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Abstract

This paper describes a comprehensive nonlinear multiphysics model based on the Euler-Bernoulli

beam equation that remains valid up to large displacements in the case of electrostatically actuated

Mathieu resonators. This purely analytical model takes into account the fringing field effects and

is used to track the periodic motions of the sensing parts in resonant microgyroscopes. Several

parametric analyses are presented in order to investigate the effect of the proof mass frequency

on the bifurcation topology. The model shows that the optimal sensitivity is reached for resonant

microgyroscopes designed with sensing frequency four times faster than the actuation one.
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1. Introduction

Microelectromechanical gyroscopes have attracted lots of attention due to their small size,

batch fabrication, Integrated Circuit (IC) compatibility, low cost, and acceptable moderate perfor-

mance for most applications. They can be used either as a low-cost miniature companion with

micromachined accelerometers to provide heading information for inertial navigation purposes or

in other areas, including automotive applications for ride stabilization and rollover detection; some

consumer electronic applications, such as video-camera stabilization, virtual reality, and inertial

mouse for computers; robotics applications; and a wide range of military applications [1, 2].

Micromachined gyroscopes typically rely on the coupling of an excited vibration mode into a

secondary mode due to the Coriolis acceleration based on the combination of vibration of a proof-

mass and an orthogonal angular-rate input. As shown in Fig. 1, when the gyroscope is subjected

to an angular rotation, a sinusoidal Coriolis force is induced in the direction orthogonal to the

drive-mode oscillation at the driving frequency.
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Figure 1: Lumped parameter model of a vibratory gyroscope.

To achieve high sensitivity in conventional micro rate gyroscopes based on harmonic oscilla-

tors, the drive and the sense resonant frequencies are typically designed and tuned to match, and

the device is controlled to operate at or near the peak of the response curve (where amplitude is

defined by the Q-factor) [3]. However, current micro fabrication processes produce asymmetries

causing frequency mismatching between modes, translating to drastic loss of sensitivity [4]. Al-

though solutions to overcome frequency mismatching have been pursued [5, 6], many of them

involve adding complexity to the system by including additional controllers, additional degrees of

freedom [7] or utilizing multiple drive mode oscillators [8].

Due to the complexity of the proposed control schemes [5, 6], alternate approaches were con-

sidered. One of them is the use of resonant sensing [9] of the Coriolis force instead of displacement

sensing employed in most conventional microgyroscopes. Profiting from the high sensitivity of

the resonant detection, the matching of the drive and the sense frequencies is not mandatory to

achieve a high resolution. Consequently, the number of states that have to be simultaneously con-

trolled and the number of variables that require identification are much smaller and the dynamics

is simplified from a minimally two-dimensional system to a series of coupled one-dimensional

mass-spring-damper systems. Nevertheless, resonant sensing suffers from the soon occurrence

of nonlinearities [10–13] which reduces the gyroscope performances. Moreover and unlike reso-

nant accelerometers, the sensing parts are Mathieu resonators since their stiffnesses are modulated

periodically by a time-varying Coriolis force at the proof mass frequency.

In this paper, a typical resonant gyroscope is described and equations of motion are derived

for both actuation and sensing elements. Then, the nonlinear dynamics of electrostatically driven

Mathieu resonators is investigated for resonant gyroscope applications using a complete model

which includes the mechanical nonlinearities, nonlinear electrostatic terms up to the fifth order as
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well as the Coriolis parametric excitation. The model is based on the Galerkin expansion method

coupled with a perturbation technique; the resonant and periodic case under primary excitation has

been considered. The main idea is to provide practical rules for microgyroscopes designers based

on the proof mass frequency effect analysis in order to enhance the scale factor of the resonant

sensor.

2. The Resonant Gyroscope

The resonant gyroscope, as its name implies, utilizes resonant sensing as a basis for Coriolis

force detection. In its simplest form, the device consists of three resonating elements, a proof

mass vibrating in the tens of kiloHertz and two resonating sense elements, with a designed res-

onant frequency, generally, an order of magnitude higher than that of the proof mass in order to

avoid possible parametric instabilities in detection. Although the principle is general enough to

accommodate devices that sense rotation rate about in-plane axes with minor modifications (such

as driving the proof mass perpendicular to the substrate), the focus of this paper concerns gyro-

scopes that sense rotation rate about a single axis orthogonal to the plane of the device substrate.

