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Regularity of the American put option in the Black-Scholes model with general discrete dividends

We analyze the regularity of the value function and of the optimal exercise boundary of the American Put option when the underlying asset pays a discrete dividend at known times during the lifetime of the option. The ex-dividend asset price process is assumed to follow the Black-Scholes dynamics and the dividend amount is a deterministic function of the ex-dividend asset price just before the dividend date. This function is assumed to be non-negative, non-decreasing and with growth rate not greater than 1. We prove that the exercise boundary is continuous and that the smooth contact property holds for the value function at any time but the dividend dates. We thus extend and generalize the results obtained in [JV11] when the dividend function is also positive and concave. Lastly, we give conditions on the dividend function ensuring that the exercise boundary is locally monotonic in a neighborhood of the corresponding dividend date.

Introduction

We consider the American put option with maturity T and strike K written on an underlying stock S. Like in [START_REF] Jourdain | Regularity of the Exercise Boundary for American Put Options on Assets with Discrete Dividends[END_REF], we assume that the stochastic dynamics of the ex-dividend price process of this stock can be modelled by the Black Scholes model and that this stock is paying discrete dividends at deterministic times 0 ) is the value of the dividend payment (see Figure 1). We suppose that each dividend function D i : R + → R + is non-decreasing, non-negative and such that x → x -D i (x) is also nondecreasing and non-negative. We are interested in the value of the American Put option with strike K and maturity T . Since we are in a Markovian framework, the price can be characterized in terms of a value function depending of the time t and the stock price at time t. For the sake of consistency, we will denote this value function by u 0 for the case without dividends.

≤ t I d < t I-1 d < • • • < t i d < • • • < t 1 d < T .
The case without dividend was studied by McKean [START_REF] Mckean | Appendix: a free boundary problem for the heat equation arising from a problem of mathematical economics[END_REF] and Van Moerbeke [START_REF] Van Moerbeke | On optimal stopping and free boundary problems[END_REF].

McKean first linked this optimal stopping time problem to a free-boundary problem involving both the pricing function u 0 and the exercise boundary denoted by c 0 . As it is proved in a more general framework in [START_REF] Karoui | Les aspects probabilistes du contrôle stochastique[END_REF], a stopping time solving this optimal stopping time problem is given by the first time the price process crosses this boundary. Van Moerbeke derived an integral equation which involves both c 0 and its derivative, but in later work by Kim [Kim90], Jacka [START_REF] Jacka | Local , optimal stopping and semimartingales[END_REF] and Carr, Jarrow and Myneni [START_REF] Carr | Alternative characterizations of american put options[END_REF] an integral equation was derived which only involves c 0 itself. The regularity and uniqueness of solutions to this equation was left as an open problem in those papers. Uniqueness was proven by Peskir [START_REF] Peskir | On the american option problem[END_REF]. Convexity was proved in [START_REF] Chen | Convexity of the exercise boundary of the american put option on a zero dividend asset[END_REF] and in [START_REF] Ekström | Convexity of the optimal stopping boundary for the american put option[END_REF]. Infinite regularity of c 0 at all points prior to the maturity was formally proved by Chen and Chadam [START_REF] Chadam | A mathematical analysis of the optimal exercise boundary for american put options[END_REF]. Then Bayraktar and Xing [START_REF] Bayraktar | Analysis of the optimal exercise boundary of american options for jump diffusions[END_REF] proved that this remains true if the underlying asset pays continuous dividends at a fixed rate. In practice, continuous dividends are not a satisfying model since dividends are paid once a year or quarterly. That is why we are interested in dividends that are paid at a number of discrete points in time.

When we assume discrete dividend payments, in general, the value function of the Put option will no longer be convex in the stock price variable, even if convexity is preserved for linear dividend functions. Moreover, the optimal exercise boundary will become discontinuous at the dividend dates and before the dividend dates it may not be monotone. Integral formulas for the exercise boundary which are similar to the ones in [START_REF] Carr | Alternative characterizations of american put options[END_REF] have been derived under the assumption that the boundary is Lipschitz continuous (see Göttsche and Vellekoop [START_REF] Göttsche | The early exercise premium for the American put under discrete dividends[END_REF]) or locally monotonic (Vellekoop & Nieuwenhuis [VNar]). In this paper we continue the study, undertaken in [START_REF] Jourdain | Regularity of the Exercise Boundary for American Put Options on Assets with Discrete Dividends[END_REF], of conditions under which such regularity properties of the optimal exercise boundary under discrete dividend payments can be proven.

We prove that the exercise boundary is continuous at any time which is not a dividend date and that the smooth contact property holds for the value function of the option. We considerably extend the results obtained in [START_REF] Jourdain | Regularity of the Exercise Boundary for American Put Options on Assets with Discrete Dividends[END_REF], where the continuity of the exercise boundary and the smooth contact property were only obtained in a left-hand neighborhood of the first dividend date when the corresponding dividend function was assumed to be globally concave and linear with a positive slope in a neighbohood of the origin. Under the much more restrictive assumption of global linearity of all the dividend functions, the smooth contact property and the right-continuity (resp. continuity) of the exercise boundary was proved to hold globally (resp. in a left-hand neighborhood of each dividend date). We also extend the result obtained in [START_REF] Jourdain | Regularity of the Exercise Boundary for American Put Options on Assets with Discrete Dividends[END_REF] on the decrease of the exercise boundary in a left-hand neighborhood of the first (resp of each) dividend date when the corresponding dividend function was assumed to be positive and concave (resp. when all dividend functions were supposed to be linear) : we give more general sufficient conditions on each dividend function for the exercise boundary to be either non-decreasing or non-increasing in a left-hand neighborhood of the corresponding dividend date.

In the first section, we introduce our notations and assumptions. In the second section, we recall the existence results for the value function and the exercise boundary stated in [START_REF] Jourdain | Regularity of the Exercise Boundary for American Put Options on Assets with Discrete Dividends[END_REF]. The third section is devoted to the smooth-fit property and relies on a viscosity solution approach combined with an estimation of the derivative of the value function with respect to the time variable. In the fourth section, we prove the continuity result for the exercise boundary, which is known to be upper-semicontinuous by continuity of the value function. The right-continuity is obtained by comparison with the optimal boundary of the Put option in the Black-Scholes model without dividend. The left-continuity follows from the characterization of the continuation region as the set of points where the spatial derivative of the value function is greater than -1. In the fifth section, we are interested in the local behaviour of the exercise boundary in a neighborhood of the dividend date. To be able to analyse this behaviour, we have to assume that the stock level at which the dividend function becomes positive lies in the post-dividend exercise region. When the dividend function has a positive slope at this point, we obtain a first order expansion for the exercise boundary at the dividend date. We also provide sufficient conditions for the exercise boundary to be locally monotonic.

Notations and assumptions

Notations

• Ω, F, (F s ) s≥0 , P is a probability space with a right continuous filtration, (B s ) s≥0 a (F s )-brownian motion under P, and Q is the probability measure defined by

dQ dP Ft = e -σ 2 2 t+σBt .
• Sx t is a geometric brownian motion satisfying :

d Sx t = r Sx t dt + σ Sx t dB t and Sx 0 = x. Its density at time t is denoted p(t, x, y) = 1 {y>0} σy √ 2πt exp -1 2σ 2 t ln y x -(r -σ 2 2 )t 2 ,
• A is the Black-Scholes operator defined for any

C 2 function f by Af (x) = -rf (x) + rxf ′ (x) + σ 2 x 2 2 f ′′ (x),
• the set of all the stopping times of (F s ) s≤θ is abusively denoted by {τ ∈ [0, θ]}.

