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Abstract

The present work contributes to the analysis of the interactions between gears, shafts and hydrodynamic journal

bearings in geared drives. In contrast to the majority of the models in the literature, the time-varying properties

and nonlinearities of gears and bearings are introduced in the simulations. A finite element model is used for the

shafts, and a specific gear element is used to account for nonlinear time-varying mesh stiffness as well as tooth shape

deviations. The nonlinear hydrodynamic forces are computed with the Reynolds equation for finite-length journal

bearings. An iterative Newmark scheme is used to solve simultaneously the motion equations for the shafts, the

contact problem for the gears, and the fluid forces in the bearings. The resulting algorithm is applied to a single stage

geared system with two shafts, four bearings, a pinion and a gear. Gear-bearing dynamic interactions are demonstrated

through the analysis of dynamic gear loads, dynamic bearing loads and bearing displacements. The efficiency of the

proposed numerical procedure, the interest of nonlinear models for hydrodynamic bearings and the influence of several

parameters ruling the gear assembly are also discussed.
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Nomenclature

C bearing radial clearance (m)

D bearing diameter (m)

Fb fluid film forces in local frame (N)

Fb dimensionless fluid film forces in local frame, Fb = Fb/[6µωR2(R/C)2]

h fluid film thickness (m)

h dimensionless fluid film thickness, h = h/C

L bearing length (m)

M,C,K global mass ,damping and stiffness matrices of the gear-bearing system

O bearing center

O′ journal center

p fluid film pressure (Pa)

p dimensionless fluid film pressure, p = p/[6µω(R/C)2]

R bearing radius (m), R = D/2

~s, ~t,~z global frame related to the geared system

T input torque (N.m)

W static load (N)

~x, ~y local frame related to the journal bearing

x0, y0 static displacement of the journal center in local frame (m)

x, y time-dependent displacement of the journal center in local frame (m)

ẋ, ẏ velocities of the journal center in local frame (m/s)

x, y dimensionless displacement of the journal center in local frame, x = x/C, y = y/C

ẋ, ẏ dimensionless velocities of the journal center in local frame, ẋ = ẋ/Cω, ẏ = ẏ/Cω

X, Ẋ, Ẍ degree-of-freedom, velocity and acceleration vectors in global frame (m)

Z gear number of teeth

α gear pressure angle (◦)

β gear helix angle (◦)

µ fluid film dynamic viscosity (Pa.s)

ω angular speed of rotation (rad/s)

θ, ξ circumferential and axial coordinates in local frame
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1. Introduction

Even though there have been numerous studies on the topic, the dynamic response of geared rotor-bearing systems

is still a matter of considerable concern in terms of noise and vibration. In the dynamic regime, meshing forces may

combine amplified and high-frequency loadings, causing shocks between the teeth and radiating noise. This dynamic

excitation is also transmitted to the supporting structure through the shafts and the bearings, which in general is not

desirable. Therefore, it is essential to accurately represent the different components of the gear-bearing system, so

that the relevant parameters ruling its dynamic behavior may be identified.

For high-speed applications, journal bearings are recognized as interesting technological solutions since they provide

significant stiffness and damping for reduced noise levels compared with rolling element bearings. The literature on

journal bearings comprises numerous contributions, only a few of which can be cited here [1, 2, 3, 4, 5] and it is now

accepted that, for most practical cases, the theoretical foundations are firmly established allowing accurate predictions

of bearing performance.

On the other hand, the simulation of gear dynamics has yielded a vast literature with the majority of the gear models

based upon lumped parameter representations combining rigid gears, discrete elastic and dissipative elements [6, 7, 8],

or, more recently, on combinations of shaft finite elements and elastic foundations [9]. Forcing terms are often derived

from transmission errors (Gregory et al. [8], Munro [10], Özgüven and Houser [11]) and/or the contact conditions

between the active flanks [12]. Nonlinear features in spur gearing such as backlash and shocks on tooth flanks have

been analyzed by Kahraman and Singh [13], Kahraman and Blankenship [14], Parker et al. [15]. Papers by Özgüven

and Houser [16] and Wang et al. [17] provide a comprehensive review of these models and a survey on the dynamics

of geared systems.

