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I. INTRODUCTION

The theoretical modeling of time-dependent transport
has been an active area of research in the last few
years1–3. Transient currents are calculated using the
Keldysh formalism4, and the electron-electron interac-
tion (EEI) effects are accounted for via time-dependent
density functional theory (TDDFT) or many-body per-
turbative (MBP) methods. But no matter which metod
one uses and how simple the system is, one recovers an old
and often avoided question in non-equilibrium transport:
does there exist a non-equilibrium steady-state (NESS),
and if yes, is it unique?

Recently, Kurth et al.5 presented TDDFT simulations
for a single-level quantum dot (QD) in the Coulomb
blockade regime. By selecting a suitable exchange-
correlation potential they noticed that the system does
not evolve to a steady state but rather follows charg-
ing/discharging cycles. Moreover, Myöhänen et al.3 and
Puig et al.6 emphasized that different approximation
schemes for the interaction self-energy lead to different
steady-states, i.e, in the long-time limit the numerical
simulations lead to different values of the current. These
recent findings cleary show that the crossover to a steady-
state (if any) is a non-trivial aspect which is revealed only
by a fully time-dependent formalism for open and inter-
acting systems. We remind here that following Ref.4 the
Keldysh formalism was extensively used to compute the
stationary currents by assuming i) that such a steady
state is achieved and ii) that the interaction strength is
rather small such that a perturbative approach makes
sense. The first assumption implies that it is sufficient to
work directly with the Fourier transforms of the Green
functions. The second assumption allows one to exploit
diagrammatic techniques and conserving approximations
for the interaction self-energy7. Given the results men-
tioned above one faces three questions: 1) How legitimate
is it to take for granted the steady-state quantities of the
Keldysh formalism especially in the presence of electron-
electron interaction ? 2) Is the result of Kurth et al.5

universal? 3) Is it possible to establish the existence of a
stationary current in the long-time limit before selecting a
given approximation scheme for the explicit calculations
of the interaction effects?

In this note we prove that an interacting sample evolves
to a NESS provided: i) all single-particle eigenstates
of the isolated sample become resonances (with positive
width) when the leads are coupled and ii) the interaction
strength is small enough to ensure convergence of a cer-
tain perturbation expansion. These conditions are met
for large quantum dots coupled to broad leads. Condition
i) is also fulfilled if the bias applied on the leads covers
the entire spectrum of the sample (wide-band limit). We
follow the scattering approach to the NESS of open quan-
tum systems advocated by Ruelle17 and implemented,
in the fermionic case, by Fröhlich et al.18 and Jakšić
et al.20–22. The existence of a steady-state is rigorously
proved by deriving explicit expressions for both the lesser
Green’s function and the current in the infinite time limit.
Our method is exact in the interaction and needs neither
Langreth rules, nor Dyson equations for Keldysh-Green’s
functions. It provides convergent expansions in terms of
the interaction strength, i.e., it shows that the NESS is
an analytic function of the interaction.

Moreover, the proof of the steady-limit covers the two
complementary but different transport scenarios: the
partitioning approach of Caroli et al.11 and the partition-
free setting coined by Cini12. Let us briefly remind them
here. In the partitioning approach the central region
(sample) is coupled to biased leads at some initial in-
stant. In contrast, the partition-free setup starts from a
coupled and unbiased system, a bias being switched at
t = t0. Both settings have also received interest from the
mathematical point of view13–16,21.

The content of the paper is as follows: Section II sets
the model and some notations needed for the partitioning
and partition-free settings. We formulate our main re-
sult, the steady state limit of the lesser Green’s function,
in Section III. The expression for the steady currents is
derived in Section IV, along with the Landauer-Büttiker
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formula which holds if the Coulomb effects are considered
up to the 1st order term in the interaction strength. We
outline the proof of our results in Section V and conclude
in Section VI with some general comments.

II. MODEL AND NOTATIONS

Our system consists of a finite sample S coupled to
M semi-infinite leads labeled by γ. It is described by
a discrete model: sites from the lead γ are denoted by
{iγ}i≥0 and {m}m∈S are the sites of the sample. We de-
note by HS and HL the one particle Hilbert spaces of the
sample and leads. The one particle Hilbert space of the
compound system is H = HL ⊕ HS and F denotes the
fermionic Fock space over H. The one particle Hamil-
tonian of the noninteracting sample is hS , an arbitrary
self-adjoint operator on HS . In terms of the on-site cre-
ation/annihilation operators on F , the Hamiltonian and
number operator of the sample are

HS =
∑

m,n∈S

〈m|hS |n〉 a
†
man, NS =

∑

m∈S

a†mam.