Recursive construction Let (θ

i d = t i d -t i+1 d ) 0≤i≤I-1
with the convention t 0 d = T denote the durations between the dividend dates. For non-negative values of θ and x, we define by induction

• u 0 (θ, x) = sup τ ∈[0,θ] E e -rτ K -Sx τ +
the price of the American put option in the Black-Scholes model without dividends when the time to maturity is θ and the spot level x. The corresponding exercise boundary is c 0 (θ) such that {x : u(0, x) > (Kx) + } = (c 0 (θ), +∞). Let v(θ, x) be the value function of the American put option with normalized strike 1 in the Black Scholes model without dividends and c(θ) the associated exercise boundary. One has :

u 0 (θ, x) = sup τ ∈[0,θ] E e -rτ K -Sx τ + = K sup τ ∈[0,θ] E e -rτ 1 -Sx/K τ + = Kv θ, x K and consequently c 0 (θ) = sup x|u 0 (θ, x) = (K -x) + = Kc(θ).
• ∀i ∈ {1, . . . , I},

u i (θ, x) = sup τ ∈[0,θ] E e -rτ K -Sx τ + 1 {τ <θ} + e -rθ u i-1 (θ i-1 d , Sx θ -D i ( Sx θ ))1 {τ =θ} . Note that u i (0, x) = u i-1 (θ i-1 d , x -D i (x)).
• Any stopping time τ such that u i (θ, x) = E e -rτ K -Sx τ + 1 {τ <θ} + e -rθ u i (0, Sx θ )1 {τ =θ} will be abusively called an optimal stopping time for u i (θ, x).

Assumptions

In all what follows, we assume that (A) ∀i ∈ {1, . . . , I},    (a) D i is non-decreasing and non-negative, (b) ρ i : x → x -D i (x) is non-decreasing and non-negative.

Previous results

Under (A), we can reformulate Proposition 1.5 [START_REF] Jourdain | Regularity of the Exercise Boundary for American Put Options on Assets with Discrete Dividends[END_REF] with our notations,

Proposition 2.1. Suppose that t < t i d < t i-1 d < • • • < t 1 d < T and set θ = t i d -t, θ 0 d = T -t 1 d
, and for j = 1 . . . i -1, θ j d = t j dt j+1 d , then the value at time t when the spot price of the stock is equal to x of the American put option with strike K and maturity T is given by u i (θ, x). With these notations, at time t = t i d , if the spot price of the stock is x, the price of the put option is

u i-1 (θ i-1 d , x). When D i (x) is positive, it differs from u i (0, x) = u i-1 (θ i-1 d , x -D i (x)). The next Lemma follows from Lemma 1.3 [JV11].
Lemma 2.2. For each θ ≥ 0, the mapping x → u i (θ, x) is non-increasing and x → x+u i (θ, x) is non-decreasing.

Like in Lemma 1.3 [START_REF] Jourdain | Regularity of the Exercise Boundary for American Put Options on Assets with Discrete Dividends[END_REF], one easily deduces the existence of the exercise boundary.

Corollary 2.3 (Exercise boundary). For any

θ ≥ 0, it exists c i (θ) ∈ [0, K) such that : u i (θ, x) > (K -x) + ⇔ x > c i (θ)
By Proposition 2.1, the exercise boundary of the Put option in our model with discrete dividends is

t ∈ [0, T ) → I i=0 c i (t i d -t)1 {t i+1 d ≤t<t i d } with convention t 0 d = T.
With a slight abuse of terminology, we also call exercise boundaries the functions c i . Notice that because of time-reversal, left-continuity of the c i implies right-continuity of the true exercise boundary and that right-continuity of the c i implies left-continuity of the true boundary on [0,

t I d ) ∪ (t I d , t I-1 d ) ∪ • • • ∪ (t 1 d , T
) with existence of left-hand limits at the dividend dates. According to Lemma 1.4 [START_REF] Jourdain | Regularity of the Exercise Boundary for American Put Options on Assets with Discrete Dividends[END_REF], one has Proposition 2.4 (Regularity result). The value function (θ, x) → u i (θ, x) is continuous on R + × R + . On the continuation region defined as {(θ, x)|θ > 0, x > c i (θ)}, this function is C 1,2 and satisfies :

-∂ θ u i (θ, x) -ru i (θ, x) + rx∂ x u i (θ, x) + σ 2 2 x 2 ∂ xx u i (θ, x) = 0.
Moreover, the left-hand derivative

∂ xx-u i (θ, x) of ∂ x u i (θ, •) is well defined.
The upper-semi continuity of c i (•) is a consequence of the continuity of u i .

Corollary 2.5. For any θ ≥ 0, lim sup

θ ′ →θ c i (θ ′ ) ≤ c i (θ).
Remark 2.6. Since the dividend function

D i is non-negative, u i (θ, x) ≥ u i-1 (θ + θ i-1 d , x) and therefore u i (θ, x) ≥ u 0 θ + i j=1 θ i-1 d , x . We deduce that c i (θ) ≤ Kc θ + i j=1 θ i-1 d .

Smooth-fit property

In this section, we are going to prove the smooth-fit property :

Proposition 3.1 (Smooth-fit). For all θ > 0, u i (θ, •) is C 1 .
The proof is based on the viscosity super-solution property of u i and estimations of the time derivative of this function stated in the two next lemmas.

Lemma 3.2. (θ, x) → u(θ, x) is a viscosity supersolution of min(∂ θ u i (θ, x) -Au i (θ, •)(x), u i (θ, x) -(K -x) + ) = 0 with u i (0, x) = u i-1 (θ i-1 d , ρ i (x)) Proof. It comes from the definition of u i that u i (θ, x) ≥ (K -x) + . Let φ(t, x) be a test function such that 0 = (u i -φ)(θ, x) = min V (u i -φ) where V = (θ -η, θ] × (x -η, x + η) for a certain η > 0.
Let τ be the first exit time of Sx outside the ball centered at x with radius η and let 0 < ǫ < η. Because of the minimum property of (θ, x), one has

E e -r(τ ∧ǫ) (u i (θ -(τ ∧ ǫ), Sx τ ∧ǫ ) -φ(θ -(τ ∧ ǫ), Sx τ ∧ǫ )) ≥ u i (θ, x) -φ(θ, x).
Applying Itô formula to e -rt φ(θt, Sx t ) between t = 0 and τ ∧ ǫ, we deduce that

E τ ∧ǫ 0 e -rt (∂ θ φ(θ -t, Sx t ) -Aφ(θ -t, •)( Sx t ))dt ≥ E u i (θ, x) -e -r(τ ∧ǫ) u i (θ -(τ ∧ ǫ), Sx τ ∧ǫ ) .
Since, by the dynamic programming principle, for any stopping time η ≤ θ, one has u i (θ, x) ≥ E e -rη u i (θη, Sx η ) , the right-hand-side is non-negative. We deduce that

E 1 ǫ τ ∧ǫ 0 e -rt (∂ θ φ(θ -t, Sx t ) -Aφ(θ -t, •)( Sx t ))dt ≥ 0.
By sending ǫ to zero, we obtain the supersolution inequality from Lebesgue's theorem :

∂ θ φ(θ, x) -Aφ(θ, •)(x) ≥ 0.
Lemma 3.3. For any i ≥ 0, θ > 0 and x ≥ 0 one has lim sup

θ ′ →θ u i (θ ′ , x) -u i (θ, x) θ ′ -θ ≤ r (K + x) + x   r 2N 2r σ √ θ -1 + σ e -2 r 2 σ 2 θ √ 2πθ   , |∂ xx-u i (θ, x)| ≤ 1 {x≥c i (θ)} 2 σ 2 c 2 i (θ) 2rK + 3r + σ √ 2πθ c i (θ) .
Moreover ∂ x u i (θ, x) admits a right-hand limit at c i (θ) denoted by

∂ x u i (θ, c i (θ) + ) and ∂ x u i (θ, c i (θ) + ) ∈ [-1, 0].
The proof of these estimates, which relies on the scaling property of the Brownian motion and Lemma 2.2, is postponed in Appendix. We are now able to prove Proposition 3.1.

