Hamiltonian form and solitary waves of the spatial Dysthe equations
Résumé
The spatial Dysthe equations describe the envelope evolution of the free-surface and potential of gravity waves in deep waters. Their Hamiltonian structure and new invariants are unveiled by means of a gauge transformation to a new canonical form of the evolution equations. An accurate Fourier-type spectral scheme is used to solve for the wave dynamics and validate the new conservation laws, which are satisfied up to machine precision. Traveling waves are numerically constructed using the Petviashvili method. It is shown that their collision appears inelastic, suggesting the non-integrability of the Dysthe equations.
Domaines
Mécanique des fluides [physics.class-ph] Mécanique des fluides [physics.class-ph] Physique Atmosphérique et Océanique [physics.ao-ph] Systèmes Solubles et Intégrables [nlin.SI] Physique Numérique [physics.comp-ph] Dynamique des Fluides [physics.flu-dyn] Analyse numérique [math.NA] Equations aux dérivées partielles [math.AP]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...