The semi-infinite leads are described by the Hamiltonian
HL =

∑

γ Hγ and number operator NL =
∑

γ Nγ , where

Hγ = τL
∑

i≥0

(

a†iγa(i+1)γ
+ a†(i+1)γ

aiγ

)

, Nγ =
∑

i≥0

a†iγaiγ .

We also need the tunneling Hamiltonian HT , some con-
stant potential HB applied to the leads and the electron-
electron interaction in the sample V ,

HT = τ

M
∑

γ=1

(

a†0γamγ
+ a†mγ

a0γ

)

, HB =

M
∑

γ=1

vγNγ ,

V =
ξ

2

∑

m,n∈S

v(m,n) a†mama
†
nan.

Here, τ is the coupling strength, mγ ∈ S the contact
site of the sample with lead γ, vγ a constant potential,
ξ the interaction strength and v(m,n) a pair potential.
The differences vα − vβ define the bias between the cor-
responding leads. By convention all the vγ vanish in the
partitioning case, so that HB = 0. For both partition-
ing (‘p’)/partition-free (‘pf’) settings we assume that the
switching (of the coupling to the leads HT /of the bias
HB) happens suddenly at t = 0. A smooth switching
can also be treated up to some technicalities23, and does
not influence the results.
The Hamiltonians HS , HL, HT , HB as well as

H0 = HS +HL +HB , H = H0 +HT ,

act in the Fock space F as the second quantized
versions of single particle tight-binding Hamiltonians
hS , hL, hT , hB , h0, h acting on H. Similar relations hold

for the number operators NS , Nγ , NL and N = NS+NL.
We denote by FL and FS the subspaces of F where
NS = 0 and NL = 0 respectively. The full dynamics
of the system is generated by the Hamiltonian

K = H + V.

We now introduce the initial state of the system as
thermodynamic limit of states defined by density matri-
ces on the sample coupled to finite leads of length Λ.
Indicating this infrared cutoff by the superscript (Λ), we
set

ρ
(Λ)
L,~µ =

e−β(H
(Λ)
L

−
∑

γ µγN
(Λ)
γ )

Tr
F

(Λ)
L

{e−β(H
(Λ)
L

−
∑

γ µγN
(Λ)
γ )}

,

for ~µ = [µ1, ..., µM ] and, for any leads observable OL,

〈OL〉L,~µ = lim
Λ→∞

TrFL
{ρ

(Λ)
L,~µOL}.

We recall that this state is characterized by the two-point
function

〈a†jαaiγ 〉L,~µ = δαγ〈iγ |Fγ(hγ)|jγ〉,

and Wick’s theorem. There, Fγ(ε) = (1 + eβ(ε−µγ))−1

denotes the Fermi-Dirac function of lead γ.
In the ‘p’ setting, the initial state is the product state

defined by

〈OLOS〉p = 〈OL〉L,p 〈OS〉S,p

for any observables OL/S of the leads/sample. There,

〈OL〉L,p = 〈OL〉L,~µ, 〈OS〉S,p = TrFS
{ρS,pOS},

where ρS,p is an arbitrary density matrix on FS . In the
‘pf’ case the leads and sample are coupled and have the
same chemical potential µ0, i.e.,

〈O〉pf = lim
Λ→∞

TrF(Λ){ρ
(Λ)
pf O},

where

ρ
(Λ)
pf =

e−β(HS+H
(Λ)
L

+HT+V−µ0N
(Λ))

TrF(Λ){e−β(HS+H
(Λ)
L

+HT+V−µ0N(Λ))}
.

For later reference, we also define the leads state

〈 · 〉L,pf = 〈 · 〉L,~µ=[µ0,...,µ0].