In addition, gyroscope topologies for a dual-mass to cancel common-mode acceleration signals

and gyroscope suspensions to reduce quadrature error carry over for a resonant gyroscope. A

schematic of the z-axis resonant gyroscope is shown in Fig. 2.

Figure 2: Schema of a simple mass resonant gyroscope.

The device consists of a proof mass suspended by flexures attached to lever mechanisms [14]

for Coriolis force amplification. The proof mass is driven along the y axis using embedded lateral

comb drive actuators. If an external rotation is applied to the chip about the z-axis, the Coriolis

forces acting on the proof mass is transmitted to the lever mechanisms that amplify these forces

prior to its being communicated axially onto two resonators placed on each side of the proof mass

for a differential output. The two resonators vibrate out of phase and parallel to the direction of

motion of the proof mass. The periodic compression and tension of the resonators by the Coriolis

force at the proof mass drive frequency modulates the resonant frequency of these force sensors.

Each force sensor comprises mechanical resonator shown in Fig. 3, electrostatically actuated and
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embedded in the feedback loop of an oscillator circuit. Thus, by demodulating the oscillation

frequency, the rotation rate applied to the device can be estimated.

Figure 3: Sketch of a Mathieu resonator.

The dynamics of the device (Figs. 2 and 3) can be described by a series of coupled differential

equations. The proof mass dynamics can be described for most part by a classical spring-mass-

damper equation. The dynamics of the resonator subjected to an axial time-varying Coriolis force

is described by a nonlinear Mathieu partial differential equation. The respective equations can be

written:

d2Y(t̃)

dt̃2
+
δ̃

Q

dY(t̃)

dt̃
+ δ̃2Y(t̃) =

Fe

M
cos δ̃t̃ (1)

EI
∂4w̃(x̃, t̃)

∂x̃4
+ ρbh

∂2w̃(x̃, t̃)

∂t̃2
+ c̃
∂w̃(x̃, t̃)

∂t̃

−
Ebh

2l

∫ l

0

[

∂w̃(x̃, t̃)

∂x̃

]2

dx̃
∂2w̃(x̃, t̃)

∂x̃2

−
[

Ñ + AlF̃c cos δ̃t̃
] ∂2w̃(x̃, t̃)

∂x̃2
=

1

2
ε0

bCn

[

Vdc + Vac cos(Ω̃t̃)
]2

(g − w̃(x̃, t̃))2
(2)

F̃c = 2Mθ
dY(t̃)

dt̃
(3)

where x̃ is the position along the resonator length, E and I are the Young’s modulus and moment

of inertia of the cross section. Ñ is the applied tensile axial force due to the residual stress on the

silicon, t̃ is time, ρ is the material density, h is the microbeam thickness, g is the capacitor gap

width, and ε0 is the dielectric constant of the gap medium. The last term on the left-hand side of

Eq. (2) represents an approximation of the electric force assuming a complete overlap of the area

of the microbeam and the stationary electrode including the edge effects by the coefficient Cn [15].

Furthermore, Ỹ is the mass displacement along the vertical axis, M is the mass of the drive part

of the resonant gyroscope, δ is its resonance frequency, Q the drive quality factor, Fe is the elec-

trostatic force induced by the lateral comb drive actuators, Al is the amplification coefficient of the

Coriolis Fc force due to the lever mechanism. The perturbation term AlF̃c cos δ̃t̃ , which represents

a modulation of the spring constant of the resonant sensor at the gyroscope drive frequency ( δ̃
2π

),

is directly contributed by the amplified Coriolis force impinging axially on the resonator. Thus,

the Coriolis force (F̃c) modulates the spring constant of the resonator system.
4
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Clearly, Eq. (2) governing the micro-beam resonator dynamics is similar to the equation of

motion of the sensing parts in the case of a resonant accelerometer [10]. The only difference is

the time-varying term proportional to the Coriolis force that modulates the spring constant of the

resonator. Obviously, for a very low actuation frequency δ̃ with respect to the resonator natural

frequency, the Coriolis force is quasi-static and then sensing dynamics for both resonant inertial

sensors become equivalent.

