≤n≤N in W .
Furthermore, we observe that if v ∈ P 1

τ (W ), then ∂tv ∈ P 0
τ (W ) is such that for all 1 ≤ n ≤ N ,

∂n
t v := ∂tv|In =

1

τn
(vn − vn−1). (2.2)

Finally, let 0 ≤ n ≤ N . We first define the broken Sobolev space H1(T n
h ) as the space of such

functions v ∈ L2(Ω) that v|T ∈ H1(T ) for all T ∈ T n
h . The symbol ∇ henceforth denotes the

corresponding broken gradient, i.e., a gradient of the function restricted to each mesh element T .
Then we also define P 1

τ (H
1(T )) as the space of functions v continuous and piecewise affine in time,

given by vn ∈ H1(T n
h ) for every discrete time tn, 0 ≤ n ≤ N , i.e., {vn = v(·, tn)}0≤n≤N in H1(T n

h ).

2.2 Weak solution definition via the global and complementary pressures

In order to characterize the error in an approximate solution to (1.1a)–(1.5b), we first need to
define the weak solution of (1.1a)–(1.5b). Solely to this purpose, we, following [17, 5, 18, 19, 20],
introduce the global and complementary pressures. We would like to stress that these mathematical
quantities only appear in this section in order to describe the weak solution and in Section 2.4 in
order to define the error measure, but they are not supposed to be used in the actual numerical
treatment.

Let the phase mobilities be denoted by

λα(a) :=
kr,α(a)

µα

α ∈ {n,w}. (2.3)

We define the global pressure

p(pw, sw) := pw +

∫ sw

0

λn(a)

λw(a) + λn(a)
p′c(a)da (2.4)
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and the complementary pressure

q(sw) := −

∫ sw

0

λw(a)λn(a)

λw(a) + λn(a)
p′c(a)da. (2.5)

Next, in order to simplify the developments below, let us define the functions vα, α ∈ {n,w}, of
wetting pressure and saturation (pw, sw), by

vw(pw, sw) := −K(λw(sw)∇p(pw, sw) +∇q(sw) + λw(sw)ρwg∇z), (2.6a)

vn(pw, sw) := −K(λn(sw)∇p(pw, sw)−∇q(sw) + λn(sw)ρng∇z). (2.6b)

Note that vα(pw, sw) are formally equivalent to the phase velocities uα given by (1.2). We need
to introduce the global and complementary pressures p and q and the functions vw(pw, sw) and
vn(pw, sw) as the relations (1.2) may not be properly defined under the regularity assumptions of
the weak solution definition, whereas (2.6a)–(2.6b) are always well defined.

We suppose that the data are regular enough so that the weak solution (pw, sw) to (1.1a)–(1.5b),
setting sn := 1− sw, can be characterized by

∂tsw ∈ X ′, q(sw) ∈ X, sw(·, 0) = s0w, (2.7a)

p(pw, sw) ∈ X, (2.7b)

(pw(·, t), 1) = 0 for a.e. t ∈ (0, tF), (2.7c)
∫ tF

0

{〈∂t(φsα), ϕ〉 − (vα(pw, sw),∇ϕ) − (qα, ϕ)}dt = 0 ∀ϕ ∈ X, α ∈ {n,w}. (2.7d)

We refer to [18] for the details.

2.3 Approximate saturations and pressures

Our a posteriori error estimates will be given for general approximate wetting saturations sw,hτ

and general approximate wetting pressures pw,hτ , not linked to any particular numerical scheme.
More precisely, recalling the definition of the space P 1

τ (H
1(T )) from Section 2.1, we merely re-

quire sw,hτ , pw,hτ ∈ P 1
τ (H

1(T )). Herein, we tacitly assume only lowest-order discretizations in
time. In general, the notation vhτ stands for a space–time function continuous and piecewise affine
in time and piecewise polynomial in space on the meshes T n

h and vnh := vhτ (·, t
n) for the piece-

wise polynomial in space. We also assume for simplicity of exposition that s0w,h = s0w and that
(pw,hτ (·, t), 1) = 0 for all t ∈ (0, tF).

We use the definitions (2.4), (2.5), and (2.6a)–(2.6b) also for the approximate saturations sw,hτ

and pressures pw,hτ , i.e., we replace the arguments sw by sw,hτ and pw by pw,hτ . The present
framework in particular includes cases where sw,hτ and pw,hτ are nonconforming in the sense
that q(sw,hτ ) 6∈ X and p(pw,hτ , sw,hτ ) 6∈ X. This happens in particular whenever q(sw,hτ ) and
p(pw,hτ , sw,hτ ) are discontinuous.

2.4 Error measure

The primordial question in a posteriori error estimates is that of the error “measure”. In linear
problems, one usually chooses the energy norm for a global error measure. In nonlinear problems,
the situation is more difficult. One approach consists in taking the dual norm of the residual,
i.e., of the difference of the nonlinear operator applied to the exact and approximate solutions,
cf. [15, 16, 26, 22]. We also refer to [4, 54, 53] for the use of dual norms in singularly perturbed
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linear problems. The advantage is that such a measure is dictated by the problem at hand, it
simplifies the analysis, and leads to sharper (and possibly robust, as in [26, 22]) estimates.

