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The spatial Dysthe equations describe the envelope evolution of the free-surface and potential of gravity

waves in deep waters. Their Hamiltonian structure and new invariants are unveiled by means of a gauge

transformation to a new canonical form of the evolution equations. An accurate Fourier-type spectral scheme

is used to solve for the wave dynamics and validate the new conservation laws, which are satisfied up to

machine precision. Further, traveling waves are numerically constructed using the Petviashvili method. It is

shown that their collision appears inelastic, suggesting the non-integrability of the Dysthe equations.

1. INTRODUCTION

Mathematical models used in physics and mechanics

do not always possess a canonical Hamiltonian struc-

ture. Typically, the dynamics is governed by partial

differential equations expressed in terms of physically-

based variables, which are not usually canonical. A

transformation to new variables is needed in order to

unveil the desired structure explicitly. This is the case

for the equations of motion for an ideal fluid: in the

Eulerian description, they cannot be recast in a canon-

ical form, whereas in a Lagrangian frame the Hamilto-

nian structure is revealed by Clebsch potentials. More-

over, multiple-scale perturbations of differential equa-

tions expressed in terms of non-canonical variables typ-

ically lead to approximate equations that do not main-

tain the fundamental conserved quantities, as the hy-

drostatic primitive equations on the sphere, where en-

ergy and angular momentum conservation are lost un-

der the hydrostatic approximation. Clearly, if canonical

variables can be identified, then the associated Hamilto-

nian structure provides a natural framework for making

consistent approximations that preserve the fundamen-

tal dynamical properties of the original system, notably

its conservation laws. For example, consider the equa-

tions that describe the irrotational flow of an ideal in-

compressible fluid of infinite depth with a free surface.

Their Hamiltonian description was discovered by [15] in

terms of the free-surface elevation η(x, t) and the ve-

locity potential ϕ(x, t) = φ(x, z = η(x, t), t) evaluated

at the free surface of the fluid. Variables η(x, t) and

ϕ(x, t) are conjugated canonical variables with respect

to the Hamiltonian H given by the total wave energy.

By means of a third order expansion of H in the wave

steepness, [16] derived an integro-differential equation in

1)e-mail: fedele@gatech.edu

terms of canonical conjugate Fourier amplitudes, which

has no restrictions on the spectral bandwidth.

The modified Nonlinear Schrödinger (NLS) equa-

tions derived by [4] are also non-Hamiltonian. Us-

ing the method of multiple scales, he extended the

deep-water cubic NLS equation for the time evolution

of narrowband wave envelope B of the carrier wave

exp(ik0x−iω0t) and that of the potential φ of the wave-

induced mean flow, to fourth order in steepness and

bandwidth. Introducing dimensionless units, t′ = ω0t,

x′ = k0x, B
′ = k0B, and dropping the primes, φ can

be easily found by means of the Fourier-transform and

a single equation for B can be derived as well:

Bt +
1

2
Bx +

1

8
iBxx −

1

16
Bxxx +

i

2
|B|

2
B +

3

2
|B|Bx

+ βB2B∗

x +
1

2
iBH(|B|2)x = 0, (1)

where β = 1/4, the subscripts Bt = ∂tB and Bx = ∂xB

denote partial derivatives with respect to x and t, re-

spectively, H(f) is the Hilber Transform of a function

f(x), and B∗ denotes complex conjugation (see also [7]).

The form of the equation for the envelope A of the wave

potential is similar to (1), but the term βB2B∗
x becomes

−βA2A∗
x [6]. Recently, the associated canonical form

(which do not contain the β term) has been derived by

[5] starting from the Hamiltonian Zakharov equation

with the Krasitskii kernel [9]. We also point out that

[17], starting from a conformal-mapping formulation of

the Euler equations derived another version of the tem-

poral Dysthe equation, which is similar to (1) but also

non-Hamiltonian.

On the other hand, to model wave propagation in

wave basins a change to a coordinate system moving

at the group velocity can be used by introducing the

dimensionless variables

B = εu, τ = ε(2x− t), ξ = ε2x,

1
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with ε = k0a being the wave steepness of the carrier

wave and a the associated amplitude [11]. As such,

the temporal Dysthe equation (1) transforms, up to the

fourth order in ε, to

uξ+iuττ+i |u|
2 u+8ε |u|2 uτ+2εu2u∗τ+2εiuH(|u|2)τ = 0,

(2)

hereafter referred to as the spatial Dysthe for the wave

envelope u. On the other hand, the associated envelope

A = εv of the wave potential satisfies

vξ + ivττ + i|v|2v + 8ε|v|2vτ + 2εivH(|v|2)τ = 0. (3)

Both (2) and (3) can also be derived directly from the

Zakharov equation [8].

In this paper, we will unveil the hidden canonical

structure of the spatial Dysthe equations (2), (3). In

particular, we introduce a gauge transformation that

yields a canonical form of equation (2) for the wave

envelope u, and new invariants for it. As a corollary,

we will also show that equation (3) for the wave po-

tential envelope v is already Hamiltonian. Then, the

Petviashvili method is exploited to compute numeri-

cally ground states and traveling waves ([12]; see also

[10, 14]). Their dynamics is numerically investigated

up to machine precision by means of a highly accurate

pseudo spectral scheme in order to provide new insights

on the integrability of the Dysthe equations.