The lesser Green’s function is defined as

G<
⊡ xy(t, s) = i 〈a†y(s)ax(t)〉⊡,

where x, y are sites from either leads or sample, ax(t) =
eitKaxe

−itK and ⊡ stands for either ‘p’ or ‘pf’. This
object plays a central role in the Keldysh approach and
allows to compute both the particle density and the cur-
rents. Our main concern being the existence of steady
currents, we are primarily interested in its large time be-
haviour t, s→ ∞ for constant t− s.
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III. THE EXISTENCE OF THE STEADY-STATE

For |φ〉 ∈ H, we set

a(|φ〉) =
∑

x

〈φ|x〉 ax, a†(|φ〉) =
∑

x

〈x|φ〉 a†x,

and let a#(|φ〉) denote either a(|φ〉) or a†(|φ〉). If q is
a self-adjoint operator on H and Q denotes its second
quantized version, then the well known identity

eiQa#(|φ〉)e−iQ = a#(eiq|φ〉), (1)

holds. The interaction picture operators

A#
x (t) = e−itHa#x (t)e

itH , (2)

satisfies the equation of motion

A#
x (t) = a#x + i

∫ t

0

[e−iuHV eiuH ,A#
x (u)]du. (3)

By Eq.(1) we have

e−iuHV eiuH =
ξ

2

∑

m,n∈S

v(m,n)

×a†(e−iuh|m〉)a(e−iuh|m〉)a†(e−iuh|n〉)a(e−iuh|n〉).

(4)

Thus, the Dyson expansion of A#
x (t) obtained by iter-

ation of Eq.(3) is a sum of iterated integrals involving
monomials of the type

M(|φ1〉, . . . , |φk〉) = a#1(|φ1〉) · · · a
#k(|φk〉), (5)

each |φj〉 being either |x〉 or e
−iuh|m〉 for somem ∈ S and

u ∈ [0, t] (so that, in particular |〈Ψ|M|Φ〉| ≤ 1 for any
unit vector |Ψ〉, |Φ〉 ∈ F). Moreover, one easily sees that
this expansion converges for any t. In fact, a careful study
of this expansion shows that, under suitable assumptions,
it remains convergent even for t = ∞.

Theorem III.1. Assume that the single particle Hamil-
tonian h has neither eigenvalue nor real resonance. If the
interaction strength ξ is small enough, then the limits

A#
x = lim

t→∞
A#

x (t),

exist. Moreover, a convergent expansion of A#
x in powers

of the interaction strength ξ is obtained by setting t = ∞
in the Dyson expansion of A#

x (t).

Remark. The first hypothesis of the previous theorem
requires some comments. The spectrum of hL + hB is
continuous, filling the union of [vγ − 2τL, vγ +2τL]. If all
the eigenvalues of the isolated sample hS are embedded
in these bands and if the coupling to the leads τ is weak
enough then all these eigenvalues will generically turn
into resonances of positive width. In such circumstances,
the spectrum of h is continuous and coincides with that

of hL + hB . Moreover, one can show that for any x, y in
either the leads or the sample,

∫ ∞

0

|〈x|e−ith|y〉| dt <∞. (6)

However, as the coupling τ increases, some resonances
may become real, cross a band boundary and turn into
an eigenvalue of h, invalidating (6). The first hypothesis
in Theorem III.1 is meant to ensure the validity of Eq.(6).

Let w be an operator on H such that |〈φ|w|ψ〉| ≤ 1 for
all unit vectors |φ〉, |ψ〉 ∈ H. Replacing each term (5) in
the Dyson expansion of A#

x byM(w|φ1〉, . . . , w|φk〉) does
not alter the convergence of this expansion. We denote by
A#

x [w] the operator obtained from this modified Dyson
expansion.
We are now in position to state our main result (recall

that hB = 0 in the ‘p’ case):

Theorem III.2. Under the assumptions of Theorem
III.1 one has, for any s,

G<
⊡xy(s) = lim

t→∞
G<

⊡ xy(t, t− s)

= i〈A†
y[e

−is(hL+hB)ω†
+]Ax[ω

†
+]〉L,⊡.

(7)

There, ω+ denotes the Møller operator8

ω+|φ〉 = lim
t→−∞

eithe−ith0pL|φ〉, (8)

where pL projects on the leads subspace HL.

In Section V, we shall outline the proofs of Theorems
III.1, III.2. Complete mathematical details will be given
elsewhere23. We conclude this section with several re-
marks.