Let sw, pw and sw,hτ , pw,hτ be the exact and approximate wetting saturations and pressures
as described in Sections 2.2 and 2.3. Let sn := 1− sw and sn,hτ := 1− sw,hτ . We define our error
measure by

|||(sw − sw,hτ , pw − pw,hτ )|||

:=

{

∑

α∈{n,w}

{

sup
ϕ∈X, ‖ϕ‖X=1

∫ tF

0

{〈∂t(φsα)− ∂t(φsα,hτ ), ϕ〉

− (vα(pw, sw)− vα(pw,hτ , sw,hτ ),∇ϕ)}dt

}2} 1

2

+

{

inf
p̃∈X

∫ tF

0

‖K(λw(sw,hτ ) + λn(sw,hτ ))∇(p(pw,hτ , sw,hτ )− p̃)‖2dt

}
1

2

+

{

inf
q̃∈X

∫ tF

0

‖K∇(q(sw,hτ )− q̃)‖2dt

}
1

2

.

(2.8)

For 1 ≤ n ≤ N , a local-in-time version, consisting in replacing in (2.8) the time integral
∫ tF
0

by
∫

In
and the space X by X|In , is denoted by |||(sw − sw,hτ , pw − pw,hτ )|||In .
The first term of the error measure (2.8) represents the dual norm of the residual. Should

sw,hτ coincide with sw and pw,hτ with pw, it equals zero. The second and third terms measure
the nonconformity, i.e., the fact that possibly q(sw,hτ ) 6∈ X and p(pw,hτ , sw,hτ ) 6∈ X, which is
typically the case for mixed finite element, cell-centered finite volume, or discontinuous Galerkin
approximations; recall from (2.7a)–(2.7d) that q(sw) ∈ X and p(pw, sw) ∈ X for the exact wetting
saturation and pressure. The termsK(λw(sw,hτ )+λn(sw,hτ )) andK in front of the broken gradients
represent weights with appropriate physical units and are deduced from the weak formulation,
cf. [18, 14]. Shall there hold q(sw,hτ ) ∈ X and p(pw,hτ , sw,hτ ) ∈ X, as in the vertex-centered finite
volume or finite element method, the second and third terms equal zero.

3 A general a posteriori error estimate

We present here a general a posteriori error estimate giving a guaranteed and fully computable
upper bound on the error measure (2.8).

3.1 Pressure and velocities reconstructions

Recall that we merely suppose that the approximate wetting saturation and pressure sw,hτ , pw,hτ

belong to the space P 1
τ (H

1(T )). In order to proceed generally, without any further specification
of the numerical treatment used to obtain sw,hτ , pw,hτ , we now make the following assumption:

Assumption 3.1 (Pressure and velocities reconstructions). We assume that there exist scalar
functions phτ and qhτ and vector functions uα,hτ , α ∈ {n,w}, such that phτ , qhτ ∈ X and uα,hτ ∈
P 0
τ (H(div,Ω)), α ∈ {n,w}. Moreover, we suppose that uα,hτ satisfy

(qnα − ∂n
t (φsα,hτ )−∇·un

α,h, 1)T = 0 ∀T ∈ T n
h , ∀1 ≤ n ≤ N, α ∈ {n,w}. (3.1)

We will call phτ the global pressure reconstruction, qhτ the complementary pressure reconstruction,
and uα,hτ , α ∈ {n,w}, the phase velocities reconstructions.
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Remark 3.2 (Pressure and velocities reconstructions). In the continuous setting, the global pres-
sure p(pw, sw) and the complementary pressure q(sw) belong to the space X, see (2.7a)–(2.7b),
which in particular expresses their appropriate continuity. Similarly, it is physical that the normal
traces of the phase velocities vα(pw, sw) (uα), α ∈ {n,w}, are continuous and that the equilibrium
condition

∂t(φsα) +∇·uα = qα (3.2)

holds, cf. (1.1a) and (1.2), which expresses the mass balance and local conservativity for the phase
fluxes. These properties are not necessarily satisfied at the discrete level, in the sense that there
can hold p(pw,hτ , sw,hτ ) 6∈ X, q(sw,hτ ) 6∈ X, and that vα(pw,hτ , sw,hτ ), α ∈ {n,w}, are not in
equilibrium and their normal traces are discontinuous. The pressure reconstructions phτ , qhτ and
the velocity reconstructions uα,hτ , α ∈ {n,w} of Assumption 3.1, restore the properties of the
continuous level at the discrete one.

3.2 A posteriori error estimate

We are now ready to describe our estimators. Let a time step n, 1 ≤ n ≤ N , and a mesh element
T ∈ T n

h be given. Recall first the Poincaré inequality:

‖ϕ− ϕT ‖T ≤ CP,ThT ‖∇ϕ‖T ∀ϕ ∈ H1(T ), (3.3)

where ϕT is the mean value of the function ϕ on the element T and CP,T = 1/π whenever the
element T is convex [47, 8]. Define the residual estimators

ηnR,T,α := CP,ThT ‖q
n
α − ∂n

t (φsα,hτ )−∇·un
α,h‖T , α ∈ {n,w}, (3.4)

the diffusive flux estimators

ηnDF,T,α(t) := ‖un
α,h − vα(pw,hτ , sw,hτ )(t)‖T , α ∈ {n,w}, (3.5)

and the nonconformity estimators

ηnNC,T,1(t) := ‖K(λw(sw,hτ ) + λn(sw,hτ ))∇(p(pw,hτ , sw,hτ )− phτ )‖T (t), (3.6a)