Note that the two resonators placed on each side of the structure experience an equal and

opposite axial force. The output of the device is the resonant frequency shift difference (∆ f =

∆ f1 − ∆ f2) between the two resonators, measured at the gyroscope proof mass drive frequency.

2.1. Actuation part

The details about the dimensions (proof mass+spring) are described in Fig. 4.

Figure 4: Proof mass and spring designs for a resonant gyroscope.

An equivalent mechanical model was used in order to compute analytically the stiffness Km of

the spring-mass-damper system as follow:

Km =
8EeMbs

3Ls1 + Ls2

(4)

where eM is the MEMS level thickness (the resonator thickness could be smaller than the proof

mass, springs and lever mechanisms thickness which is the case of a M&NEMS gyroscope). The

natural frequency of the actuation system is then:

δ̃ =

√

8Ebs

ρL2
m

(

3L3
s1
+ L3

s2

) (5)

The electrostatic force generated by the comb drive actuators is:

Fe =
∂U

∂gc

= n
ǫ0eM

(

Vmdc + Vmac cos δ̃t̃
)2

gc

(6)

n =

⌊

2Lm + gc −Wc

gc +Wc

⌋

(7)
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where ⌊⌋ denotes the floor function, n is the number of interdigitated fingers, U is the energy

associated with the applied electric potential (a drive voltage Vmac and a polarization Vmdc), Wc is

the width of a finger, gc is the gap between two fingers as shown in Fig. 4.

The quality factor of the mass-spring-damper system being very high (104 < Qm < 106), the

static displacement is negligible with respect to the dynamic displacement and then the proof mass

displacement at resonance can be formulated as follows:

YM =
QmFe

ρδ̃2L2
meM

(8)

As the proof mass is actuated using a lateral comb drive topology and is allowed to displace along

the sense direction as well, then it becomes susceptible to a pull-in like phenomenon since the

actuator topology looks more like a parallel-plate capacitor along the sense direction. As a result,

motion along the sense direction due to non-idealities or asymmetries in the electromechanical

structure places an upper limit on the actuation voltage and the displacement that can be allowed

along the sense axis. As it depends on the resonator stiffness along the X axis, this issue is negligi-

ble for our designs of resonant gyroscope. If an external rotation rate θ(◦/s) is applied to the chip

about the z-axis, the Coriolis force acting on the proof mass is:

F̃c =
2π

180
L2

meMρθδ̃YM (9)

2.2. Lever mechanism

Since a high scale factor is required for a low noise sensor, a lever mechanism suitable for

surface micromachined technology is used in order to amplify the Coriolis force acting on the

proof mass. It is made of flexural pivots for leverage and to link to the input (Fc) and output (Fca)

forces (true pivots are unavailable in the fabrication processes). As long as the torsional stiffness

of the flexures is not too high, the structure will effectively approximate a lever, magnifying the

input force communicated to the resonators and increasing the scale factor of the sensor.

The model for determining the actual amount of magnification provided by the lever is shown

in Fig. 5. The behavior of the system must be solved by simultaneously solving for the vertical

deflection and rotation of the system which gives the following equations:

X =
1

kpiv

(

1 −
krLa1La2

kΦ + krL
2
a2

)

F̃c (10)

Φ =
La1

kΦ + krL
2
a2

F̃c (11)

F̃ca =
krLa1La2

kΦ + krL
2
a2

F̃c (12)

where X is the deflection of the structure, Φ is the rotation of the structure, F̃ca is the output force

(the amplified Coriolis force), kpiv is the vertical stiffness of the pivot beam, kr is the stiffness of

the output structure (the resonator), kΦ is the sum of the link rotational stiffnesses kr,Φ and kpiv,Φ,

La2 is the distance from the pivot to the output, La1 is the distance from the pivot to the input and

F̃c is the input force (the Coriolis force acting on the proof mass).
6
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Figure 5: Model used to predict leverage force magnification.

In the ideal case, the torsional stiffness of the flexures is zero and the vertical stiffness of the

pivot is infinite, and above equations to:

X = 0 (13)

Φ =
La1

krL
2
a2

F̃c (14)

F̃ca =
La1

La2

F̃c (15)

In order to obtain the maximum possible amplification, the position of the resonator with respect

to the lever mechanism structure has been optimized by FE simulations.