Proof. Let c = c i (θ). By Lemma 3.3, the limit ∂ x u i (θ, c+) = lim y↓c ∂ x u i (θ, y) exists.
We adapt a viscosity solution argument given in [START_REF] Pham | Continuous-time Stochastic Control and Optimization with Financial Applications[END_REF] : supposing that ∂ x u(θ, c+) > -1, we are going to obtain a contradiction. For ǫ > 0, let

φ ǫ (x) = (K -c) + +α(x-c)+ 1 2ǫ (x-c) 2 where -1 = ∂ x u i (θ, c-) < α < ∂ x u i (θ, c+). Since c < K, it exists an open interval (x ǫ , y ǫ ) ⊂ [0, K] containing c such that min x∈(xǫ,yǫ) (u i (θ, x) -φ ǫ (x)) = u i (θ, c) -φ ǫ (c) = 0. We set β = 2(3r + σ √ πθ )K and φ(θ -t, x) = φ ǫ (x) -βt. By Lemma 3.3, for any (t, x) ∈ [0, θ 2 ] × [0, K], one has u i (θ -t, x) -u i (θ, x) ≥ - β 2 t. Therefore 0 = (u i -φ)(θ, c) = min (t,x)∈( θ 2 ,θ]×(xǫ,yǫ) (u i -φ)(t, x).
By the supersolution property of u i stated in Lemma 3.2, we deduce that

0 ≤ ∂ θ φ(θ, c) -Aφ(θ, •)(c) = β + r(K -c) -rcα - σ 2 c 2 2ǫ .
By sending ǫ to zero, we get the desired contradiction.

Continuity of the exercise boundary

Proposition 4.1. Under (A), for any i ∈ {0, . . . , I}, the function θ

→ c i (θ) is continuous on [0, +∞).
The right continuity will be proved in Section 4.1 whereas the left continuity will be proved in Section 4.2.

Remark 4.2. In particular, we deduce from this result the behaviour of the exercise boundary at the dividend time.

Since

c i (0) = sup x ≥ 0|u i-1 (θ i-1 d , x -D i (x)) = K -x and for y ∈ [0, c i-1 (θ i-1 d )) u i-1 (θ i-1 d , y) = K -y , one has c i (0) = c i-1 (θ i-1 d ) ∧ inf {x ≥ 0|D i (x) > 0} and Corollary 4.3. Under (A), for any i ∈ {1, . . . , I}, lim t→0 + c i (t) = c i-1 (θ i-1 d )∧inf {x ≥ 0|D i (x) > 0}.
As c i (0) = 0 when ∀x > 0, D i (x) > 0, this result generalizes Lemma 2.1 [START_REF] Jourdain | Regularity of the Exercise Boundary for American Put Options on Assets with Discrete Dividends[END_REF].

Right continuity

The right continuity of the exercise boundary is based on a comparaison result with the exercise boundary c of the classical American put option with strike 1 in the Black-Scholes model without dividends.

Lemma 4.4. For θ ≥ 0 and t ≥ 0, one has :

c i (θ + t) ≥ K 1 -e -rt + c i (θ)e -rt c(t)
Proof. Let τ = τ ∧ t where τ is an optimal stopping time for u i (θ + t, x). By the dynamic programming principle, one has

u i (θ + t, x) = E e -rτ (K -Sx τ ) + 1 {τ <t} + 1 {τ =t} e -rt u i (θ, Sx t ) . Since x → u i (θ, x
) is non-increasing and using the fact for any 0

≤ α ≤ K, (K -x) + ≤ (K -(α ∧ x)) + = (K -α) + (α -x) + , one deduces u i (θ + t, x) ≤ E e -rτ (K -Sx τ ) + 1 {τ <t} + 1 {τ =t} e -rt K -c i (θ) ∧ Sx t + ≤ E   e -rτ K -c i (θ) + (K -c i (θ)) 1 -e -r(t-τ ) ∧ Sx τ + 1 {τ <t} +1 {τ =t} e -rt K -c i (θ) ∧ Sx t +   ≤ E e -rτ K -c i (θ) + (K -c i (θ)) 1 -e -r(t-τ ) ∧ Sx τ + ≤ E e -rτ K -c i (θ) + (K -c i (θ)) 1 -e -r(t-τ ) + E e -rτ c i (θ) + (K -c i (θ)) 1 -e -r(t-τ ) -Sx τ + ≤ (K -c i (θ))e -rt + E e -rτ K 1 -e -rt + c i (θ)e -rt -Sx τ +
where we used (K

-c i (θ))(1 -e -r(t-τ ) ) ≤ (K -c i (θ))(1 -e -rt
) for the last inequality.

Since τ is a stopping-time not greater then t, for x ≤ K 1e -rt + c i (θ)e -rt c(t), the second term of the right-hand side is not greater than (K 1e -rt +c i (θ)e -rt -x). Therefore, one has Proof. Because lim t→0 c(t) = 1 (cf [START_REF] Karatzas | Methods of mathematical finance[END_REF] p.71-80), Lemma 4.4 implies that lim inf θ ′ ↓θ c i (θ ′ ) ≥ c i (θ). We conclude with the upper-semicontinuity property stated in Corollary 2.5.

u i (θ + t, x) ≤ (K -x) + and c i (θ + t) ≥ x.
We recall (cf [START_REF] Karatzas | Methods of mathematical finance[END_REF]) that c(∞) def = lim θ→+∞ c(θ) exists and is equal to 2r 2r+σ 2 .

Corollary 4.6. One has lim θ→+∞ c i (θ) = Kc(∞). Moreover, when r > 0, ∀θ > 0, c i (θ) > 0.

Proof. If r = 0 then c ≡ 0 and the statement clearly holds.

Let us now assume that r > 0. Since u i (t, x) ≥ u 0 (t, x), we have c i (t) ≤ Kc(t). Writing Lemma 4.4 for θ = 0, we deduce that

∀t ≥ 0, -(K -c i (0))e -rt c(t) ≤ c i (t) -Kc(t) ≤ 0.
We obtain the first statement by taking the limit t → ∞ in this inequality. For θ = 0, Lemma 4.4 also implies c i (t) ≥ K(1e -rt )c(t). Since c is non-increasing with positive limit at infinity, we deduce that c i (t) > 0 as soon as t > 0.

Left continuity

The left continuity is based on the characterization of the continuation region in terms of the spatial derivative of u i stated in the next proposition.

Proposition 4.7. Under (A), the property

(P i ) : For any θ > 0 and x ≥ 0 one has x > c i (θ) ⇐⇒ 1 + ∂ x u i (θ, x) > 0 holds for any i ∈ {0, • • • , I}.
The proof of Proposition 4.7 will be done by induction on i. The main tools to deduce the induction hypothesis at rank i from the one at rank i -1 are in the following lemmas, the proofs of which are postponed to the Appendix. Lemma 4.8. Let θ > 0, x > c i (θ) and τ denote the smallest optimal stopping time for u i (θ, x). Then y → P τ = θ| Sx θ = y is non-decreasing and is positive on (K, +∞).

The function u i (0, x) being Lipschitz continuous by Lemma 2.2, it is absolutely continuous and therefore dx a.e. differentiable. We denote by ∂ x u i (0, x) its a.e. derivative. Lemma 4.9. Let θ > 0, x ≥ 0 and τ be an optimal stopping time for u i (θ, x). Then one has

1 + ∂ x u i (θ, x) ≥ E Q 1 {τ =θ} 1 + ∂ x u i (0, Sx θ ) .
Moreover,

τ def = lim ǫ→0 + inf t ≥ 0| Sx+ǫ t ≤ c i (θ -t)
is an optimal stopping time and satisfies

1 + ∂ x u i (θ, x) = E Q 1 {τ =θ} 1 + ∂ x u i (0, Sx θ ) .
We are now proving Proposition 4.7.