ηnNC,T,2(t) := ‖K∇(q(sw,hτ )− qhτ )‖T (t). (3.6b)

We then have the following result:

Theorem 3.3 (A posteriori estimate of the overall error). Let (pw, sw) be the weak wetting pressure
and saturation characterized by (2.7a)–(2.7d). Let (sw,hτ , pw,hτ ) ∈ [P 1

τ (H
1(T ))]2 be the approxi-

mate wetting pressure and saturation. Let the pressure and velocities reconstructions phτ , qhτ , and
uα,hτ , α ∈ {n,w}, satisfy Assumption 3.1. Let the estimators be given by (3.4)–(3.6b). Then

|||(sw − sw,hτ , pw − pw,hτ )||| ≤

{

∑

α∈{n,w}

N
∑

n=1

∫

In

∑

T∈T n

h

(ηnR,T,α + ηnDF,T,α(t))
2 dt

}
1

2

+

{

N
∑

n=1

∫

In

∑

T∈T n

h

(ηnNC,T,1(t))
2 dt

}
1

2

+

{

N
∑

n=1

∫

In

∑

T∈T n

h

(ηnNC,T,2(t))
2 dt

}
1

2

.

(3.7)
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Proof. The proof is straightforward using the definition of the error measure (2.8) and using
Assumption 3.1. The second and third terms in (3.7) clearly issue from the second and third terms
on the right hand-side of (2.8). We thus only have to prove that the first term is an upper bound
on the first term in the right hand-side of (2.8). Let α ∈ {n,w} and ϕ ∈ X, ‖ϕ‖X = 1, be given.
Then (2.7d) implies that

∫ tF

0

{〈∂t(φsα)− ∂t(φsα,hτ ), ϕ〉 − (vα(pw, sw)− vα(pw,hτ , sw,hτ ),∇ϕ)}dt

=

∫ tF

0

{(qα − ∂t(φsα,hτ ), ϕ) + vα(pw,hτ , sw,hτ ),∇ϕ)}dt.

Let now 1 ≤ n ≤ N be given. Adding and subtracting (un
α,h,∇ϕ), using the Green theorem, the

assumption (3.1), the Poincaré inequality (3.3), and the Cauchy–Schwarz inequality,

(qnα − ∂n
t (φsα,hτ ), ϕ) + (vα(pw,hτ , sw,hτ ),∇ϕ)

= (qnα − ∂n
t (φsα,hτ )−∇·un

α,h, ϕ) + (vα(pw,hτ , sw,hτ )− un
α,h,∇ϕ)

=
∑

T∈T n

h

{(qnα − ∂n
t (φsα,hτ )−∇·un

α,h, ϕ− ϕT )T + (vα(pw,hτ , sw,hτ )− un
α,h,∇ϕ)T }

≤
∑

T∈T n

h

{(ηnR,T,α + ηnDF,T,α(t))‖∇ϕ‖T }.

Thus

N
∑

n=1

∫

In

{〈∂t(φsα)− ∂n
t (φsα,hτ ), ϕ〉 − (vα(pw, sw)− vα(pw,hτ , sw,hτ ),∇ϕ)}dt

≤
N
∑

n=1

∫

In

∑

T∈T n

h

{(ηnR,T,α + ηnDF,T,α(t))‖∇ϕ‖T }dt,

wherefrom the assertion of the theorem follows by the Cauchy–Schwarz inequality and by the fact
that ‖ϕ‖X = 1.

3.3 Application to different numerical methods

For the theoretical analysis of this paper, we only need Assumption 3.1. The practical application
of the present framework to different numerical methods consists in specifying the construction of
phτ , qhτ , and uα,hτ , α ∈ {n,w} that we outline now.

In vertex-centered finite volume or finite element methods, there typically holds p(pw,hτ , sw,hτ ) ∈
X and q(sw,hτ ) ∈ X, so that we can put phτ := p(pw,hτ , sw,hτ ) and qhτ := q(sw,hτ ). In the other,
nonconforming, numerical methods, we typically choose phτ ∈ P 1

τ (H
1(Ω)), pnh := Iav(p(p

n
w,h, s

n
w,h))

and qhτ ∈ P 1
τ (H

1(Ω)), qnh := Iav(q(s
n
w,h)). Here Iav is the averaging operator which sets the

Lagrangian degrees of freedom inside Ω to the average of the values from the different elements
sharing this degree of freedom, see [1, 38, 12].

The choice of uα,hτ , α ∈ {n,w}, is more involved. In mixed finite element methods, in ad-
dition to the approximate wetting saturation sw,hτ and pressure pw,hτ described in Section 2.3,
one also directly obtains phase velocity approximations uα,hτ ∈ P 0

τ (H(div,Ω)), α ∈ {n,w}, sat-
isfying (3.1). More precisely, for every time interval In, 1 ≤ n ≤ N , typically un

α,h ∈ RTN(T n
h ),

whereRTN(T n
h ) is the Raviart–Thomas finite-dimensional subspace of H(div,Ω), cf. [10]. In other
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numerical methods, obtaining uα,hτ ∈ P 0
τ (H(div,Ω)) satisfying (3.1) is possible by means of local

postprocessing. In the context of linear elliptic equations, we refer for cell-centered finite volume
methods to [33, 56], for discontinuous Galerkin methods to [30, 39, 2], and for vertex-centered
finite volume and finite element methods to [43, 55]. For nonlinear elliptic equations, such con-
structions are unified for different numerical methods in [32]. In the context of two-phase flows,
the constructions of uα,hτ , α ∈ {n,w}, can be found in [21] for cell-centered finite volume methods,
in [14] for vertex-centered finite volume methods, and in [28, 29] for the discontinuous Galerkin
method.