3. Model

A sketch of a Mathieu resonator is presented in Fig. 3. In order to model and investigate the

nonlinear dynamics of such electromechanical structure, the nonlinear partial differential equation

(2) is considered with the following boundary conditions:

w̃(0, t̃) = w̃(l, t̃) =
∂w̃

∂x̃
(0, t̃) =

∂w̃

∂x̃
(l, t̃) = 0 (16)

The Mathieu equation has been widely studied in the context of parametric resonance. Newman et

al [16] investigated the dynamics of a parametrically excited partial differential equation and par-

ticularly the dependence of the steady state behavior on parameter values and initial conditions. In

[17], a new technique derived from [18] based on an approximate realization of the method of av-

eraging has been used to tackle weakly nonlinear Mathieu equations whose unperturbed dynamics

is close to points corresponding to simple resonances between response and parametric forcing.
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Rand et al [19] constructed analytical expressions for the transition curves of the quasiperiodic

Mathieu equation in the vicinity of the resonance 2 : 2 : 1 using a double-perturbation procedure.

In [20], the interaction of subharmonic resonances in the nonlinear quasiperiodic Mathieu equa-

tion has been investigated. Belhaq and fahsi [21] showed that in the vicinity of the 2 : 1 and 1 : 1

resonances in a fast harmonically excited Van Der Pol–Mathieu–Duffing oscillator, fast harmonic

excitation can change the nonlinear characteristic spring behavior from softening to hardening and

causes the entrainment regions to shift. In [22], the motion of a sample automotive belt-pulley sys-

tem subjected to tension fluctuations governed by a Mathieu-Duffing equation was theoretically

and experimentally investigated.

Note that the transition curves of a linear Mathieu equation (Fig. 6) can be approximately

plotted using a perturbation technique. The number of tongues of instability corresponds to the

truncation order of the asymptotic expansion. Figure 6 displays three instability tongues that

correspond to a third order expansion of the perturbation technique. The curves are determined

analytically using the Floquet theory for small Coriolis forces. Here, ∆ is the ratio between the

proof mass frequency and the resonator frequency and Fca is the dimensionless input time-varying

force axially applied to the resonator. These instability tongues emanate from the points 1
∆
= n

2

on the 1
∆

axis. Dufour and Berlioz [23] showed that the dynamic stability of parametrically exited

beams depends on the type of parametric excitation, the forcing frequencies and the boundary

conditions and demonstrated that the existence of the instability zone is in relationship with the

topology of the modal geometric stiffness matrices due to axial force and torque.

Figure 6 shows the instability chart which correspond to the Strutt diagram for 1
∆

. Inside

the tongues, the resonator displacement grows exponentially in time. Outside the tongue, the

displacement becomes the sum of terms each of which is the product of two periodic (sinusoidal)

functions with generally incommensurate frequencies, that is, the displacement is a quasiperiodic

function of time. Also, the resonator is very weakly damped (high quality factors) which makes

Figure 6: Transition curves in a linear autonomous Mathieu equation. S denotes stable quasiperiodic domains and U

denotes the unstable domains.

these transition curves approximately valid for a damped linear Mathieu equation. Figure 6 shows

unbounded solutions to Mathieu’s equation which can result from resonances between the forcing

frequency and the oscillator’s unforced natural frequency. However, real physical systems do not

exhibit unbounded behavior. The difference lies in the fact that the Mathieu equation is linear. The
8
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effects of nonlinearity can be explained as follows: as the resonance causes the amplitude of the

motion to increase, the relation between period and amplitude (which is a characteristic effect of

nonlinearity) causes the resonance to detune, decreasing its tendency to produce large motions.

The equation that governs the Mathieu resonator is a nonlinear partial differential equation

under parametric and external excitation and consequently, further complicated than those already

studied in literature. In addition, the structure of the stability regions of the quasiperiodic Mathieu

equation is much more complicated than for the Mathieu equation.