Dynamic models combining gears with flexible shafts and bearings have been investigated by many authors. However,

the models in the literature are of varying complexity and most of them do not include the time-varying properties

and nonlinearities of bearings and gears in the simulations. In the earlier models of Neriya et al. [18] and Kahraman

et al. [19], a finite element representation was used for the shafts, although a linearized bearing model with spring

and damping coefficients and simplified lumped gear models were considered. Choy et al. [20] studied the coupling

between a geared rotor-bearing system and a finite element gearbox structure. They used a linearized bearing model

and periodic nonlinear mesh stiffness. Nonlinear features of gears, such as backlash, were considered by Özgüven

[21] in conjunction with a lumped shaft-bearing model. Kahraman and Singh [22] developed a similar model and

added the clearance nonlinearities of the bearings. More recently, Baud and Velex [23] and Maliha et al. [24] in-

vestigated the dynamics of gear-shaft-bearing systems using a nonlinear gear model, finite elements for the shafts,

and a classical linearized 8-coefficient bearing model. The nonlinear properties of hydrodynamic bearings were in-

corporated by Kishor and Gupta [25] in a lumped shaft-bearing model with a simplified gear model. A nonlinear

analytic approximation for long bearings was used. Chen et al. [26] employed the nonlinear analytic short bearing

theory with a finite-length correction together with a gear model with constant stiffness and damping parameters and

no backlash. A study combining both gear and bearing nonlinearities with finite elements for the shafts was carried

out by Theodossiades and Natsiavas [27]. In this work, both the gear meshing stiffness and the static transmission

error were assumed to be periodic functions of the driving gear rotation, backlash was considered, and bearing forces

were evaluated by means of the analytic finite-length impedance method. Another model was proposed by Baguet

and Velex [28], which includes a distributed meshing formulation and nonlinear bearing forces obtained by the short

bearing theory.

The present work is based on the model presented in [28] and extends it to helical gears and finite-length hydrody-

namic bearings. To this end, the equations of motion, the normal contact problem between mating flanks and the

Reynolds equation for finite-length bearings are solved simultaneously by combining a time-step integration scheme,

a Newton-Raphson procedure and a normal contact algorithm. The resulting algorithm is applied to a single stage

geared system with two shafts, four bearings, a pinion and a gear while taking mass unbalance, eccentricity and mesh-

ing excitations into account. Gear-bearing dynamic interactions are demonstrated through the analysis of dynamic

gear loads, dynamic bearing loads and bearing displacements. The efficiency of the proposed model and numerical

procedure, and the interest of nonlinear models for hydrodynamic bearings are also discussed. Finally, parametric

studies are performed for several design and working parameters in order to quantify their influence on the overall

behavior of the gear-bearing system.
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Figure 1: (a) Sketch of the geared system (b) base plane and associated local frame.
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Figure 2: Model of mesh elasticity and tooth shape deviations.

2. Description of the model

2.1. Shaft-gear model

The dynamic model of single stage transmissions (Fig. 1) is based on the developments of Velex and Maatar [12]

and Ajmi and Velex [9]. Shafts are modeled by classical two-node finite elements with 6 degrees of freedom per

node for bending (Timoschenko’s beam), torsion and axial displacements. A pinion-gear pair is represented by two

2-node shaft elements connected by a series of lumped stiffnesses distributed along the contact lines in the base plane

(Figs. 1 and 2). The associated gear mesh stiffness function is initialized using the equations of Weber and Banaschek

[29] in order to account for contact, tooth deflection and foundation flexibility. An elemental mesh stiffness and an

equivalent normal shape deviation are associated with every potential point of contact to simulate tooth flank traces

and their evolutions with time. Based upon rigid-body kinematics, the lines of contact are translated and all the

relevant parameters (stiffness and deviations) are re-calculated at each time step of the meshing process. It is assumed

that the contacts between mating flanks are line contacts within the theoretical base plane and that tooth friction forces

can be neglected when compared with normal forces. The normal contact condition at every potential point of contact

on the tooth flanks is directly included in the mesh stiffness formulation by canceling the elemental stiffness when the

corresponding deflection is negative or nil. The proposed formulation leads to time-varying nonlinear mesh stiffness

matrices and forcing terms, the latter accounting for tooth shape deviations and mounting errors [9, 23, 12]. The

pinion-gear mass matrix is classical since second order terms and gyroscopic components are neglected.
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Figure 3: A journal bearing and its planar expansion in local coordinates.