1. Asymptotic completeness8 implies that

ω†
+|ψ〉 = lim

t→−∞
eith0e−ith|ψ〉

= lim
t→−∞

pLe
it(hL+hB)e−ith|ψ〉,

(9)

is unitary from H to HL so that the object under the
expectation on the RHS of Eq.(7) has a convergent ex-
pansion as described above. Moreover, the expectation
is w.r.t. the leads state 〈 · 〉L,⊡ which does not depend on
the interaction V , i.e., satisfies Wick’s theorem.
2. Eq.(7) implies right away that the expected particle
number in the sample reaches a steady value in the long-
time limit

lim
t→∞

〈NS(t)〉⊡ = −i
∑

m∈S

G<
⊡,mm(0).

In fact, one can show that, under the assumptions of The-
orem III.1, the system reaches a NESS 〈 · 〉⊡+ described
by

〈a#1
x1

· · · a#k
xk

〉⊡+ = lim
t→∞

〈a#1
x1

(t) · · · a#k
xk

(t)〉⊡

= 〈A#1
x1

[ω†
+] · · · A

#k
xk

[ω†
+]〉L,⊡.
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In the ‘p’ case, this NESS is independent on the initial
state of the sample ρS,p. Moreover, in the special case
~µ = [µ0, . . . , µ0], 〈 · 〉p+ is the unique equilibrium state
of the interacting system at inverse temperature β and
chemical potential µ0.
3. In the non-interacting case (V = 0), the NESS satisfies
Wick’s theorem with the two points function 〈a†yax〉⊡+ =
〈x|ρ+|y〉, where the one-particle density operator ρ+ is
given by13,14

ρ+ = ω+

(

⊕

γ

Fγ(hγ)

)

ω†
+. (10)

IV. THE STEADY-STATE CURRENT

The current operator of lead α

Jα = −
d

dt
Nα(t)

∣

∣

∣

∣

t=0

= −i[K,Nα] = −i[H,Nα],

is the second quantized version of the single-particle cur-
rent jα = −i[h, pα], where pα projects on lead α. Its
statistical average is4

〈Jα(t)〉⊡ = τ(G<
⊡mα0α

(t, t)−G<
⊡0αmα

(t, t)). (11)

We introduce the interaction picture current operator

Jα(t) = e−itHeitKJαe
−itKeitH , (12)

which is similar to Ax(t), Eq.(3) being replaced by

Jα(t) = Jα + i

∫ t

0

[e−iuHV eiuH ,Jα(u)]du. (13)

Using Eq.(7) with s = 0 in Eq.(11) we get

Iα,⊡ = lim
t→∞

〈Jα(t)〉⊡ = 〈Jα[ω
†
+]〉L,⊡, (14)

where Jα = limt→∞ Jα(t) is calculated by setting t = ∞
in the Dyson expansion generated by iteration of Eq.(13)

and Jα[ω
†
+] is obtained in the usual way from Jα. Com-

paring the final formulas for the two cases ‘p’ and ‘pf’,
one realizes that Iα,pf(~v = ~0) = Iα,p(~µ = [µ0,.., µ0]).

Since Jα = −i[H + V,Nα] = −i[H(Λ) + V,N
(Λ)
α ], one has

Iα,pf(~v = ~0) = − lim
Λ→∞

TrF(Λ){ρ
(Λ)
pf i[H(Λ)+V,N (Λ)

α ]} = 0,

due to the cyclicity of the trace and the fact that

[ρ
(Λ)
pf , H

(Λ) + V ] = 0. Thus both currents vanish in the
absence of bias. This fact cannot be seen from the inter-
acting Meir-Wingreen formula4.

The interaction effects can be calculated perturbatively
from Eq.(13). For the partitioning setting with identical
leads having a hopping constant τL > 0 one finds

Iα,p = Iα,LB +O(ξ2) +O(ξτ6), (15)

where ILB assumes a Landauer-like form

Iα,LB =
∑

γ

∫ 2τL

−2τL

(Fα(E)−Fγ(E))|T MF
αγ (E, ξ)|2dE (16)

with the transmittance25 T MF
αγ (E, ξ) corresponding to a

mean-field Hamiltonian hS,MF = hS + ξvMF where

vMF =
∑

m∈S

vH,m|m〉〈m| −
∑

m,n∈S

vX,mn|m〉〈n| (17)

and

vH,m =
∑

n∈S

v(m,n)〈n|ρ+|n〉, vX,mn = v(m,n)〈n|ρ+|m〉,

are Hartree and exchange terms, with the single-particle
density operator ρ+ given by Eq.(10).