In presence of additional errors stemming from (purposely) not converged linear and nonlinear
solvers or iterative coupling, (3.1) does not hold true for the directly available or simply locally
reconstructed uα,hτ . We will give below in Sections 4 and 5 general recipes how to construct uα,hτ

satisfying (3.1) in such situations. These abstract recipes are illustrated on particular examples
in [21, 14].

4 Stopping criteria and adaptivity for fully implicit discretiza-

tions

We show in this section how the abstract a posteriori error estimate of Section 3 can be adopted
to fully implicit discretizations of (1.1a)–(1.5b). We also show how one can take into account the
additional error from iterative linearization and iterative solution of algebraic linear systems and
distinguish the different error contributions. We finally propose stopping criteria for the various
iterations and design a fully adaptive algorithm.

4.1 A fully implicit formulation

Keeping pw and sw as unknowns and expressing sn as a function of sw from (1.1b) and pn as a
function of pw and sw from (1.1c), we arrive at the following equivalent form of (1.1a)–(1.1c):

∂t(φsw)−∇·

(

kr,w(sw)

µw

K(∇pw + ρwg∇z)

)

= qw in Q, (4.1a)

−∂t(φsw)−∇·

(

kr,n(sw)

µn

K(∇(pw + pc(sw)) + ρng∇z)

)

= qn in Q. (4.1b)

Let us now suppose some discretization of the above system in both space and time, starting
from s0w,h ∈ H1(T 0

h ). We suppose implicit (backward Euler) discretization in time. This leads, on
a time level n, 1 ≤ n ≤ N , to a system of nonlinear algebraic equations that can be schematically
written in the form

(

SS
n
w SP

n
w

SS
n
n SP

n
n

)(

Sn
w

Pn
w

)

=

(

Dn
w

Dn
n

)

, (4.2)

where Sn
w is the algebraic vector of discrete unknowns corresponding to the wetting saturation snw,h

and Pn
w is the algebraic vector of discrete unknowns corresponding to the wetting pressure pnw,h.

For the sake of simplicity of the exposition, we suppose herein that there is one unknown per each
element of the mesh T n

h in both Sn
w and Pn

w . The adaptation to the general case is easy. Note that
SS

n
w, SP

n
w, SS

n
n , and SP

n
n in (4.2) are nonlinear vector functions and not matrices. In practice, (4.2)

is solved using some iterative linearization, typically the Newton–Raphson or the fixed-point ones,
where the arising linear systems are solved by some iterative method. This leads to the following
algorithm, where we already prepare a path for the application of our a posteriori error estimates:

1. Let the initial wetting saturation S0
w (and pressure P 0

w) be given. Set n = 1.

9



2. Set up the system of nonlinear algebraic equations (4.2).

3. (a) Choose some initial wetting saturation Sn,0
w and pressure Pn,0

w . Typically, these are the
saturation and pressure from the last time step, Sn−1

w and Pn−1
w . Set k = 1.

(b) Set up the following linear system: find Sn,k
w and Pn,k

w , the solutions to
(

SS
n,k−1
w SP

n,k−1
w

SS
n,k−1
n SP

n,k−1
n

)

(

Sn,k
w

Pn,k
w

)

=

(

Dn,k−1
w

Dn,k−1
n

)

. (4.3)

Here SSn,k−1
w , SPn,k−1

w , SSn,k−1
n , and SP

n,k−1
n are matrices formed from Sn,k−1

w and Pn,k−1
w

and Dn,k−1
w and Dn,k−1

n are vectors formed from Sn,k−1
w and Pn,k−1

w .

(c) i. Choose some initial saturation Sn,k,0
w and pressure Pn,k,0

w . Typically, Sn,k,0
w = Sn,k−1

w

and Pn,k,0
w = Pn,k−1

w . Set i = 1.

ii. Perform a step of a chosen iterative algebraic method for the solution of the linear
system (4.3), starting from Sn,k,i−1

w and Pn,k,i−1
w . This gives approximations Sn,k,i

w

and Pn,k,i
w .

iii. Build the discrete functions representations of the wetting saturations and pressures
sn,k,iw,h ∈ H1(T n

h ) and pn,k,iw,h ∈ H1(T n
h ) from Sn,k,i

w and Pn,k,i
w , according to the given

numerical method. Define the space–time functions sn,k,iw,hτ and pn,k,iw,hτ ; these are affine

in time on the time interval In, given by sn−1
w,h and pn−1

w,h at time tn−1 and by sn,k,iw,h and

pn,k,iw,h at time tn. We use this refined notation in place of sw,hτ , pw,hτ of Section 2.3.

iv. From sn,k,iw,h and pn,k,iw,h , set p
n,k,i
h := Iav(p(p

n,k,i
w,h , sn,k,iw,h )) and q

n,k,i
h := Iav(q(s

n,k,i
w,h )).