2.2. Hydrodynamic journal bearing model

2.2.1. Governing equations

Figure 3 gives a schematic view of a journal bearing consisting of a fixed journal of radius R, length L and of a

rotating shaft of radius Rs, with C = R − Rs being the radial clearance. At constant speed ω and under a constant load

W (static conditions), the shaft center O′ keeps a fixed position in the bearing defined by the local coordinates (x0, y0)

whereas for dynamic conditions it follows an orbit within the journal clearance characterized by time-dependent

coordinates (x, y). Denoting the dynamic variation of position (∆x,∆y) due to the dynamic variation of the applied

load, the displacement of the shaft center is given by

−−−→
OO′ = x~x + y~y = (x0 + ∆x) ~x + (y0 + ∆y) ~y (1)

Assuming an isothermal, laminar flow of an iso-viscous incompressible fluid, the dimensionless pressure distribution

p of the lubricant is governed by the dimensionless Reynolds equation [2]

∂

∂θ

(

h
3 ∂p

∂θ

)

+
∂

∂ξ

(

h
3 ∂p

∂ξ

)

= − f in Ω+ = [θi, θ0] × [−λ, λ]

p(θ, ξ) > 0 on Ω

p(θ, ξ) = 0 on ∂Ω

(2)

where Ω is the fluid film region, with boundary ∂Ω (Fig. 3), and

h = 1 − x cos θ − y sin θ

f =
(

y + 2ẋ
)

cos θ +
(

2ẏ − x
)

sin θ
(3)

Customary Swift-Steiber (Reynolds) boundary conditions are used to ensure the transition from the pressurized zone

(Ω+) to the cavitated zone (Ω0)

p(θ, ξ) =
∂p

∂θ
(θ, ξ) = 0 at θ = θ0 (4)

where θ0 is the end of the hydrodynamic film. Feeding grooves have been positioned so that they do not interfere

with the pressure field. The bar indicates dimensionless variables, with the dimensional scale given in Nomenclature.

Hence x, y are the dimensionless displacements of the shaft center, ẋ, ẏ are the corresponding velocities, and h is the

dimensionless film thickness. The two dimensionless components of fluid forces Fb in frame (~x, ~y) are obtained by

integrating the fluid pressure over the bearing and give

{

Fb

}

(~x,~y)
=

{

Fbx(x, y, ẋ, ẏ)

Fby(x, y, ẋ, ẏ)

}

=



























−

∫∫

Ω

p (θ, ξ) cos θ dθ dξ

−

∫∫

Ω

p (θ, ξ) sin θ dθ dξ



























(5)

Physical fluid forces Fb can then be evaluated and expressed in the global frame (~s, ~t,~z) by a classical change of basis.
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2.2.2. Numerical calculation of hydrodynamic forces (hybrid method)

Analytical solutions for Eq. (2) exist only for short (L/D< 1/8) and long bearings (L/D> 4), whereas numerical

procedures must be used for finite length bearings [5]. For finite length bearings, the easiest way to solve the Reynolds

equation numerically is to use the finite difference method (Klit and Lund [31]). However, the complexity of this

method is O(n2), where n is the total number of points on the 2D mesh of the bearing. Multigrid methods (Venner and

Lubrecht [32]) using different mesh-grids to reduce the error on the finest grid as fast as possible, allow solving this

problem with a complexity of order O(n log n). This method was successfully implemented in the present study, and

computational time reduction was noticeable. However, the nonlinear dynamic simulation of a gear-bearing assembly

requires the evaluation of a large number of hydrodynamic fluid forces, and even the multigrid method is not fast

enough to perform such a simulation within a reasonable time (see section 4.2.1).

Zheng et al. [30] recently proposed a method to efficiently compute fluid forces and Jacobian matrices. The method

is based on the theory of variational inequality with a Reynolds boundary condition. The Reynolds equation Eq. (2) is

first transformed into a variational inequality, then solved using a variable separation: the pressure field is expressed

as a product of an analytic function along the ξ-axis and a numerical function a (θ) along the θ-axis

p (θ, ξ) =
[

cosh (kλ) − cosh (kξ)
]

a (θ) (6)

where k is an iterative parameter. The discretization of function a (θ) allows solving the problem numerically

a (θ) = aT l (θ)

a = [a1, a2, . . . , an]T

l (θ) = [l1 (θ) , l2 (θ) , . . . , ln (θ)]T

(7)

where a is the finite element vector of unknowns, l (θ) is composed of n global functions of piecewise interpolation.