Proof. First, for i = 0, due to [KS91], x → u i (θ, x) is convex and so (P 0 ) is true. Let us suppose that

(P i-1 ) holds for i ∈ {1, • • • , I -1}. By (A), κ i def = sup x ≥ 0|x -D i (x) ≤ c i-1 (θ i-1 d ) is such that ∀x ≥ 0, x -D i (x) ≤ c i-1 (θ i-1 d ) ⇔ x ≤ κ i .
Moreover, D i is differentiable dx a.e. and equal to the integral of its a.e. derivative which takes its values in [0, 1]. We denote this a.e. derivative by

D ′ i . Since u i (0, x) = u i-1 (θ i-1 d , x -D i (x)) where u i-1 (θ i-1 d , x) is C 1 by Proposition 3.1, one easily checks that dx a.e., ∂ x u i (0, x) = (1 -D ′ i (x))∂ y u i-1 (θ i-1 d , y)| y=x-D i (x) (1) 
where the second term of the right-hand-side belongs to [-1, 0] by Lemma 2.2. There are two possibilities :

• either κ i < ∞ and then for x > κ i , 1 + ∂ y u i-1 (θ i-1 d , y)| y=x-D i (x) > 0 by (P i-1 ) so that 1 + ∂ x u i (0, x) > 0 a.e.

by Equation (1),

• or κ i = +∞ and then D i (x) = x 0 D ′ i (y)dy ∼ x as x → ∞. Therefore there exists a borel set C ⊂ (K, +∞) with infinite Lebesgue measure, on which D ′ i takes values in 1 2 , 1 . By Equation (1), for almost every

x ∈ C, 1 + ∂ x u i (0, x) ≥ 1 2 .
So there exists of a borel set A ⊂ (K, +∞) which is non neglictible for the Lebesgue measure and such that for every

x ∈ A, 1 + ∂ x u i (0, x) > 0.
Using the first statement of Lemma 4.9 then dQ dP

| F θ = e -rθ Sx θ x , one obtains 1 + ∂ x u i (θ, x) ≥ E Q 1 {τ =θ} 1 + ∂ x u i (0, Sx θ ) = e -rθ +∞ 0 y x (1 + ∂ x u i (0, y)) P τ = θ| Sx θ = y p(θ, x, y)dy ≥ e -rθ A y x (1 + ∂ x u i (0, y)) P τ = θ| Sx θ = y p(θ, x, y)dy.
By Lemma 4.8, the last quantity is positive and the assertion is proved.

Proposition 4.10. θ → c i (θ) is left continuous.

Proof. By Corollary 2.5, we just need to prove that it does not exist θ > 0 such that lim inf t→0

+ c i (θ -t) < c i (θ).
Let us suppose that it exists such a θ > 0 and obtain a contradiction. Let c - def = lim inf t→0 + c i (θt) and (t n ) n be a decreasing sequence in (0, θ) tending to zero and such that c i (θt n ) tend to c -. Then, by Lemma 4.4 written with (st n , θs) replacing (t, θ), we obtain that

for s ∈ (t n , θ), c i (θ -s) ≤ c i (θ -t n ) e r(s-tn) c(s -t n ) . So lim t→0 + c i (θ -t) = c -. Then it exists η ∈ (0, c i (θ)), δ 0 ∈ (0, θ/2), such that ∀t ∈ (0, 2δ 0 ) c i (θ -t) < c i (θ) -η. Let x < y be such that c i (θ) -η < x < y ≤ c i (θ). One has y -x + u i (θ, y) -u i (θ, x) = 0. (2) Let us define τ = inf t ≥ 0 t + S1 t -1 ≥ δ 0 ∧ x-c i (θ)+η x . For θ ′ ∈ (θ, θ -δ 0 ) and z ≥ x, one has ∀t ∈ [0, τ ], Sz t ≥ Sx t ≥ c i (θ) -η > c i (θ ′ -t) and by Proposition 2.4, u i (θ ′ , z) = E e -rτ u i (θ ′ -τ, Sz τ )
. Since u i is continuous and bounded by K, letting θ ′ tend to θ, we get by dominated convergence u i (θ, z) = E e -rτ u i (θτ, Sz τ ) . We deduce

y -x + u i (θ, y) -u i (θ, x) = E e -rτ Sy τ -Sx τ + u i (θ -τ, Sy τ ) -u i (θ -τ, Sx τ ) = E Q y x 1 + ∂ x u i (θ -τ, Sz τ ) dz .
But since Q τ > 0 and ∀z ≥ x, Sz τ > c i (θτ ) = 1, the right-hand side is positive by Proposition 4.7, which contradicts Equation (2).

On Figure 2, we represent two different exercise boundaries computed through a binomial tree method following [START_REF] Vellekoop | Efficient pricing of derivatives on assets with discrete dividends[END_REF]. In both cases, c 1 (0) = κ 1 = 20. In case (a), the boundary appears to be smooth whereas in case (b), it seems to be merely continuous (at time 0.04, even continuity is not so clear from the figure). 

Local behaviour of the exercise boundary near the dividend dates

In this section, we are going to show how the behaviour of the exercise boundary is driven by the shape of the function u i (0, .). We recall that c i (0

) = min c i-1 (θ i-1 d ), inf {x ≥ 0|D i (x) > 0} .
We are able to precise the local behaviour of the exercise boundary near the dividend dates only when c i (0) < c i-1 (θ i-1 d ). Notice that by Lemma 4.4, this condition is satisfied as soon as inf {x ≥ 0|D

i (x) > 0} < K(1 -e -rθ i-1 d ) + e -rθ i-1 d c i-1 (0) c(θ i-1 d ).
On Figure 3 are represented two different exercise boundaries computed through a binomial tree method following [START_REF] Vellekoop | Efficient pricing of derivatives on assets with discrete dividends[END_REF]. Notice that in each case, a dividend is paid if the stock price is over 50. On the left (resp. right) one, c 1 (.) seems to be locally increasing (resp. decreasing) on [0, ǫ) for ǫ small enough. In Proposition 5.3 and 5.6, we give sufficient conditions on the dividend functions for these local monotonicity properties to hold. 

Equivalent of the exercise boundary for dividend functions with positive slope at c

i (0) + Proposition 5.1. If c i (0) > 0 and lim inf x→c i (0) + D i (x) x-c i (0) > 0, then c i (θ) -c i (0) ∼ θ→0 + -σc i (0) θ |ln θ|.
Notice that the second hypothesis implies that c i (0) = inf{x ≥ 0|D i (x) > 0} and therefore that inf{x ≥ 0|D i (x) > 0} ≤ c i-1 (θ i-1 d ) with possible equality. In order to prove Proposition 5.1, we need the following lemma, the proof of which is postponed in Appendix.

Lemma 5.2. Suppose that c i (0) > 0 and that it exists α > 0, β ∈ [1, 2) and an open set

V ⊂ R ⋆ + containing c i (0) such that : ∀x ∈ V, u i (0, x) -(K -x) + ≥ α (x -c i (0)) + β . ( 3 
)
Then ∀δ > 1, ∃Θ δ > 0, ∀θ ∈ [0, Θ δ ], c i (θ) ≤ c i (0) exp -σ θ ((2 -β) |ln θ| -(β + δ) ln |ln θ|) .
We are now able to prove Proposition 5.1.