Define the global pressure reconstruction p
n,k,i
hτ and the complementary pressure

reconstruction q
n,k,i
hτ (cf. Assumption 3.1) affine in time on the time interval In by

p
n−1
h and q

n−1
h at time tn−1 and by p

n,k,i
h and q

n,k,i
h at time tn.

v. From the given numerical scheme, build the phase velocities reconstructions un,k,i
α,h ∈

RTN(T n
h ), α ∈ {n,w} (cf. Assumption 3.1). More precisely, the goal is to obtain

the decompositions, α ∈ {n,w},

u
n,k,i
α,h = d

n,k,i
α,h + l

n,k,i
α,h + a

n,k,i
α,h , (4.4a)

d
n,k,i
α,h , ln,k,iα,h ,an,k,iα,h ∈ RTN(T n

h ). (4.4b)

Herein, an,k,iα,h will be used to monitor the error in the solution of the linear algebraic

system (4.3), ln,k,iα,h will be used to monitor the error in the linearization of (4.2)

by (4.3), and d
n,k,i
α,h will be used to monitor the discretization error. Structurally,

this can be achieved as follows:

A. From the given numerical method, reconstruct locally d
n,k,i
α,h , α ∈ {n,w}, see

the discussion in Section 3.3. Typically, the degrees of freedom of dn,k,i
α,h are

prescribed using the available functions vα(p
n,k,i
w,h , sn,k,iw,h ); in any case, this con-

struction should be independent of the linearization used to obtain (4.3) and of
the iterative algebraic solver used to solve (4.3).

B. From Sn,k,i
w and Pn,k,i

w , compute the algebraic residual vectors Rn,k,i
w and Rn,k,i

n

of (4.3):
(

Rn,k,i
w

Rn,k,i
n

)

:= −

(

SS
n,k−1
w SP

n,k−1
w

SS
n,k−1
n SP

n,k−1
n

)

(

Sn,k,i
w

Pn,k,i
w

)

+

(

Dn,k−1
w

Dn,k−1
n

)

. (4.5)
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C. From the given numerical method, define implicitly l
n,k,i
α,h , α ∈ {n,w}, such that

(qnα − ∂n
t (φs

n,k,i
α,hτ )−∇·(dn,k,i

α,h + l
n,k,i
α,h ), 1)T = Rn,k,i

α |T ∀T ∈ T n
h , α ∈ {n,w}.

(4.6)

It is crucial to ensure that ‖ln,k,iα,h ‖ go to zero when Sn,k
w , Pn,k

w , the solutions
of (4.3), converge to Sn

w, P
n
w , the solution of (4.2).

D. Construct locally a
n,k,i
α,h , α ∈ {n,w}, such that

(∇·an,k,iα,h , 1)T = Rn,k,i
α |T ∀T ∈ T n

h , α ∈ {n,w}, (4.7)

using, for instance, the algorithm of [37, Section 7.3], see also [32]. It is crucial

to ensure that ‖an,k,iα,h ‖ go to zero when Rn,k,i
α go to zero.

vi. Check the convergence criterion for the linear solver (see (4.15) below); if this

criterion is reached, set Sn,k
w := Sn,k,i

w and Pn,k
w := Pn,k,i

w . If not, set i := i+ 1 and
go back to step 3(c)ii.

(d) Check the convergence criterion for the nonlinear solver (see (4.16) below); if this cri-

terion is reached, set Sn
w := Sn,k

w , Pn
w := Pn,k

w and pnh := p
n,k,i
h , qnh := q

n,k,i
h . If not,

k := k + 1 and go back to step 3b.

4. Check whether the spatial and temporal errors are comparable (see (4.17a) below), whether
the spatial errors are equally distributed in the computational domain (see (4.17b) below),
and whether the total error is small enough (see (4.17c) below); if this is the case, set
n := n + 1 and go to step 2. If not, refine the time step τn and/or the space mesh T n

h and
go to step 2.

4.2 An a posteriori error estimate distinguishing the space, time, linearization,

and algebraic errors

We now further develop the framework of Section 3 in order to distinguish the space, time, lin-
earization, and algebraic errors.

Fix α ∈ {n,w} and consider the algorithm of Section 4.1 on the time step n, linearization

step k, and algebraic solver step i. Observe from (4.4a), (4.6), and (4.7) that un,k,i
α,h satisfies

(qnα − ∂n
t (φs

n,k,i
α,hτ )−∇·un,k,i

α,h , 1)T = 0 ∀T ∈ T n
h , (4.8)

i.e., un,k,i
α,h satisfies assumption (3.1). Rewriting (3.4)–(3.6b) with these notations, we pose, for

T ∈ T n
h ,

ηn,k,iR,T,α := CP,ThT ‖q
n
α − ∂n

t (φs
n,k,i
α,hτ )−∇·un,k,i

α,h ‖T , (4.9a)

ηn,k,iDF,T,α(t) := ‖un,k,i
α,h − vα(p

n,k,i
w,hτ , s

n,k,i
w,hτ )(t)‖T , (4.9b)

ηn,k,iNC,T,1(t) := ‖K(λw(s
n,k,i
w,hτ ) + λn(s

n,k,i
w,hτ ))∇(p(pn,k,iw,hτ , s

n,k,i
w,hτ )− p

n,k,i
hτ )‖T (t), (4.9c)

ηn,k,iNC,T,2(t) := ‖K∇(q(sn,k,iw,hτ )− q
n,k,i
hτ )‖T (t). (4.9d)