2. CANONICAL FORM

Hereafter, we will consider the generic nonlinear

equation

uξ = −iauττ − ih |u|
2
u− cε |u|

2
uτ

− εeu2u∗τ − fiεuH(|u|
2
)τ , (4)

with (a, h, c, e, f) as a quintuplet of arbitrary real coef-

ficients. In particular, the spatial Dysthe for the wave

and potential envelopes follow from (4) with parameters

(1, 1, 8, 2, 2) and (1, 1, 8, 0, 2) respectively. The wave ac-

tion

A =

∫

|u|
2
dτ (5)

is conserved by (4), but up to date no other conservation

laws are known for u.

Drawing from [3] (see also [13]), the invariance of

A suggests the following variable change via the gauge

transformation

w = G(u) = u exp(ikψ), (6)

where k is a free parameter, and the ’stream function’

ψ is defined as ∂τψ = ψτ = |u|2. Note that |u|2 = |w|2

and the wave action A is preserved in the transforma-

tion. The spatial evolution equation for w follows from

(6) as

wξ = −iawττ − ih|w|2w+

ikε2
c− 3e− 2ak

2
|w|4w − (c+ 2ak)ε|w|wτ

− (e + 2ak)εw2w∗

τ − ifεwH(|w|2)τ . (7)

If the free parameter k∗ is chosen as k∗ = − e
2aε, equa-

tion (7) simplifies to

wξ = −iawττ − ih |w|
2
w − i

ce− 2e2

4a
ε2|w|4w

− (c− e)ε |w|
2
wτ − ifεwH(|w|

2
)τ , (8)

which admits the Hamiltonian structure
(

wξ

w∗

ξ

)

= i

(

0 1

−1 0

)(

δHw

δw
δHw

δw∗

)

, (9)

where the Hamiltonian is given by

Hw =

∫

(

a |wτ |
2
−
h

2
|w|

4
−
ce− 2e2

12a
ε2 |w|

6

− i
c− e

4
ε |w|

2
(w∗

τw−wτw
∗)−

f

2
ε |w|

2
H(|w|

2
)τ

)

dτ.

(10)

Here, Hw is also an invariant together with the momen-

tum

Mw =

∫

i(w∗

τw − wτw
∗)dτ. (11)

Thus, from (6)

E(u) =

∫

(

a|uτ |
2 −

h

2
|u|4 +

ce+ e2

6a
ε2|u|6

− i
c+ e

4
ε |u|

2
(u∗τu− uτu

∗)−
f

2
ε |u|

2
H(|u|

2
)τ

)

dτ,

(12)

M(u) =

∫

[

i(u∗τu− uτu
∗)−

e

a
ε |u|4

]

dτ,

are both invariants of the spatial Dysthe equation (4),

but E is not the associated Hamiltonian. Note the ap-

pearance of terms of O(ε2) in the invariants E and Hw.

They both vanish if e is null; as a result u = w and

E(u) = Hw becomes the Hamiltonian for u. As a con-

sequence, the spatial Dysthe (1) for the wave envelope

B is non Hamiltonian since e = 2, whereas the wave

potential v is canonical (cf. eq. (3)).

In the next section we use a highly accurate Fourier-

type pseudo-spectral method to solve for the envelope

dynamics and validate the invariance of the Hamilto-

nian (10) of w and the new invariants (12) of u. In

our numerical investigations, it is found that they are

conserved up to machine precision.
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3. GROUND STATES AND TRAVELING WAVES

Insights into the underlying dynamics of the Dysthe

equations are to be gained if we construct some spe-

cial families of solutions in the form of ground states

and traveling waves, often just called solitons or solitary

waves. Hereafter, we do so for the Dysthe equation (4)

for the envelope u, but the associated Hamiltonian form

(8) in w can be treated in a similar way. However, owing

to the gauge transformation (6) the envelope |w| = |u|.

We point out that analytical solutions of (4) are avail-

able in terms of multiple-scale perturbations of the NLS

equation using, for example, direct soliton perturbation

theory (see, for example, [1, 14]). Consequently, we con-

struct numerical solutions of ground states and travel-

ing waves of the form u(ξ, τ) = v(τ − sξ)e−iµξ using

the Petviashvili method ([12], see also [10]), where µ

and s are generic parameters and the function v(·) is

in general complex. This numerical approach has been

successfully applied by [17] to compute ground states of

their version of the temporal Dysthe equation.

As an application, consider the non-Hamiltonian

Dysthe (2), particular case of (4) with parameters

(1, 1, 8, 2, 2). Figure 1 shows the action A of the ground

state (s = 0) for u (and so w due to the gauge invariance

of (6)) as function of µ, computed for different values

of the steepness ε, and Figure 2 reports the associated

envelopes |u| = |w| for µ = 3. As one can see, as ε

increases they tend to reduce in size in agreement with

the asymptotic analysis carried out by [1] in the limit

of ε→ 0.