V. PROOFS

We start by analysing the structure of Ax(t),
following21. Iterating Eq.(3) and using Eq.(4), one ob-
tains an infinite series involving iterated integrals of the
multiple commutators

[ã†m1
(u1) · · · ãn1

(u1), [· · · , [ã
†
mr

(ur) · · · ãnr
(ur), ax] · · · ],

where ãm(u) = a(e−iuh|m〉). By repeated use of the al-
gebraic identity

[b1 · · · bk, c1 · · · cl]

=

k
∑

i=1

l
∑

j=1

(−1)i{bi, cj}c1 · · · cj−1b1 · · ·✁bi · · · bkcj+1 · · · cl,

and of the canonical anti-commutation relations
{a†(|φ〉), a(|ψ〉)} = 〈ψ|φ〉, {a(|φ〉), a(|ψ〉)} = 0 we recast
our expansion into the form

Ax(t) = ax +
∑

r≥1

ξr
∫

0≤ur≤···≤u1≤t

du1 · · · dur

∑

G∈Γr

CG
r (u1,.., ur;x)M

G
r (u1,.., ur;x), (18)

where each Γr is a finite set (of contraction diagrams).
For each G ∈ Γr, MG

r is a monomial of type (5) and
CG

r is a product of ‘pairing factors’ like 〈y|e−iujh|y′〉 or
〈y|e−i(uj−uk)h|y′〉, where y, y′ ∈ S ∪ {x}.
Our first assumption ensures that there exists a con-

stant Cx such that
∫ ∞

0

max
y,y′∈S∪{x}

|〈y|e−iuh|y′〉| du ≤ Cx.

A delicate combinatorial analysis then shows that (see
Theorem 1.1 in21)

∑

r≥1

|ξ|r
∫

0≤ur≤···≤u1≤∞

du1 · · · dur
∑

G∈Γr

|CG
r (u1,.., ur;x)| <∞,
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provided |ξ| ≤ Λ0 = 2/(27|S|2Cxv), where |S| is the num-
ber of sites in the sample S and v = maxn,m∈S |v(n,m)|.
Thus, the expansion (18) converges uniformly w.r.t. t ∈
[0,∞]. In particular, setting t = ∞ in Eq.(18) yields a
convergent expansion of Ax (and taking adjoint gives an
expansion for A†

x). This proves Theorem III.1.
To prove Theorem III.2, we first notice that, according

to Eq.(1), we get an expansion of

e−it(HL+HB)a#x (t− s)eit(HL+HB)

= e−it(HL+HB)ei(t−s)HA#
x (t− s)e−i(t−s)Heit(HL+HB),

by replacing each factor a#(|ψ〉) of any monomial MG
r

in Eq.(18) by a#(e−it(hL+hB)ei(t−s)h|ψ〉). Since Eq. (9)
implies that

lim
t→∞

a#(e−it(hL+hB)ei(t−s)h|ψ〉) = a#(e−is(hL+hB)ω†
+|ψ〉),

one has

lim
t→∞

e−it(HL+HB)a#x (t− s)eit(HL+HB)

=A#
x [e

−is(hL+hB)ω†
+],

and hence, B(t) = e−it(HL+HB)a†y(t − s)ax(t)e
it(HL+HB)

satisfies

lim
t→∞

B(t) = A†
y[e

−is(hL+hB)ω†
+]Ax[ω

†
+]. (19)

Notice that since the range of ω†
+ is HL, the RHS of

this identity is an observable of the leads. In the ‘p’
case, HB = 0 and the state 〈 · 〉p is invariant under the
dynamics of HL. It follows that

lim
t→∞

〈a†y(t− s)ax(t)〉p = lim
t→∞

〈B(t)〉p

= 〈A†
y[e

−ishLω†
+]Ax[ω

†
+]〉p

= 〈A†
y[e

−ishLω†
+]Ax[ω

†
+]〉L,p,

which proves Theorem III.2 in the ‘p’ case.
To deal with the ‘pf’ case, we invoke standard pertur-

bation theory (see e.g.10) to write

〈O〉pf =
〈DO〉d
〈D〉d

. (20)