The resulting symmetric tridiagonal linear system provides the parameter k and the vector a. Depending on the

required accuracy, only 3 or 4 iterations are usually needed to adjust k. Moreover, the Reynolds boundary conditions

are automatically satisfied, and the Jacobian matrices of fluid forces can be obtained with a few costless additional

operations. In comparison with other methods, numerical differentiation is not needed, resulting in very considerable

time saving (computation times are compared in section 4.2.1). This method is also an excellent compromise between

accuracy and computational cost. Comparison with the multigrid method shows slight differences in the pressure field

only in the transition zone between the pressurized domain and the cavitation domain. The overall relative difference

on the resulting load is less than 10−4. In the following, because of the hybrid analytic-numerical separation of

variables, this method will be referred to as the hybrid method.

2.2.3. Static solution

The bearing forces Fb0 for static conditions can be deduced from Eqs. (2) and (3) by setting the velocities ẋ and ẏ

to zero. They depend only on (x0, y0) and have to equilibrate the external force W0 imposed by the input torque and

transmitted to the bearings by the pinion and the gear, i.e.,

Fb0(x0, y0) =W0 (8)

This nonlinear equation is solved by an iterative Regula-Falsi method and provides the initial static position (x0, y0)

of the center of the shaft in the bearing. In turn, this eccentricity of the shafts in the journals slightly modifies the

pinion-gear center distance, thus the gear mesh stiffness function and excitations must be re-evaluated. This static

position (x0, y0) is used to initialize the transient dynamic problem.

3. Dynamic behavior of the gear-bearing assembly

3.1. Equations of motion

The assembly of all the elemental matrices and forcing term vectors leads to the following system of equations in

the frame
(

~s, ~t,~z
)

relative to the structure

[M]{Ẍ} + [C]{Ẋ} + [K(t,X)]{X} = {F(t,X)} + {Fb(X, Ẋ)} (9)
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where M and C are the global constant mass and damping matrices, X, Ẋ, Ẍ are the degree-of-freedom, velocity and

acceleration vectors. The other terms are detailed hereafter:

• K(t,X) = Kshaft +Kgear(t,X) is the global stiffness matrix of the system with

– Kshaft: constant global stiffness matrix of the shafts

– Kgear(t,X): global stiffness matrix of the gear which is time-dependant due to the evolution of the contact

length on the base plane, and which is also potentially nonlinear due to the interaction between the degrees

of freedom, tooth deviations and the extent of instantaneous contact [12]

• F(t,X) = F0(t) + Fgear(t,X) with

– F0(t): external load vector (input and output torques, mass unbalance, etc)

– Fgear(t,X): embodies the inertial effects caused by unsteady rotations (associated with no-load trans-

mission error) and the contributions of geometrical errors and tooth shape deviations (pitch errors, tooth

modifications, etc) [12]

• Fb(X, Ẋ) are the hydrodynamic forces produced by the bearings and which oppose the motion of the shaft, as

described in section 2.

If the inertia center of the shaft is different from its geometrical center, then mass unbalance forces are embedded in

the external load vector F0(t). In the frame (~s, ~t,~z), these forces are written as

{Fmu}(~s,~t,~z) =



















FmuS

FmuT

0



















=



















Memuω
2 cos(ωt)

Memuω
2 sin(ωt)

0



















(10)

for each shaft. In this expression, M is the total mass of the shaft plus the pinion or gear and emu represents the distance

between the inertia and geometrical centers of the shaft.

In the proposed formulation (9), the contributions of bearings appear as forces external to the system. These hy-

drodynamic forces Fb(X, Ẋ) and the contact conditions between the gear teeth make the system of equations Eq. (9)

nonlinear. The nonlinear analysis requires a complex procedure combining iterative schemes for the treatment of the

nonlinearities and a time-step integration process as described in section 4.2, which will be referred to as nonlinear

analysis. The solution technique can be significantly simplified by assuming small displacements in the vicinity of

static position X0 and linearizing Eq. (9), i.e., by using the linear analysis. Both kinds of analyses, nonlinear and

linear, are detailed in the following section.