Proof. Since c i (0) ≤ c i-1 (θ i-1 d ) < K and for x ∈ [0, K], u i-1 (0, x) ≥ K -x + D i (x), the positivity of lim inf x→c i (0) + D i (x)
x-c i (0) implies that the second hypothesis of Lemma 5.2 is satisfied with β = 1. Hence, for θ small enough, c i (θ) ≤ c i (0)e -σ √ θ(|ln θ|-3 ln|ln θ|) . By Lemma 4.4, we know that c i (θ) ≥ c i (0)c(θ) + (1e -rθ ) (Kc i (0)) c(θ), where, according to [START_REF] Lamberton | Critical price for an American option near maturity[END_REF], c(θ) -1 ∼ θ↓0 -σ θ |ln θ|. Since θ (|ln θ| -3 ln |ln θ|) ∼ θ↓0 θ |ln θ|, we easily conclude.

Monotonicity of the value function

The monotonicity of the value function around the i-th dividend time is closely related to the sign, on a right-hand neighborhood of c i (0), of the Black-Scholes operator applied to u i (0, .) = u i-1 (θ i-1 d , ρ i (.)) where ρ i (x) = x -D i (x). In the previous sections, the derivative of D i was thought in the sense of distributions. From now on, we assume that D i is the difference of two convex functions in order to apply the Itô-Tanaka formula. So the derivative of D i (resp. ρ i ) is considered as the left-hand derivative.

Exercise boundary locally non-decreasing

To obtain this property, we need negativity of the Black-Scholes operator applied to u i (0, .) in a right-hand neighborhood of c i (0).

Proposition 5.3. Assume that c i (0) < c i-1 (θ i-1 d )
, that D i is the difference of two convex functions, and that the positive part of the Jordan-Hahn decomposition of the measure D ′′ i is absolutely continuous with respect to the Lebesgue measure. Assume moreover that, if g i denotes the density of the absolutely continuous part of

D ′′ i , it exists ε ∈ (0, c i-1 (θ i-1 d ) -c i (0)) and C 1 ∈ [0, +∞) such that ∀x ≤ c i (0) + ε, -rD i (x) + rxD ′ i (x) + σ 2 x 2 2 g i (x) ≤ rK -ε ∀x > c i (0) + ε, g i (x) ≤ C 1 x C 1 .
Then it exists a neighborhood of (0, c i (0)) in R + × R + such that u i is non-increasing w.r.t θ in this neighborhood. Moreover, the exercise boundary c i is non-decreasing in a neighborhood of 0.

Remark 5.4. This result is a generalization of Proposition 2.2 in [START_REF] Jourdain | Regularity of the Exercise Boundary for American Put Options on Assets with Discrete Dividends[END_REF] which states the same local monotonicity property of the value function at the first dividend date when c 1 (0) = 0 and D 1 is a non-zero concave function satisfying assumption (A). Indeed concavity implies that g 1 (x) ≤ 0 and D 1 (x) -rxD ′ 1 (x) ≥ D 1 (0) where D 1 (0) = 0 by (A). When r > 0 and c i (0) = 0, generalizing the proofs of Lemma 2.1 and Corollary 2.3 [START_REF] Jourdain | Regularity of the Exercise Boundary for American Put Options on Assets with Discrete Dividends[END_REF], one may check that c i (θ) ≤ rKθ lim sup x→0 + x D i (x) + o(θ) as θ → 0 and that, under the assumptions of Proposition 5.3, if x D i (x) admits a finite right-hand limit at x = 0, c i (θ)

∼ θ→0 + rKθ lim x→0 + x D i (x) . The function D i (x) = min α, (r-η)K σ 2 c 2 i (0) (x -c i (0)) + 2
satisfies (A) and the assumptions of Proposition 5.3 when c i (0) > 0, for η ∈ (0, r) and α ∈ (0,

σ 2 c 2 i (0) 4(r-η)K ].
To prove the proposition, we need the following lemma, the proof of which is postponed in appendix.

Lemma 5.5. Let p ≥ 0 and for t 1 ≥ 0,

τ t 1 = inf w ≥ 0| Sx w ≥ c i (t 1 -w)1 {w<t 1 } + c i (0)1 {w≥t 1 } with the convention inf ∅ = +∞. ∀α > 0, ∃η > 0, lim v→0+ sup t 1 ≤η,x≤c i (0)+α E 1 + Sx v p 1 {τt 1 ≥v, Sx v ≥c i (0)+2α} P(τ t 1 ≥ v) = 0.
We are now able to prove Proposition 5.3.

Proof. Let 0 ≤ s < t, x > c i (t) and τ be the smallest optimal stopping time for (t, x). Since τ ∧s is a stopping time not greater than s, u i (s, x) ≥ E e -rτ K -Sx τ 1 {τ <s} + e -rs u i (0, Sx s ) . Using (Kx) + ≤ u i (0, x), we deduce

u i (t, x) -u i (s, x) ≤E 1 {τ ≥s} e -rτ u i (0, Sx τ ) -e -rs u i (0, Sx s ) . By Lemma 6.1, on τ > s, e -rτ u i (0, Sx τ ) -e -rs u i (0, Sx s ) = τ s e -rv    -ru i (0, Sx v ) + r Sx v ∂ x u i-1 (θ i-1 d , ρ i ( Sx v ))ρ ′ i ( Sx v ) + σ 2 2 Sx v ρ ′ i Sx v 2 ∂ xx u i-1 (θ i-1 d , ρ i ( Sx v ))    dv + 1 2 τ s R e -rv ∂ x u i-1 (θ i-1 d , ρ i (a))ρ ′′ i (da)dL a v ( Sx ) + M τ -M s (4)
where

M t = t 0 σe -rv Sx v ∂ x u i-1 (θ i-1 d , ρ i ( Sx v ))ρ ′ i ( Sx v )dB v . As E [ M t ] ≤ σ 2 tx 2 e σ 2 t
, M t is a true martingale and

E 1 {τ ≥s} (M τ -M s ) = E 1 {τ ≥s} (E [M τ |F s ] -M s ) = 0.
(5)

The function

y → ∂ x u i-1 (θ i-1 d , ρ i (y)) belongs to [-1, 0] by Lemma 2.2 and is equal to -1 on [0, c i (0) + ε] since then ρ i (y) ≤ y ≤ c i (0) + ε < c i-1 (θ d i-1
). Since for any a ≥ 0, t → L a t is a non-decreasing process and ρ ′′ i = -D ′′ i , using the growth assumption on g i , we deduce that P-almost surely

τ s R e -rv ∂ x u i-1 (θ i-1 d , ρ i (a))ρ ′′ i (da)dL a v ( Sx ) ≤ τ s R e -rv 1 {a≤c i (0)+ε} g i (a) + 1 {a>c i (0)+ε} C 1 a C 1 dadL a v ( Sx )
Using Exercise 1.15 p.232 [START_REF] Revuz | Continuous martingales and brownian motion[END_REF], we deduce that

τ s R e -rv ∂ x u i-1 (θ i-1 d , ρ i (a))ρ ′′ i (da)dL a v ( Sx ) ≤ τ s σ 2 e -rv Sx v 2 (1 { Sx x ≤c i (0)+ε} g i ( Sx v ) + C 1 1 { Sx v >c i (0)+ε} ( Sx v ) C 1 )dv. ( 6 
)
By Lemma 3.3 and since c i (0) + ε < c i-1 (θ i-1 d ), it exists a finite constant C 2 not depending on s and t such that

τ s e -rv Sx v ρ ′ i Sx v 2 ∂ xx u i-1 (θ i-1 d , ρ i ( Sx v ))dv ≤ C 2 τ s e -rv Sx v 2 1 { Sx v >c i (0)+ε} dv. (7) For y ≤ c i (0) + ε, u i-1 (θ i-1 d , ρ i (y)) = K -ρ i (y)
and

-ru i (0, y) + ry∂ x u i-1 (θ i-1 d , ρ i (y))ρ ′ i (y) = -rK -rD i (y) + ryD ′ i (y)
where D i is equal to 0 on [0, c i (0)]. Hence the assumptions ensure that