Belhaq et al. [24] and Guennoun et al. [25] consider a homogeneous Mathieu equation with

quasiperiodic linear coefficients and a constant nonlinear coefficient. The small parameter tech-

nique of multiple scales is applied twice to the system to obtain an approximate time-invariant

system. In another study (see Belhaq and Houssni, [26] the system under investigation contains

quadratic and cubic nonlinearities as well as parametric (linear terms) and external excitations

of incommensurate frequencies. The small parameter techniques of generalized averaging and

multiple-scale perturbation are employed to obtain a solution. Rand and his associates [20, 27, 28]

analyze a linear homogeneous quasiperiodic Mathieu equation via several methods such as nu-

merical integration, Lyapunov exponents, regular perturbation, Lie transform perturbation and

harmonic balance.

The purpose of this paper is to provide practical rules for MEMS designers in order to en-

hance the performances of resonant microgyroscopes. Since quasiperiodicity is an undesirable

phenomenon which can lead to chaotic oscillations, we restrict our investigations to the periodic

motions of the forced nonlinear Mathieu equation.

Following Rand and Morrison [27], in our case for an external excitation tuned around the

resonator primary resonance and by analogy, the Mathieu equation is quasiperiodic when ∆ , 2−m
n

for ∆ ∈ [0, 1], m ∈ Z and n ∈ N. Consequently, the quasiperiodic domains in the (∆, Fca) plan are

very limited for low frequencies actuation (δ̃) with respect to the periodic motions. This ensures the

generality of our parametric analysis of the gyroscope sensitivity out of quasiperiodicity. However,

a first order averaging method is valid only for low Coriolis forces which ensure a negligible effect

of the superharmonic resonances at each ∆ < 1. Otherwise, high order averaging is required. For

simplicity, all these conditions are assumed to be satisfied.

3.1. Nondimensionalization

For convenience and equations simplicity, the following nondimensional variables are intro-

duced:

w =
w̃

g
, x =

x̃

l
, t =

t̃

τ
(17)
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where τ =
2l2

h

√

3ρ

E
. Substituting Eq. (17) into Eqs. (2) and (16), yields:

∂4w

∂x4
+
∂2w

∂t2
+ c
∂w

∂t
− α2

[Vdc + Vac cos(Ωt)]2

(1 − w)2
=













N + Fc cos δt + α1

∫ 1

0

[

∂w

∂x

]2

dx













∂2w

∂x2
(18)

w(0, t) = w(1, t) =
∂w

∂x
(0, t) =

∂w

∂x
(1, t) = 0 (19)

The parameters appearing in Eq. (18) are:

c =
c̃l4

EIτ
, N =

Ñl2

EI
, Fc = Al

F̃cl
2

EI
, δ = δ̃τ

α1 = 6

[

g

h

]2

, α2 = 6Cn

ε0l4

Eh3g3
, Ω = Ω̃τ

(20)

3.2. Reduced order model

In practice, the quality factors Q of Mathieu resonators are in the range of 103 − 5.104 which

makes the static displacement negligible with respect to the dynamic displacement of the mi-

crobeam. A reduced-order model is generated by modal decomposition transforming Eq. (2) into

a finite-degree-of-freedom system consisting of nonlinear Mathieu ordinary differential equations

in time. The undamped linear mode shapes of the straight microbeam are used as basis functions

in the Galerkin procedure. To this end, the deflection is expressed as:

w(x, t) =

n
∑

k=1

ak(t)φk(x) (21)

where ak(t) is the kth generalized coordinate and φk(x) is the kth linear undamped mode shape of

the straight microbeam, normalized such that

∫ 1

0

φkφ j = δk j where δk j is the Kronecker symbol.

The linear undamped mode shapes φk(x) are governed by:

d4φk(x)

dx4
= λ2

kφk(x) (22)

φk(0) = φ′k(0) = φ′k(1) = φ′′k (1) (23)

Here, λk is the kth natural frequency of the resonator. Since some high order nonlinearities proves

to be relevant by enabling the capture of 5 possible amplitudes for a given frequency in the mixed

behavior [29], the electrostatic force in Eq. (18) is expanded in a fifth order Taylor series. Then,

Eq. (21) is substituted into the resulting equation, Eq. (22) is used to eliminate
d4φk(x)

dx4
, and the

outcome is integrated from x = 0 to 1. Thus, a system of coupled nonlinear Mathieu ordinary
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differential equations in time is obtained. The DC voltage, which is generally at least ten times

higher than the AC voltage, makes the second harmonic negligible. Also, the first mode should be

the dominant mode of the system. According to this assumption, the study can be restricted to the

case n = 1. then, it gives:

ä1 + cȧ1 + (500.564 − 2α2ξ0 + 12.3N) a1

+α2ξ0
(

0.831 + 4a1
2 + 13.255a1

4
)

+12.3Fca1 cos δt − 23.17α2ξ0a1
5

+ (151.354α1 − 7.403α2ξ0) a3
1 = 0 (24)

where ξ0 = V2
dc
+Vac cosΩt. To analyse the equation of motion (24), it proves convenient to invoke

perturbation techniques [30] which work well with the assumptions of ”small” excitation and

damping, typically valid in MEMS resonators. Nevertheless, in order to avoid quasiperiodicity,

we chose
δ

ωn

∈ Q ∩ [0, 1] and we assume that the Coriolis forces are weak enough to make the

possible superharmonic resonances negligible with respect to the fundamental primary resonance.

Since near-resonant behavior is the principal operating regime of the proposed system, a de-

tuning parameter, σ is introduced, as given by:

Ω = ωn + εσ (25)

where ωn =

√

500.564 + 12.3N − 2V2
dc
α2. Separating the resulting equations and averaging them

over the period 2π
Ω

in the t-domain results in the system’s averaged equations, in terms of amplitude

and phase, which are given by:

Ȧ = ǫ
c

2
A − ǫ

AFc

ωn

(

sin[π∆] sin[π∆ − 2β]

(∆ − 2)

)

+ǫ
(

0.831 + A2 + 1.657A4
) α2ξ1

ωn

sin β

+ǫ
AFc

ωn

(

sin[π∆] sin[π∆ + 2β]

(2 + ∆)

)

+ O
(

ǫ2
)

(26)

β̇ = ǫσ − ǫ
Fc

ωn

(

cos[π∆ − 2β] sin[π∆]

(∆ − 2)

)

−ǫ
Fc

ωn

(

cos[π∆ + 2β] sin[π∆]

(2 + ∆)
+

sin[2π∆]

∆

)

−ǫ
α2ξ1

ωn

(

0.831

A
+ 3A + 8.285A3

)

cos β

+ǫ
α2A2V2

dc

ωn

(

2.776 + 7.241A2
)

−ǫ
56.757A2α1

ωn

+ O
(

ǫ2
)

(27)
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where ξ1 = VdcVac and ∆ = δ
ωn

. The steady-state motions occur when Ȧ = β̇ = 0, which corre-

sponds to the singular points of Eqs. (26) and (27). Thus, the frequency-response can be written

in its parametric form for β ∈ [0, π] and ∆ ∈ Q ∩ [0, 1].

Ω = f1(β,∆) (28)

A = f2(β,∆) (29)

This analytic expression (set of two equations) makes the model suitable for MEMS and NEMS

designers as a fast and efficient tool for resonant gyroscope performances optimisation.

4. Analytical results and device specifications

All the numerical simulations were carried out with the following set of parameters:

• Proof mass: Lm = 100 µm, eM = 2 µm, lc = 6 µm, gc = 2 µm, dc = 4 µm and Wc = 1µm.

• Resonator: l = 100 µm, b = 2 µm, h = 5 µm, g = 300 nm, Q = 1000.

The estimated quality factor of the system mass-spring-damper is around 105. The actuation volt-

ages Vmac and Vmdc are adjusted with respect to a constant 2.5µm proof mass oscillation at reso-

nance. The ratio between the proof mass and the resonator frequencies (∆) as well as Vac and Vdc

were used for parametric studies.

4.1. Proof mass frequency effect

Figure 7 shows four nonlinear hardening frequency responses at a proof mass frequency ten

times smaller than the resonator frequency (∆ = 0.1) and for several angular rates 0− 900◦/s. The

DC polarization of the resonator is low enough (Vdc = 1V) to keep the global nonlinear stiffness

dominated by the mechanical nonlinearities and hence, the predicted hardening behavior.

In this configuration, the Coriolis force that modulates the resonator stiffness at the proof mass

frequency represents a slow dynamic with respect to the resonator dynamic ten times faster. There-

fore, the frequency effect is negligible and only the resulting stress is considered which implies

a positive frequency shift proportional to the external rotation rate θ. Then, for ∆ = 0.1 and for

several angular rates going from 0◦/s up to 900◦/s, the DC voltage applied to the resonator is in-

creased from 1V up to 9V while decreasing the AC voltage from 0.2V down to 30mV (see Fig. 8).