There, 〈 · 〉d denotes the grand canonical ensemble for the
decoupled dynamicsH0+V at inverse temperature β and
chemical potential µ0, i.e., the product state

〈OLOS〉d = 〈OL〉L,pf
TrFS

{e−β(HS+V−µ0NS)OS}

TrFS
{e−β(HS+V−µ0NS)}

,

and

D = eβ(H0+V−µ0N)e−β(H+V−µ0N)

= I +
∑

k≥1

(−1)k
∫ β

0

dτ1 · · ·

∫ τk−1

0

dτkĤT (τ1)..ĤT (τk),

where ĤT (u) = eu(H0+V )HT e
−u(H0+V ). The state 〈 · 〉d

being invariant under the dynamics of HL+HB , one has

〈Da†y(t− s)ax(t)〉d = 〈DtB(t)〉d,

where Dt = e−it(HL+HB)Deit(HL+HB). It follows from
Eq.(19) that

lim
t→∞

〈Da†y(t− s)ax(t)〉d

= lim
t→∞

〈DtA
†
y[e

−is(hL+hB)ω†
+]Ax[ω

†
+]〉d. (21)

Introducing the partial trace

DL =
TrFS

{e−β(HS+V−µ0NS)D}

TrFS
{e−β(HS+V−µ0NS)}

,

we observe that, for any observable OL of the leads,

〈DtOL〉d = 〈e−it(HL+HB)DLe
it(HL+HB)OL〉L,pf .

Since hL+hB has continuous spectrum, the dynamics of
HL +HB is mixing w.r.t. the state 〈 · 〉L,pf (see e.g.19) so
that

lim
t→∞

〈DtOL〉d = lim
t→∞

〈e−it(HL+HB)DLe
it(HL+HB)OL〉L,pf

= 〈DL〉L,pf〈OL〉L,pf = 〈D〉d〈OL〉L,pf .

Applying this identity to the RHS of Eq.(21) and insert-
ing the result into Eq.(20) proves Theorem III.2 in the
‘pf’ case.

VI. CONCLUSIONS

We give sufficient conditions for the existence of a
steady-state regime for open interacting systems, using
an approach based on time-dependent scattering theory.
While the approach is perturbative w.r.t. the interaction
strength, the existence of the stationary regime is gen-
eral in the sense that it does not rely on a particular
approximation scheme for the Coulomb effects. To our
best knowledge, the steady-state regime is not proved
within the Keldsyh formalism: the steady-state value of
the current is derived by assuming that the two-time GFs
depend only on time difference4. We perform the ther-
modynamic limit without making use of Langreth rules
and Dyson equations. In the Keldysh approach it is not
clear how to perform the thermodynamic limit on the
proper interaction self-energy.

The smallness condition on ξ for the existence of the
steady-state is also necessary. For example, if v(m,n) is
diagonal then V is a single-particle operator (Hartree-like
potential) which can create bound states for large values
of ξ, leading thus to oscillations similar to the ones ob-
served in2. However, we conjecture that if one performs

the ergodic limit limT→∞
1
T

∫ T

0
Jα(t)dt, a time-averaged

steady-state could still be achieved even in the general
interacting case. It would be interesting to investigate



6

the ergodic limit of the oscillating currents reported in
Fig. 1 from5, which seem to support our conjecture.
In the partitioning approach we have shown that

the steady-state quantities do not depend on the initial
many-body configuration of the sample ρS,p. Moreover,
one can allow other switching procedures of the bias or
of the lead-sample coupling (not just the sudden one),
and the steady state remains unchanged (the complete
proof will be given in Ref. 23). Let us mention that
very recently27 we have shown that when ξ is allowed to
be arbitrarily large and the system is in the off-resonant
regime in which h has eigenvalues situated very far from
the continuous spectrum, the ergodic cotunneling current
presents memory effects and depends on ρS,p if ξ 6= 0. In
the non-interacting case, we still have independence on
ρS,p.

Our results could be numerically implemented in both
settings (partitioning and partition-free) and compared
to the ones obtained from the Keldysh formalism. The
second correction in Eq.(15) suggests significant differ-
ences for strong coupling to the leads.
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