-ru i (0, y) + ry∂ x u i-1 (θ i-1 d , ρ i (y))ρ ′ i (y) + σ 2 y 2 2 g i (y) ≤    -rK if y ≤ c i (0) -ε if y ∈ (c i (0), c i (0) + ε] (8) When y > c i (0) + ε, since ∂ x u i-1 ≤ 0 and ρ ′ i ≥ 0, -ru i (0, y) + ry∂ x u i-1 (θ i-1 d , ρ i (y))ρ ′ i (y) is non-positive.
Taking expectations in Equation (4) and using Equation ( 5), Equation (6), Equation (7), Equation (8), we deduce that it exists a constant M > 0 such that

u i (t, x) -u i (s, x) ≤ t s e -rv P(τ ≥ v)        -(rK ∧ ε) +M E 1 {τ≥v, Sx v >c i (0)+ε} 1 + Sx v 2+C 1 P(τ ≥v)        dv (9)
Applying Lemma 5.5 (with p = 2 + C 1 , t 1 = t and α = ε 2 ), we obtain that for t small enough, uniformly in x ≤ c i (0) + ε 2 , the right-hand-side of Equation ( 9) is non-positive. With Proposition 4.1, we deduce the existence of η > 0 such that sup w∈ [0,η] 

c i (w) ≤ c i (0) + ǫ 2 and ∀0 ≤ s < t < η, ∀x ∈ (c i (t), c i (0) + ǫ 2 ], u i (t, x) ≤ u i (s, x).
This inequality is still true for x ≤ c i (t) since then

u i (t, x) = (K -x) + ≤ u i (s, x). For 0 ≤ s < t < η, we conclude that u i (t, c i (s)) ≤ u i (s, c i (s)) = K -c i (s), which implies that c i (s) ≤ c i (t).

Exercise boundary locally non-increasing

To obtain this property, we need positivity of the Black-Scholes operator applied to u i (0, .) in a right-hand neighborhood of c i (0).

Proposition 5.6. Assume that c i (0) < c i-1 (θ i-1 d ), that D i is the difference of two convex functions, and that the negative part of the Jordan-Hahn decomposition of the measure D ′′ i is absolutely continuous with respect to the Lebesgue measure.

Assume moreover that, if g i denotes the density of the absolutely continuous part of the measure

D ′′ i , it exists ε ∈ (0, c i-1 (θ i-1 d ) -c i (0)) and C 1 ∈ [0, +∞) such that on (c i (0), c i (0) + ε], D i is C 2 and such that -rD i (x) + rxD ′ i (x) + σ 2 x 2 2 g i (x) ≥ rK + ε, ∀x > c i (0) + ε, g i (x) ≤ -C 1 x C 1 .
Then it exists a neighborhood of (0, c i (0)) in R + × R + such that u i is non-decreasing w.r.t θ in this neighborhood. Moreover the exercise boundary c i is non-increasing in a neighborhood of 0.

Remark 5.7. When c i (0) = 0, there is no non-negative function D i satisfying the differential inequality on a neighborhood of (c i (0), c i (0) + ε).

For c i (0) > 0 and α ∈ (0, 1), the function

D i (x) = α(x -c i (0)) + + 1 σc i (0) 2 (r(K -αc i (0)) + η) (x -c i (0)) + 2 e -x 2
η satisfies (A) and the assumptions of Proposition 5.6 when η > 0 is small enough.

Proof. Let 0 ≤ s < t, x > c i (s) and τ be the smallest optimal stopping time for (s, x). We set τ = τ

1 {τ <s} + 1 {τ =s} inf v ≥ s| Sx v ≤ c i (0) ∧ t . We have u i (t, x) -u i (s, x) ≥ E 1 {τ =s} e -rτ u i (t -τ , Sx τ ) -e -rs u i (0, Sx s ) .
Since on {τ = s}, Sx s ≥ c i (0), on {τ = s, τ < t}, Sx τ = c i (0), and u i (t-τ , c i (0)) ≥ (K -c i (0)) = u i (0, c i (0)). We then deduce that

u i (t, x) -u i (s, x) ≥ E 1 {τ ≥s} e -rτ u i (0, Sx τ ) -e -rs u i (0, Sx s ) .
Applying Lemma 6.1, arguing like in the proof of Proposition 5.3 about the local martingale part and using that dv a.e. on [s, t], τ ≥ v implies Sx v > c i (0), we get

u i (t, x) -u i (s, x) ≥ E   t s 1 {τ≥v, Sx v >c i (0)} e -rv    -ru i (0, Sx v ) + r Sx v ∂ x u i-1 (θ i-1 d , ρ i ( Sx v ))ρ ′ i ( Sx v ) + σ 2 2 Sx v ρ ′ i Sx v 2 ∂ xx u i-1 (θ i-1 d , ρ i ( Sx v ))    dv   + 1 2 E t s R 1 {τ ≥v} e -rv ∂ x u i-1 (θ i-1 d , ρ i (a))ρ ′′ i (da)dL a v ( Sx ) .
Like in the proof of Proposition 5.3, one checks that

∀y ∈ (c i (0), c i (0) + ε], -ru i (0, y) + ry∂ x u i (θ i-1 d , ρ i (y))ρ ′ i (y) + σ 2 y 2 2 g i (y) ≥ ε ∀y > c i (0) + ε, -ru i (0, y) + ry∂ x u i (θ i-1 d , ρ i (y))ρ ′ i (y) ≥ -r(K + y), t s 1 {τ ≥v} e -rv Sx v ρ ′ i Sx v 2 ∂ xx u i-1 (θ i-1 d , ρ i ( Sx v ))dv ≥ -C 2 t s 1 {τ≥v, Sx v >c i (0)+ε} e -rv Sx v 2 dv,
and that t s R 1 {τ ≥v} e -rv ∂ x u i-1 (θ i-1 d , ρ i (a))ρ ′′ i (da)dL a v ( Sx ) ≥ t s 1 {τ ≥v} e -rv σ 2 Sx v 2 g i ( Sx v )1 { Sx v ≤c i (0)+ε} -C 1 ( Sx v ) C 1 1 { Sx v >c i (0)+ε} dv.
Gathering all the inequalities, we get that it exists a finite constant M ≥ 0 such that :

u i (t, x) -u i (s, x) ≥ t s P (τ ≥ v) e -rv ε -E 1 {τ≥v, Sx v >c i (0)+ε} M 1 + Sx v 2+C 1
dv.

(10) Applying Lemma 5.5 (with p = 2 + C 1 , t 1 = s and α = ε 2 ), we obtain that for t small enough, uniformly for x ≤ c i (0) + ε 2 , the right-hand-side of Equation ( 10) is non-negative. With Proposition 4.1, we deduce the existence of η > 0 such that sup w∈ [0,η] 

c i (w) ≤ c i (0) + ε 2 and that ∀0 ≤ s < t < η, ∀x ∈ (c i (s), c i (0) + ε 2 ), u i (s, x) ≤ u i (t, x).
This inequality is still true for x ≤ c i (s) since then

u i (s, x) = (K -x) + ≤ u i (t, x).
Then, as soon as 0 ≤ s < t < η, u i (s, c i (t)) ≤ u i (t, c i (t)) = Kc i (t) which implies that c i (t) ≤ c i (s).

Conclusion and further research

The continuity of the exercise boundary as well as the smooth contact property are likely to be generalized in a model with discrete dividends where the underlying asset price has a local volatility dynamics between the dividend dates with a positive local volatility function. We plan to investigate this extension in a future work. Assuming that the underlying stock price evolves as the exponential of some Lvy process between the dividend dates provides another natural generalization of the Black-Scholes model that could be considered (see [START_REF] Lamberton | The critical price for the American put in an exponential Lévy model[END_REF] for the case without discrete dividends).