This increases significantly the negative nonlinear stiffness due to the electrostatic force that dom-

inates in this case the global stiffness of the resonator and hence, the predicted softening behavior.

For low actuation frequency with respect to the sensing frequency, the microgyroscope behaves

as a resonant accelerometer. Indeed, the Coriolis force is seen by the resonator as a quasi-static

force. Consequently, the close-form solutions of the critical amplitudes and the mixed behavior

initiation amplitude established in [10] can be used here in order to improve the performances

of the resonant gyroscope. Particularly, the compensation of the nonlinearities is possible when

the mechanical and electrostatic critical amplitudes are equilibrated. This results on an optimal

DC voltage [11] for which the obtained frequency resonance peak is linear beyond the critical

amplitude.
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Figure 7: Predicted forced frequency responses displaying a hardening behavior for ∆ = 0.1. Wmax is the displacement

of the beam normalized by the gap g at its middle point l
2
, {1, 2} are the bifurcation points. The frequency shift is due

to the variation of the external angular rate θ.

Figure 8: Predicted forced frequency responses displaying a softening behavior for ∆ = 0.1. Wmax is the displacement

of the beam normalized by the gap g at its middle point l
2
, {1, 2} are the bifurcation points. The frequency shift is due

to the variation of the external angular rate θ.
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In a second step, the frequency of the proof mass is increased up to a quarter the resonator

frequency. In the same way, for this configuration, Figures 9 and 10 show respectively several

nonlinear hardening and softening forced frequency curves for several rotation rates. Thus, the

compensation for the nonlinearities is possible for specific DC voltage. However, the apparition

of additional bifurcation points 3 and 4 is notable for external rotation rates (θ) beyond 600◦/s. The

maximum is close to the bifurcation point 4 and no more situated at β = π
2
. This strange behavior

can be explained by an important contribution of the superharmonic resonance of order quarter

the resonator primary resonance for θ beyond 600◦/s. Therefore, even out of quasiperiodicity,

the averaging method is not valid except at a higher order defined by the transition curve at the

corresponding superharmonic resonance. Indeed, at this level the full scale here is limited by the

proof mass frequency (for a valid first order averaging).

The classical specifications of current MEMS gyroscopes include a dynamic range at best

around 100◦/s [31] which ensures the validity of the first averaging. The curves in Fig. 11

Figure 9: Predicted forced frequency responses displaying a hardening behavior for ∆ = 0.25. Wmax is the displace-

ment of the beam normalized by the gap g at its middle point l
2
, {1, 2, 3, 4} are the bifurcation points. The frequency

shift is due to the variation of the external angular rate θ.

display the variation of the Mathieu resonator displacement at its middle point and at resonance

when the phase β = π
2

for several values of angular rates θ. Uncommonly, it appears that the

symmetry can be broken between negative and positive Coriolis stress effect when the resonator

dynamic becomes highly nonlinear for large angular rates and frequencies. This corresponds to a

strong nonlinear parametric spring softening effect for which the resonator displacement averaged

over the period 2π
ωn

is amplified (parametric perturbation) and then a high instability such as the

pull-in [32] could be suddenly reached. Since the sensitivity of the resonant gyroscope could be

extremely reduced for a large dynamic range, working at ∆ < 0.25 is indispensable for high grade

resonant gyroscopes.

4.2. Resonant gyroscope scale factor

The scale factor of the sensor, S F that relates the output frequency shift difference (δ f ) between

the two resonators to the external input rotation rate (θ) is given by:

S F =
d f

dθ

[

Π

2
, θ ∈ DR

]

(30)
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Figure 10: Predicted forced frequency responses displaying a softening behavior for ∆ = 0.25. Wmax is the displace-

ment of the beam normalized by the gap g at its middle point l
2
, {1, 2, 3, 4} are the bifurcation points. The frequency

shift is due to the variation of the external angular rate θ.