We then have, as in Section 3.2, the local-in-time iterative-algorithms-running version of Theo-
rem 3.3:
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Corollary 4.1 (Local-in-time estimate for linearization and algebraic iterates). Let (pw, sw) be
the weak wetting pressure and saturation characterized by (2.7a)–(2.7d). Consider the n-th time
step, k-th linearization step, and i-th algebraic solver step of the algorithm of Section 4.1. Let
sn,k,iw,hτ and pn,k,iw,hτ , p

n,k,i
hτ and q

n,k,i
hτ , and u

n,k,i
α,h be as specified in Section 4.1. Let the estimators be

given by (4.9a)–(4.9d). Then

|||(sw − sn,k,iw,hτ , pw − pn,k,iw,hτ )|||In ≤ ηn :=

{

∑

α∈{n,w}

∫

In

∑

T∈T n

h

(ηn,k,iR,T,α + ηn,k,iDF,T,α(t))
2 dt

}
1

2

+

{

∫

In

∑

T∈T n

h

(ηn,k,iNC,T,1(t))
2 dt

}
1

2

+

{

∫

In

∑

T∈T n

h

(ηn,k,iNC,T,2(t))
2 dt

}
1

2

.

We now distinguish the different error components. Define the spatial estimator

ηn,k,isp,T (t) :=







∑

α∈{n,w}

(

ηn,k,iR,T,α + ‖dn,k,i
α,h − vα(p

n,k,i
w,h , sn,k,iw,h )‖T

)2
+
(

ηn,k,iNC,T,1(t)
)2

+
(

ηn,k,iNC,T,2(t)
)2







1

2

,

(4.10)
the temporal estimators

ηn,k,itm,T,α(t) := ‖vα(p
n,k,i
w,hτ , s

n,k,i
w,hτ )(t)− vα(p

n,k,i
w,h , sn,k,iw,h )‖T , α ∈ {n,w}, (4.11)

the linearization estimators

ηn,k,ilin,T,α := ‖ln,k,iα,h ‖T , α ∈ {n,w}, (4.12)

and the algebraic estimators

ηn,k,ialg,T,α := ‖an,k,iα,h ‖T , α ∈ {n,w}. (4.13)

Define also global versions of these estimators as

ηn,k,isp :=







3

∫

In

∑

T∈T n

h

(ηn,k,isp,T (t))
2 dt







1

2

, (4.14a)

ηn,k,itm :=







∑

α∈{n,w}

∫

In

∑

T∈T n

h

(ηn,k,itm,T,α(t))
2 dt







1

2

, (4.14b)

ηn,k,ilin :=







∑

α∈{n,w}

τn
∑

T∈T n

h

(ηn,k,ilin,T,α)
2







1

2

, (4.14c)

ηn,k,ialg :=







∑

α∈{n,w}

τn
∑

T∈T n

h

(ηn,k,ialg,T,α)
2







1

2

. (4.14d)

Corollary 4.1 and the triangle inequality yield:
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Corollary 4.2 (An a posteriori error estimate distinguishing the space, time, linearization, and
algebraic errors). Let the assumptions of Corollary 4.1 be satisfied. Let the estimators be given
by (4.14a)–(4.14d). Then

|||(sw − sn,k,iw,hτ , pw − pn,k,iw,hτ )|||In ≤ ηn,k,isp + ηn,k,itm + ηn,k,ilin + ηn,k,ialg .

Remark 4.3 (Comments on the different estimators). The spatial estimators ηn,k,isp,T above regroup
all the parts of the estimates of Corollary 4.1 that represent the error in space, typically because the
spatial mesh T n

h is not fine enough. The temporal estimators ηn,k,itm,T,α represent the part of the error

in time, caused by a too big time step τn. The linearization estimators ηn,k,ilin,T,α measure the error

in the linearization (4.3) of (4.2) on step k. Finally, the algebraic estimators ηn,k,ialg,T,α measure the
error on the i-th step iterative solution of the linear system (4.3).

4.3 Stopping criteria and optimal balancing of the different error components

We precise here the algorithm of Section 4.1, in the purpose to balance the error components of
Corollary 4.2.

On step 3(c)vi of the algorithm of Section 4.1, we evaluate all ηn,k,isp , ηn,k,itm , ηn,k,ilin , and ηn,k,ialg .
Then the stopping criterion for the iterative solution of the linear system (4.3) is

ηn,k,ialg ≤ γalg(η
n,k,i
sp + ηn,k,itm + ηn,k,ilin ). (4.15)

Here 0 < γalg ≤ 1 is a user-given weight, typically close to 1. Criterion (4.15) expresses that there
is no need to continue with the linear solver iterations if the overall error is dominated by the other
components.

Similarly, on step 3d of the algorithm of Section 4.1, we evaluate ηn,k,isp , ηn,k,itm , and ηn,k,ilin and
stop the iterative linearization of (4.2) whenever

ηn,k,ilin ≤ γlin(η
n,k,i
sp + ηn,k,itm ). (4.16)

Here 0 < γlin ≤ 1 is a user-given weight, typically close to 1. Criterion (4.16) expresses that there
is no need to continue with the linearization iterations if the overall error is dominated by the
other components.

Finally, on step 4 of the algorithm of Section 4.1, we evaluate ηn,k,isp , ηn,k,itm , and ηn,k,isp,T for all
T ∈ T n

h . The purpose is to achieve

ηn,k,isp ≈ ηn,k,itm , (4.17a)
{
∫

In

(ηn,k,isp,T (t))
2 dt

}
1

2

are comparable for all T ∈ T n
h , (4.17b)

ηn ≤ εn. (4.17c)

Here εn is a user-given criterion for the maximal error allowed on the time interval In.