Appendix

6.1 Proof of Lemma 3.3

Proof. The existence of the right-hand limit at c i (θ) for ∂ x u i (θ, x) is an easy consequence of the second estimation. Since for x < c i (θ), ∂ xx u i (θ, x) = 0 and for x > c i (θ), by Proposition 2.4 and Lemma 2.2,

|∂ xx u i (θ, x)| = 2 σ 2 x 2 (∂ θ u i (θ, x) + ru i (θ, x) -rx∂ x u i (θ, x)) ≤ 2 σ 2 x 2 |∂ θ u i (θ, x)| + 2r σ 2 K x 2 + 1 x ,
the second estimation is easily deduced from the first one. To prove the first estimation, we set

V i : (γ, ν, x) → sup τ ∈[0,1] E e -γ ν 2 2 τ K -xe ν 2 2 (γ-1)τ +νBτ + 1 {τ <1} + e -γ ν 2 2 u i (0, xe ν 2 2 (γ-1)+νB 1 )1 {τ =1}
Because of the scaling property of the brownian motion, for any positive f : R

+ × R → R and θ ∈ R + , sup τ ∈[0,1] E f (θτ, √ θB τ ) = sup τ ∈[0,θ] E [f (τ, B τ )].
We deduce that

V i 2r σ 2 , σ √ θ, x = u i (θ, x) and lim sup θ ′ →θ u i (θ ′ , x) -u i (θ, x) θ ′ -θ = σ 2 √ θ lim sup ν ′ →σ √ θ V i ( 2r σ 2 , ν ′ , x) -V i ( 2r σ 2 , σ √ θ, x) ν ′ -σ √ θ .
Therefore it is enough to check that ∀x, ν ≥ 0, lim sup

ν ′ →ν V i (γ, ν ′ , x) -V i (γ, ν, x) ν ′ -ν ≤ νγ (K + x)+x   γν (2N (γν) -1) + 2 e -γ 2 ν 2 2 √ 2π   . (11) Setting (γ, ν) = ( 2r σ 2 , σ √ θ), the optimality of τ = inf t ≥ 0|u i (θ -t, Sx t ) + Sx t ≤ K ∧ θ for u i (θ, x) translates into the optimality of τ ⋆ def = inf t ≥ 0|V i (γ, ν √ 1 -t, xe ν 2 2 (γ-1)t+νBt ) + xe ν 2 2 (γ-1)t+νBt ≤ K ∧ 1 for V i (γ, ν, x). This implies that V i (γ, ν, x)+x = KE e -ν 2 2 γτ ⋆ +E 1 {τ ⋆ =1} e -ν 2 2 γ u i (0, xe ν 2 2 (γ-1)+νB 1 ) + xe ν 2 2 (γ-1)+νB 1 -K .
For any ν ′ ≥ 0, by definition of V i ,

V i (γ, ν ′ , x) ≥ KE e -ν ′2 2 γτ ⋆ +E 1 {τ ⋆ =1} e -ν ′2 2 γ u i (0, xe ν ′2 2 (γ-1)+ν ′ B 1 ) + xe ν ′2 2 (γ-1)+ν ′ B 1 -K .
Using that x → x + u i (0, x) is 1-lipschitz and non-decreasing by Lemma 2.2, then u i (0, .) ≤ K and (1e x ) + ≤ (-x) + ≤ |x|, one deduces

V i (γ, ν ′ , x) -V i (γ, ν, x) ≥KE e -ν ′2 2 γτ ⋆ -e -ν 2 2 γτ ⋆ 1 {τ ⋆ <1} + e -ν ′2 2 γ -e -ν 2 2 γ E 1 {τ ⋆ =1} u i (0, xe ν 2 2 (γ-1)+νB 1 ) + xe ν 2 2 (γ-1)+νB 1 -e -ν ′2 2 γ E   1 {τ ⋆ =1} xe ν 2 2 (γ-1)+νB 1 1 -e (ν ′ -ν) (γ-1) ν+ν ′ 2 +B 1 +   . ≥ -K(e -ν 2 2 γ -e -ν ′2 2 γ ) + (P(τ ⋆ < 1) + P(τ ⋆ = 1)) -x 1 -e ν 2 -ν ′2 2 γ + E 1 {τ ⋆ =1} e -ν 2 2 +νB 1 -e ν 2 -ν ′2 2 γ ν ′ -ν E 1 {τ ⋆ =1} xe -ν 2 2 +νB 1 (γ -1) ν + ν ′ 2 + B 1 ≥ -(K + x) γ ν -ν ′ ν + ν ′ 2 -e | ν 2 -ν ′2 | 2 γ ν ′ -ν xE (γ -1) ν + ν ′ 2 + ν + B 1 .
Remarking that for y ∈ R, E|y

+ B 1 | = y(2N (y) -1) + 2e -y 2 2 √
2π and combining the resulting inequality with the one deduced by exchanging ν and ν ′ , we conclude that Equation (11) holds. 

Proofs of the auxiliary results of

P τ = θ| Sx θ = y = P   ∀t ∈ [0, θ], Y 0, 1 σ ln y x -r-σ 2 2 θ t > 1 σ ln c i (θ -t) x -r - σ 2 2 t   = P ∀t ∈ [0, θ], Ξ t > 1 σ ln c i (θ -t) x - t θ ln y x
and the monotonicity of y → P τ = θ| Sx θ = y easily follows. For y > K, this implies

P(τ = θ, Sx θ ∈ (K, y)) P( Sx θ ∈ (K, y)) ≤ P(τ = θ| Sx θ = y).
Therefore, to prove the second assertion, we only need to check P

(τ = θ, Sx θ ∈ (K, y)) > 0. Let η = inf t ≥ 0| Sx t = y+K 2 σ √ θ r + σ 2 2 θ + ln max x -ǫ x , x x + ǫ .
We deduce that

u i (θ, x) ≥ Ke -rθ -x + e -rθ E α ( Sx θ -c i (0)) + β + o(θ), ( 12 
)
where the term o(θ) is uniform for x ∈ (c i (0)ǫ, c i (0) + ǫ). In order to bound the third term of the right-hand-side from below, we first deal with φ(θ)

def = E S1 θ -1 + β
. Using the change of variables z = σ √ θu for the second equality, we have

φ(θ) = +∞ 0 z β e -1 2σ 2 θ ln(1+z)-r-σ 2 2 θ 2 dz √ 2πθσ(1 + z) ≥ e -[ r σ -σ 2 ] 2 θ +∞ 0 z β e -1 σ 2 θ ln 2 (1+z) dz √ 2πθσ(1 + z) ≥ e -[ r σ -σ 2 ] 2 θ +∞ 0 z β e -z 2 σ 2 θ dz √ 2πθσ(1 + z) = e -[ r σ -σ 2 ] 2 θ σ β θ β 2 +∞ 0 u β e -u 2 du √ 2π(1 + uσ √ θ) ≥ e -[ r σ -σ 2 ] 2 θ σ β θ β 2 +∞ 0 u β e -u 2 √ 2π 1 -uσ √ θ du = e -[ r σ -σ 2 ] 2 θ σ β θ β 2 1 √ 8π Γ 1 + β 2 -σ √ θΓ 3 + β 2 = e -[ r σ -σ 2 ] 2 θ σ β θ β 2 1 √ 8π Γ 1 + β 2 1 -σ √ θ 1 + β 2 .
Thus, for θ <

1 σ 2 (1+β) 2 and C = 1 2 e -( r σ -σ 2 ) 2 σ 2 (1+β) 2 σ β √ 8π Γ 1+β 2 , one has φ(θ) ≥ Cθ β 2 .
Let x < c i (0) and τ = inf t ≥ 0| Sx t ≥ c i (0) . For θ < 1 σ 2 (1+β) 2 , using the strong Markov property then Formula 2.0.2 p.223 [START_REF] Borodin | Handbook of Brownian motion-facts and formulae[END_REF], one has