Figure 11: Variation of the Mathieu resonator displacement at its middle point and at resonance when the phase β = π
2

for several values of angular rates θ.
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Note that the scale factor corresponds to the derivate of Eq. (28) at the phase β = π
2

with respect

to the rotation rate θ for a dynamic range (DR) that ensures stable motions out of quasiperiodicity

and negligible superharmonic resonance effects. The expression can be also written in terms of

a ratio of some drive and sense parameters multiplied by a lever gain and a constant dependent

on the mode shape of the resonating element. The scale factor is only dependent on material

and geometrical parameters and the displacement of the gyroscope proof mass at resonance (YM).

Consequently and unlike classical gyroscopes, the goal of the control scheme is now simplified to

the requirement of maintaining constant amplitude motion for the gyroscope proof mass and the

resonator-sensing elements at their respective resonant frequencies. Figure 12 shows the variation

of the resonant gyroscope scale factor with respect to the frequency ratio between the actuation and

the sensing parts (∆) for a resonator driven in the linear regime. Obviously, to use this curve, one

should exclude the non-rational values of ∆ (quasiperiodic regime). Remarkably, the maximum of

sensitivity is located at ∆ = 0.25 which corresponds to a superharmonic resonance in the nonlinear

regime as shown in Figs. 9 and 10. Moreover the scale factor is approaching zero for three cases:

• ∆ = 0 which is obvious since the Coriolis force is proportional to the proof mass frequency.

• ∆ = 0.5. It corresponds to a simultaneous superharmonic and primary resonances in the

nonlinear regime. In this configuration, the performances of the Mathieu resonator are dras-

tically reduced in the linear regime and furthermore, in the nonlinear regime, the secular

terms coming from the secondary resonance should be taken into account for analytical

investigation in a large dynamic range.

• ∆ = 1. It corresponds to a simultaneous parametric and primary resonance in the nonlinear

regime. We arrive to the same conclusions as the case ∆ = 0.5.

Figure 12: Scale factor variation with respect to the proof mass frequency in the resonator linear regime and inside

the dynamic range of the resonant gyroscope. S R and PR are superharmonic and parametric resonances.

When the resonator is driven beyond its critical amplitude (in the nonlinear regime), unlike the

linear case where the scale factor is constant for a given ∆ and θ inside the dynamic range, the

resonant gyroscope sensitivity is highly dependent on the external rotation rates for a frequency
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ratio δ > 0.1 as shown in Fig. 13. Curiously, the scale factor is infinitely reduced and the gyroscope

becomes completely unstable if we assume a negligible secondary resonance effect which is valid

up to ∆ = 0.25 as shown in Fig. 12. Furthermore, for an admissible scale factor nonlinearity when

the Mathieu resonator is driven in the nonlinear regime, the resonant gyroscope must be designed

with ∆ < 0.05.

Figure 13: Scale factor variation curves with respect to the proof mass frequency for a nonlinear resonator and several

rotation rates.

5. Conclusions

In this paper, the nonlinear dynamics of Mathieu resonator for resonant gyroscope applica-

tions has been modeled using the Galerkin discretization coupled with a perturbation technique

and under few assumptions that lead to steady-state periodic motions. The relatively simple dy-

namic model of the nonlinear Mathieu resonator utilized here, is able to predict the measured

resonator response for various parameter settings qualitatively and in many cases even quantita-

tively. Characteristic nonlinear dynamic steady-state behavior is very well predicted by the model.

Therefore, it represents a good first step in the modeling process and a suitable starting point for

understanding and predicting the dynamic behavior of resonant MEMS gyroscopes. The resulting

benefits include nonlinear dynamics control, improved scale factor stability over micromechanical

gyroscopes utilizing open-loop displacement sensing, large dynamic range and high resolution.

In order to provide some design rules, the variation of the gyroscope sensitivity with respect

to the ratio between the proof mass and the resonator frequencies was investigated. The analytical

parametric analysis showed that in the resonator linear or slightly nonlinear regimes, a frequency

ratio ∆ = 0.25 provides the greatest scale factor. However, once the resonator dynamics becomes

strongly nonlinear (large oscillations beyond the critical amplitude), the sensitivity is significantly

reduced if the resonator frequency is not at least an order of magnitude higher than that of the proof

mass (∆ < 0.1). This drastic limit could be avoided by the compensation of the nonlinearities

[10, 29] out of quasiperiodicity for ∆ = 0.25 which gives the maximum of sensitivity.
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