Furthermore, Figure 3 illustrates a typical basin

of attraction of the Petviashvili scheme in the phase

space (s, µ) for ε = 0.15. Each black dot corresponds

to a well converged solution up to machine precision,

whereas white spots are associated to either divergent

or converged-to-zero solutions. In particular, we noted

that the numerical scheme converged to localized trav-

eling waves below the gray boundary curve Γ shown in

Figure 3. On the other hand, the convergence to sim-

ple periodic waves occurred for points above Γ. This

curve agrees with the analytical form derived from the

exact nonlinear dispersion of periodic waves, which fol-

lows from (4) as s = (c−e)A2+2
√

a(µ− hA2), where A

is the wave amplitude. Thus, localized traveling waves

bifurcate from Γ. This is clearly illustrated in Figure 4,

which reports the change in shape of the envelope |u|

as s varies while keeping µ = 0.27. In particular, with

reference to Figure 3, as the point (s, µ = 0.27) reaches

the boundary Γ from below, the soliton envelope tends

to flatten to that of a periodic wave. Similar results also

0 1 2 3 4 5

2

3

4

5

6

7

8

µ

A
ct

io
n 

A

 

 

0.05

0.10

0.15

0.20

ε=0

Figure 1. Action A of the ground state of the spatial

Dysthe equation (2) for u as function of µ, for different

values of the steepness ε.
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Figure 2. Envelopes |u| of ground states of the spatial

Dysthe equation (2) for different values of the steep-

ness ε (µ = 3). Note that |u| = |w| due to the gauge

invariance (6).

hold for the Hamiltonian w due to the gauge transfor-

mation (6).

Hereafter, we investigate the collision of travel-

ing waves by means of a highly accurate Fourier-type

pseudo-spectral method (see, for example, [2]). As an

application, consider the interaction between two soli-

tary waves of the NLS equation traveling in opposing

directions with the same speed s = 2, for µ = 2 (ε = 0).

The shape of the two solitons is identical because of the

NLS reflection symmetry, i.e. u(ξ, τ) = (ξ,−τ). The

plot of Figure 5 shows that the two solitons emerge out

of the collision with the same shape, but a phase shift.

The interaction is elastic as it should be since the NLS

equation is integrable. This is clearly seen from the plot

of Figure 6, which reports the initial and final shapes
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Figure 3. Numerical basin of attraction of the Petvi-

ashvili scheme in the phase space (s, µ) for ε = 0.15.

Solitary waves (localized traveling waves) occur below

the gray boundary curve Γ, which separates the region

of periodic waves.
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Figure 4. Localized traveling waves bifurcating from

the boundary Γ of Figure 3. Change in shape of the en-

velope |u| as s varies while keeping µ = 0.27. In partic-

ular, with reference to Figure 3, the point (s, µ = 0.27)

reaches the boundary Γ from below.

of the two solitary waves. For the same parameters,

Figure 7 reports the interaction of the associated soli-

tary waves of the Dysthe equation (2) for ε = 0.15. The

reflection symmetry is lost and the two solitons have dif-

ferent shape and amplitude. The interaction is clearly

inelastic, since after the collision radiation is shed and

the initial and final soliton shapes are different as seen

in Figure 8. The interaction of four solitons has simi-

lar inelastic characteristics as shown in Figure 9. This

suggests the non-integrability of the Dysthe equation

(2). Similar dynamics is also observed for the associ-

ated Hamiltonian form (8).

τ  

Figure 5. Elastic collision of two NLS solitary waves

traveling at the same speed s = 2, for µ = 2.
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0

0.5

1

1.5

τ

|u
|

Figure 6. Initial (−−) and final (—) shapes of one of

the two solitons after the elastic collision of two NLS

solitary waves traveling at the same speed s = 2, for

µ = 2.

τ  

Figure 7. Inelastic collision of two Dysthe solitary

waves traveling at the same speed s = 2, for µ = 2.
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Figure 8. Initial (−−) and final (—) shapes of one of

the two solitons after an inelastic collision of two Dys-

the solitary waves traveling at the same speed s = 2,

for µ = 2.

τ  

Figure 9. Inelastic collision of four Dysthe solitary waves.

4. CONCLUSIONS

A canonical variable for the spatial Dysthe equation

for the wave envelope u has been identified by means of

the gauge transformation (6), and the hidden Hamilto-

nian structure is unveiled. Moreover, the gauge invari-

ance yields two new invariants for the noncanonical u.

It is also found that the envelope v of the associated

wave potential is canonical.

Further, the existence of solitary waves that bifur-

cate from periodic waves has been investigated numeri-

cally by means of a highly accurate Petviashvili scheme.

In particular, ground state solutions are in agreement

with the asymptotic analysis of [1]. Finally, the envelope

dynamics has been investigated by means of highly ac-

curate Fourier-type pseudo-spectral method up to ma-

chine precision. It is found that solitary waves interact

inelastically, suggesting the non-integrability of both the

Hamiltonian and non-Hamiltonian version of the spatial

Dysthe equations.
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