E Sx θ -c i (0) + β = |c i (0)| β E E S1 θ-τ -1 + β |F τ 1 {τ <θ} = |c i (0)| β E φ (θ -τ ) 1 {τ <θ} ≥ |c i (0)| β Cθ β 2 E   1 - τ θ β 2 1 {τ <θ}   ≥ |c i (0)| β Cθ β 2 1 σ ln c i (0) x θ 0 1 - t θ β 2 1 √ 2πt 3 e -1 2σ 2 t σ 2 2 -r t+ln c i (0) x 2 dt ≥ |c i (0)| β e 1 2σ 2 2 σ 2 2 -r ln x c i (0) -σ 2 2 -r 2 θ Cθ β 2 × 1 σ √ 2πθ ln c i (0) x 1 0 (1 -u) β 2 1 √ u 3 e -1 2σ 2 θu ln 2 c i (0) x du :=ψ(θ,x) . Hence ∃M, η > 0, ∀ (θ, x) ∈ (0, η) × (c i (0)e -σθ 1 3 , c i (0)), E Sx θ -c i (0) + β ≥ M θ β 2 ψ(θ, x). (13) Setting γ(x) = 1 σ √ θ ln c i (0) x , we have ψ(θ, x) = γ(x) √ 2π 1 0 (1 -u) β 2 u -3 2 e -γ 2 (x) 2u du. With the change of variables t = 1 u -1, we deduce that ψ(θ, x) = γ(x) √ 2π e -γ 2 (x) 2 Γ β 2 + 1 U β 2 + 1; 3 2 ; γ 2 (x) 2 where U(a, b, z) = 1 Γ(a)
+∞ 0 e -tz t a-1 (1 + t) b-a-1 dt is the confluent hypergeometric function of the second kind. By 13.5.2 p.504 [START_REF] Abramowitz | Handbook of Mathematical Functions, With Formulas, Graphs, and Mathematical Tables[END_REF],

for z → +∞, U β 2 + 1; 3 2 ; z = z -( β 2 +1) (1 + O(1/z)).
Then we choose θ small enough to ensure that

x(θ) = c i (0)e -σ √ θ((2-β)|ln θ|-(δ+β) ln|ln θ|) is well defined. Since γ(x(θ)) = (2 -β) |ln θ| -(δ + β) ln |ln θ| tends to +∞ as θ → 0, we deduce ψ(θ, x(θ)) = Γ β 2 + 1 2 1+ β 2 ((2 -β) |ln θ| -(δ + β) ln |ln θ|) β+1 2 √ 2π θ 1-β 2 |ln θ| δ+β 2 1 + O 1 |ln θ| = Γ β 2 + 1 2 1+ β 2 √ 2π(2 -β) β+1 2 θ 1-β 2 |ln θ| δ-1 2 1 + O ln |ln θ| |ln θ| .
Plugging this into Equation (13), we conclude that it exists a constant κ > 0 such that as θ → 0, (17) This concludes the proof since when v tends to 0, the numerator tends to 0 whereas the denominator tends to 1.

Itô tanaka formula

Lemma 6.1. For i ≥ 1, assume that D i is difference of two convex functions. Then 

du i-1 (θ i-1 d , ρ i ( Sx t )) =∂ x u i (θ i-1 d , ρ i ( Sx t ))ρ ′ i ( Sx t )d Sx t + 1 2 R ∂ x u i (θ i-
1 {Xs=x ⋆ } d X s = 0 and f (X t ) = f (X 0 ) + t 0 f ′ (X s )dX s + 1 2 t 0 f ′′ (X s )d X s .
Proof. The first assertion is a consequence of the occupation times formula and ensures that differentiability of f ′ at x ⋆ is not needed for the right-hand-side of the second equality to be well defined. By hypothesis, it exists 0 ≤ M < ∞ such that either x → f (x) + M x 2 or x → f (x) -M x 2 is convex and consequently f is the difference of two convex functions. So we can apply the Itô-Tanaka formula and conclude by the occupation times formula.
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 1 Figure 1: A trajectory of the stock price process

Corollary 4. 5 .

 5 The function θ → c i (θ) is right continuous.

Figure 2 :

 2 Figure 2: Exercise boundaries of an American put option with different maturities for different dividend functions. Strike is 100, diffusion parameters are r = 0.04 and σ = 0.3.

Figure 3 :

 3 Figure 3: Exercise boundaries of an American put option of maturity 4 with one dividend time at 3.5 for different dividend functions. Strike is 100, diffusion parameters are r = 0.04 and σ = 0.3.

  Proof. Let θ > 0 and x > c i (θ). For a, b ∈ R and t ∈ [0, θ], we define Y a,b t = a + t θ (ba) + Ξ t where (Ξ s ) s∈[0,θ] is a brownian bridge on [0, θ] starting and ending at 0. Then Y a,b t t∈[0,θ] is a brownian bridge on [0, θ] starting at a and ending at b. For y ≥ 0,

  ln |ln θ| |ln θ| .With Equation (12), this implies thatu i (θ, x(θ)) ≥ Kx(θ) + θ κ |ln θ| δ-1 2 -rK + o(θ)and the conclusion follows by positivity of the factor κ |ln θ| δ-1 2 -rK for θ small enough.6.3.2 Proof of Lemma 5.5.Proof. Ideas are similar to those of the proof of Proposition 2.2 of[START_REF] Jourdain | Regularity of the Exercise Boundary for American Put Options on Assets with Discrete Dividends[END_REF]. For α > 0, according to Proposition 4.1, there exists η > 0 such that sup w∈[0,η] c i (w) ≤ c i (0) + α 2 . Let us suppose that t 1 ∈ [0, η]. Let x ≤ c i (0) + α and v ≥ 0. Setting τ = inf w ≥ 0| Sx w ≥ c i (0) + α , wehave1 {τ ≥v} ≥ 1 {τ≥τ, τ ≤v, ∀w∈[τ ,v], Sx w >c i (0)+α}Using the strong Markov property, we deduce thatP (τ ≥ v) ≥ P (τ ≥ τ , τ ≤ v) P inf w∈[0,v]continuity of the trajectories of Sx and since x ≤ c i (0) + α,1 {τ≥v, Sx v ≥c i (0)+2α} ≤ 1 {τ≥τ,τ≤v, Sx v ≥c i (0)+2α} .Again by the strong Markov property, we deduce thatE Sx v p 1 {τ≥v, Sx v ≥c i (0)+2α} ≤ E   1 {τ ≥τ ,τ ≤v} (c i (0) + α) p E by defining P as d P dP Ft = e pσBt-p 2 σ 2 t 2 Sx v ≥c i (0)+2α} ≤ P (τ ≥ τ , τ ≤ v) (c i (0) + α) pe pr+σ 2 p(p-1) any t, x, y ≥ 0, P( Sx t ≥ y) ≤ P( Sx t ≥ y). So, we deduce thatE 1 + Sx v p 1 {τ≥v, Sx v ≥c i (0)+2α} P(τ ≥ v) ≤ 1 + (c i (0) + α) p e pr+σ2 p(p-1) 2 v sup 0≤w≤v P S1 w ≥ c i (0)+2α c i (0)+α P inf w∈[0,v] S1 w > c i (0)+ α 2 ĉi (0)+α .

  At each dividend time t i d , the value of the stock becomes S t i

d = S t i d --D i S t i d -where D i (S t i d -

  Hence X t = ρ i ( Sx t ) is a continuous semi-martingale with bracket X t = t 0 ρ ′ i ( Sx s ) One concludes since, by Proposition 1.3 p.222 [RY91], P ⊗ |ρ ′′ i |(da) a.e., the measure dL a t ( Sx ) is supported by {t : Sx t = a}. Let X be a continuous semi-martingale and f a C 1 function, C 2 on [0, x ⋆ ) and (x ⋆ , +∞), such that either inf x∈R f ′′ (x) or sup x∈R f ′′ (x) is finite. Then, almost surely,
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