Remark 4.4 (Local stopping criteria). Following [37], [26], and [32], versions of (4.15) and (4.16)
localized on the elements of the mesh T n

h can also be given and should be used whenever one intends
to refine the space meshes T n

h adaptively according to (4.17b).

Remark 4.5 (Evaluation cost). The evaluation of the different estimators of Corollaries 4.1
and 4.2 and of the stopping criteria (4.15)–(4.17c) has linear cost in terms of the number of
the elements of the meshes T n

h . Moreover, it can be done completely in parallel. In practice, var-
ious computational simplifications or approximations may be devised and in order to still reduce
the cost, the estimators and stopping criteria need not to be evaluated on every iteration but only
on every couple of iterations.
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5 Stopping criteria and adaptivity for implicit pressure–explicit

saturations-type discretizations

We give here our a posteriori error estimates and adaptive linear solver and iterative coupling
stopping criteria suitable for implicit pressure–explicit saturations-type discretizations.

5.1 Iterative coupling for the pressure–saturation formulation

We first proceed as in Section 4 to obtain (4.1a)–(4.1b). We keep the wetting phase saturation
equation (4.1a), whereas we replace the nonwetting phase saturation equation (4.1b) by the sum
of (4.1a) and (4.1b). We thus arrive at the following equivalent “pressure–saturation” formulation
of (1.1a)–(1.1c):

−∇·

((

kr,w(sw)

µw

+
kr,n(sw)

µn

)

K∇pw

+
kr,n(sw)

µn

K(∇pc(sw) + ρng∇z) +
kr,w(sw)

µw

Kρwg∇z

)

= qw + qn in Q, (5.1a)

∂t(φsw)−∇·

(

kr,w(sw)

µw

K(∇pw + ρwg∇z)

)

= qw in Q. (5.1b)

This formulation leads to the following solution algorithm:

1. Let the initial wetting saturation s0w,h ∈ H1(T 0
h ) (and pressure p0w,h ∈ H1(T 0

h )) be given. Set
n = 1.

2. (a) Choose some initial wetting saturation sn,0w,h (Sn,0
w is the corresponding algebraic vector).

Typically, this is the approximate saturation from the last time step, sn−1
w,h . Set k = 1.

(b) Set up the following linear elliptic problem, stemming from (5.1a), with pw as the
unknown:

−∇·

((

kr,w(s
n,k−1
w,h )

µw

+
kr,n(s

n,k−1
w,h )

µn

)

K∇pw

−
kr,n(s

n,k−1
w,h )

µn

K(∇pc(s
n,k−1
w,h ) + ρng∇z) +

kr,w(s
n,k−1
w,h )

µw

Kρwg∇z

)

= qw + qn in Q.

(5.2)

After a spatial discretization, this problem corresponds to, in matrix form,

P
n,k−1
wn Pn,k

w = Dn,k−1
wn , (5.3)

where the matrix P
n,k−1
wn and the right-hand side vector Dn,k−1

wn depend on Sn,k−1
w .

(c) i. Choose some initial pressure Pn,k,0
w . Set i = 1.

ii. Perform a step of a chosen iterative algebraic method for the solution of (5.3),

starting from Pn,k,i−1
w . At the present stage, we have approximations Sn,k−1

w and
Pn,k,i
w .

iii. Build the discrete functions representations of the wetting saturations and pressures
sn,k−1
w,h ∈ H1(T n

h ) and pn,k,iw,h ∈ H1(T n
h ) from Sn,k−1

w and Pn,k,i
w , according to the

given numerical method. Define the space–time functions sn,k−1
w,hτ and pn,k,iw,hτ ; these

are affine in time on the time interval In, given by sn−1
w,h and pn−1

w,h at time tn−1 and

by sn,k−1
w,h and pn,k,iw,h at time tn.
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iv. From sn,k−1
w,h and pn,k,iw,h , set pn,k,ih := Iav(p(p

n,k,i
w,h , sn,k−1

w,h )) and q
n,k−1
h := Iav(q(s

n,k−1
w,h )).

Define the global pressure reconstruction p
n,k,i
hτ and the complementary pressure re-

construction q
n,k−1
hτ (cf. Assumption 3.1) affine in time on the time interval In by

p
n−1
h and q

n−1
h at time tn−1 and by p

n,k,i
h and q

n,k−1
h at time tn.

v. From the given numerical scheme, build the phase velocities reconstructions un,k,i
α,h ∈

RTN(T n
h ), α ∈ {n,w} (cf. Assumption 3.1). More precisely, the goal is to obtain

the decompositions (4.4a)–(4.4b), see step 3(c)v of the algorithm of Section 4.1.

Here, a
n,k,i
α,h monitor the algebraic error in (5.3), l

n,k,i
α,h monitor the error in the

iterative coupling, and d
n,k,i
α,h monitor the discretization error. Structurally, this can

be achieved as follows:

A. From the given numerical method, reconstruct locally d
n,k,i
α,h , α ∈ {n,w}, as in

the step 3(c)vA of the algorithm of Section 4.1, using the available functions

vα(p
n,k,i
w,h , sn,k−1

w,h ).