3.2. Nonlinear dynamic analysis

Because of the assumption of small perturbations, the linear theory cannot account for large dynamic loads. Solv-

ing the complete nonlinear problem Eq. (9) requires the simultaneous solution of the equations of motion, the Reynolds

equation in the dynamic regime, and the contact conditions on the teeth. As a result, the solving procedure combines

the Newmark time integration scheme with the Newton-Raphson incremental-iterative algorithm, and with an iterative

normal contact algorithm that verifies that all the contact forces on the teeth are positive and no contact deflections oc-

cur outside the contact area [12]. The semidiscrete equation of motion Eq. (9) applied at time tn+1 yields the following

residual equation

G(Xn+1) =M Ẍn+1 + C Ẋn+1 +K Xn+1 − Fn+1 − Fb(Xn+1, Ẋn+1) = 0 (11)

In order to reduce the set of variables in Eq. (11) to the displacements Xn+1 only, the implicit Newmark algorithm

is used. Choosing parameters γ = 1/2 and β = 1/4 to ensure unconditional stability and second-order accuracy, the

velocities and accelerations at time tn+1 are approximated with

Ẋn+1 =
2
∆t

(Xn+1 − Xn) − Ẋn

Ẍn+1 =
4
∆t2 (Xn+1 − Xn) − 4

∆t
Ẋn − Ẍn

(12)
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Figure 4: The algorithm with nested contact and dynamic iterative loops.

and replaced in Eq. (11). Since the resulting equation is nonlinear, it has to be solved by an iterative strategy. There-

fore, the consistent linearization of Eq. (11) and the Newton-Raphson iteration technique are applied. The Taylor

expansion of Eq. (11) at the first order results in the iterative equation

Jk
n+1 ∆X = −G(Xk

n+1) (13)

in which k represents the iteration index, Jk
n+1

is the displacement-dependant Jacobian matrix at iteration k

Jk
n+1 =

∂G(Xk
n+1

)

∂Xn+1

=
4

∆t2
M +

2

∆t
C +K −

∂Fb(Xk
n+1
, Ẋk

n+1
)

∂Xn+1

(14)

and ∆X is the iterative change of the displacement vector

∆X = Xk+1
n+1 − Xk

n+1 (15)

The algorithmic set-up of this iterative procedure is presented in Fig. 4. The displacement is initialized with the
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static solution X0, and initial velocity and acceleration vectors are set to zero. Once the residual vector has been

computed with Eq. (11), a new displacement increment is obtained with Eq. (13), and the displacements, velocities

and accelerations are updated with Eqs. (15) and Newmark approximations of Eq. (12). If these new conditions

modify the gear contact conditions, the mesh stiffness K(tn+1,X
k
n+1

) and the load vector F(tn+1,X
k
n+1

) are updated,

otherwise the residual vector G is re-evaluated. If the norm of the residual G is below a user-defined convergence

limit l, then a converged solution is obtained and the algorithm moves to the next time step, else the hydrodynamic

forces are re-evaluated and a new Newton-Raphson iteration is started.

The derivative of the fluid forces in the Jacobian Eq. (14) depends on both Xk
n+1

and Ẋk
n+1

and therefore needs to be

updated for each Newton-Raphson iteration. It is given by

∂Fb(Xk
n+1
, Ẋk

n+1
)

∂Xn+1

=
∂Fb

∂Xn+1

+
2

∆t

∂Fb

∂Ẋn+1

(16)

Using the hybrid method presented in section 2.2.2, the two derivatives of Fb with respect to Xn+1 and Ẋn+1 are

obtained at almost no extra cost, in contrast to classical numerical differentiation which requires at least four fluid

force computations per bearing.

3.3. Linear dynamic analysis

3.3.1. Linearized 8-coefficient model

Assuming that displacements and velocities remain small in the vicinity of the static position X0, a first order

expansion of the dynamic bearing force yields

Fb(X, Ẋ) = {Fb0} − [Kb] {∆X} − [Cb]{∆Ẋ} (17)

where ∆X = X − X0, ∆Ẋ = Ẋ, and Fb0 = Fb(X0) is obtained by Eq. (2). The stiffness and damping matrices [Kb]st

and [Cb]st are obtained by differentiation of the dynamic bearing force Fb in frame
(

~s, ~t,~z
)

[Kb(X0)] = −
∂Fb(X0)

∂X
[Cb(X0)] = −

∂Fb(X0)

∂Ẋ
(18)

Each journal bearing is therefore replaced with four stiffness and four damping coefficients. These coefficients are

computed by the hybrid method and then kept constant all along the dynamic simulation. Eqs. (17) and (9) result in

the linear system

[M]{∆Ẍ} + [C0]{∆Ẋ} + [K0]{∆X} = {F(t,X)} + {Fb0} (19)

where
[C0] = [C] + [Cb(X0)]

[K0] = [Kshaft] +
[

Kgear

]

+ [Kb(X0)]
(20)

The linear differential system Eq. (19) is solved by the implicit Newmark time-step integration scheme combined with

a normal contact algorithm aimed at updating the dynamic characteristics of the meshing process.