B. From Sn,k−1
w and Pn,k,i

w , compute the algebraic residual vector Rn,k,i
wn :

Rn,k,i
wn := −P

n,k−1
wn Pn,k,i

w +Dn,k−1
wn . (5.4)

C. From the given method, define implicitly a vector field l
n,k,i
wn,h ∈ RTN(T n

h ) such
that

(qnw + qnn −∇·(dn,k,i
n,h + d

n,k,i
w,h + l

n,k,i
wn,h), 1)T = Rn,k,i

wn |T ∀T ∈ T n
h . (5.5)

In contrast to Section 4, where an independent field l
n,k,i
α,h is readily obtained

for each phase α ∈ {n,w}, we at the present stage only have one vector field

l
n,k,i
wn,h, representing the total “iterative coupling error”. In order to obtain l

n,k,i
α,h ,

α ∈ {n,w}, we now suppose that n = 1 and k > 1 or n ≥ 2 (for n = 1 and k = 1,
we need to first make once the step 2d below). Using also the discretization of

the saturation equation (5.7) below, we can split ln,k,iwn,h into l
n,k,i
wn,h = l

n,k,i
w,h + l

n,k,i
n,h .

D. Construct a vector field a
n,k,i
wn ∈ RTN(T n

h ) such that

(∇·an,k,iwn , 1)T = Rn,k,i
wn |T ∀T ∈ T n

h , (5.6)

using, for instance, the algorithm of [37, Section 7.3], see also [32]. As above, we

need to split an,k,iwn = a
n,k,i
w +a

n,k,i
n , using also the discretization of the saturation

equation (5.7) below.

vi. Check the convergence criterion for the linear solver (see (4.15)); if the criterion is

reached, set Pn,k
w := Pn,k,i

w . If not, set i := i+ 1 and go back to step 2(c)ii.

(d) Set up the following hyperbolic-like problem, stemming from (5.1b), with pn,kw,h corre-

sponding to Pn,k
w : find sw such that

∂t(φsw)−∇·

(

kr,w(sw)

µw

K(∇pn,kw,h + ρwg∇z)

)

= qw in Q. (5.7)

Discretize (5.7) in space and in time. The temporal discretization is explicit. This gives

Sn,k
w . Build sn,kw,h ∈ H1(T n

h ) and the space–time approximation sn,kw,hτ , given by sn−1
w,h at

tn−1 and by sn,kw,h at tn. Repeat steps 2(c)iii–2(c)vD with sn,k−1
w,h replaced by sn,kw,h.
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(e) Check the convergence criterion for the iterative coupling (see (4.16)); if this criterion

is reached, set Sn
w := Sn,k

w , Pn
w := Pn,k

w and pnh := p
n,k,i
h , qnh := q

n,k
h . If not, set k := k + 1

and go back to step 2b.

3. Check whether the spatial and temporal errors are comparable (see (4.17a)), whether the
spatial errors are equally distributed in the computational domain (see (4.17b)), and whether
the total error is small enough (see (4.17c)); if this is the case, set n := n+1 and go to step 2a.
If not, refine the time step τn and/or the space mesh T n

h and go to step 2a.

5.2 Implicit pressure–explicit saturation formulation

Implicit pressure–explicit saturation discretization (IMPES) corresponds to the iterative coupling
algorithm of Section 5.1 where only one step in k (k = 1 only) is done.

5.3 An a posteriori error estimate distinguishing the space, time, iterative

coupling, and algebraic errors

We now use the framework of Section 3, or more precisely that developed in Section 4.2, in order
to distinguish the space, time, iterative coupling, and algebraic errors.

Fix α ∈ {n,w} and consider the algorithm of Section 5.1 on the time step n, iterative coupling

step k, and algebraic solver step i. The approximate wetting pressure at our disposal is thus pn,k,iw,hτ .

Suppose next that we have at hand the l-th iterative coupling step saturation approximation sn,lw,hτ ,
where l = k − 1 or l = k. That is, we are either on step 2(c)vi, or on step 2e of the algorithm of
Section 5.1. Define

u
n,k,i
wn,h := d

n,k,i
n,h + d

n,k,i
w,h + l

n,k,i
wn,h + an,k,iwn

and observe from (5.5) and (5.6) that un,k,i
wn,h satisfies

(qnw + qnn −∇·un,k,i
wn,h, 1)T = 0 ∀T ∈ T n

h .

Moreover, the decompositions of ln,k,iwn,h and a
n,k,i
wn of Section 5.1 have to be such that we can recover

the individual phases fluxes reconstructions un,k,i
α,h , α ∈ {n,w}, such that un,k,i

wn,h = u
n,k,i
w,h +u

n,k,i
n,h and

such that (4.8) holds.
Replacing in terminology the “k-th linearization step” by the “k-th iterative coupling step” and

sn,k,iw,hτ by sn,lw,hτ , Corollary 4.1 holds true also in this case. Similarly, keeping the definitions (4.10)–

(4.14d) (ηn,k,ilin,T,α and ηn,k,ilin rather represent here the iterative coupling error), Corollary 4.2 holds
true also in this case.

5.4 Stopping criteria and optimal balancing of the different error components

Stopping criteria to be used on steps 2(c)vi, 2e, and 3 of the algorithm of Section 5.1 for optimal
balancing of the different error components and overall error control are exactly the same as in
Section 4.3.
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[31] A. Ern and M. Vohraĺık, A posteriori error estimation based on potential and flux recon-
struction for the heat equation, SIAM J. Numer. Anal., 48 (2010), pp. 198–223.

[32] , Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear dif-
fusion PDEs. In preparation, 2011.

18
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