4. Numerical results and discussion

The gear, shaft and bearing data used in the numerical simulations are given in Tables 1, 2 and 3. The gear has

no profile and lead corrections. A unique modal damping factor of 0.03 was used for all the numerical simulations

and the time increment ∆t was set to 1/32th of the mesh period in order to capture mesh stiffness variations. All the

simulations were performed over 2048 mesh periods, i.e. 65536 time increments, which correspond approximately

to 10 gear revolutions and 60 pinion revolutions, thereby causing the transient effects to disappear and the motion to

become periodic.
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Table 1: Main parameters for the gear and pinion.

Data Pinion Gear

Number of teeth Z 26 157

Face width b (mm) 50 40

Helix angle β (◦) 0

Module m (mm) 4

Pressure angle α (◦) 20

Dedendum coefficient 1. 1.

Addendum coefficient 1.4 1.4

Profile shift coefficient 0.16 −0.16

Center distance d (mm) 366

Mass Mi (kg) 2 74

Table 2: Shaft data.

Data Pinion shaft Gear shaft

Outer diameter 2Ro (mm) 70 90

Inner diameter 2Ri (mm) 30 30

Shaft length L (mm) 160

Young’s modulus E (MPa) 210000

Poisson’s ratio ν 0.3

Density ρ (kg m-3) 7800

Table 3: Bearing data.

Data Bearings 1 and 2 (Pinion shaft) Bearings 3 and 4 (Gear shaft)

Diameter 2R (mm) 70 90

Length L (mm) 50 65

Radial clearance C (µm) 150 110

Dynamic viscosity µ (Pa.s) 0.0288

↑
1

←2

←3

4 →

s

s

tt

1 - Bearings 1-2

2 - Pinion

3 - Bearings 3-4

4 - Gear

0.22 0.24 0.26 0.28
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−0.76

−0.74
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−0.66

−0.64

−0.62

−0.6

0.62 0.64

0.38

0.36

0.34

α′

α′

(a)

(b)

Figure 5: Periodic orbits of pinion and gear, and shaft orbits in bearings 1 and 3 for a spur gear.
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Figure 6: Zoom of Fig. 5 on the orbit of shaft 1 in bearing 1 (a) and shaft 2 in bearing 3 (b).

4.1. Gear-bearing interaction

The first simulation was performed with a spur gear at input speed ω=325 rad/s, input torque T=220 N.m and with

the mass unbalance forces in Eq. (10) computed with emu=0.6 mm. Periodic orbits of shaft nodes corresponding to

bearings and gears are presented in Fig. 5a and Fig. 5b for the input and output shafts respectively. All the orbits are

dimensionless with respect to bearing clearance C, so that all the shaft orbits in the bearings are included in a unitary

circle. Since the gear assembly is perfectly symmetrical (see Fig. 1), the orbits in bearings 1 and 2 are identical. For

the same reason, the orbits in bearings 3 and 4 are also identical. Fig. 5 shows that shaft bending occurs as expected

in the base plane, and that bending is maximum at the pinion and gear centers. All the orbits oscillate in the direction

of the line of action. These oscillations are superimposed on the elliptical motion related to the mass unbalance and

are prevalent for the pinion (orbit 2 on Fig. 5a).

The corresponding transient motion of the shaft center in bearing 1 (input/pinion shaft) is plotted in Fig. 6a. The

complete motion is composed of 60 loops. The stabilized orbits exhibit 26 oscillations associated with the pinion

mesh period and demonstrate the interaction between the gears and the bearings. The influence of gear excitations

and their direction along the base plane can be clearly identified on the pinion orbits. The norm of the hydrodynamic

forces over the last orbit, i.e. the last 26 mesh periods of the pinion, is plotted in Fig. 7a for the same bearing. This

force diagram allows identifying a constant fundamental component that corresponds to the transmitted load, one

superimposed low-frequency oscillation with a one-per-revolution period related to mass unbalance, and 26 higher-

frequency oscillations standing for the mesh excitations of the pinion. These contributions of unbalance excitation

and mesh excitations (multiple of the number of teeth of the pinion and the gear) can be also identified in Fig. 7a

which shows the Fourier transform of the signal. The same conclusions stand for bearing 3 (output shaft), where

orbits exhibit 157 high-frequency oscillations associated with the gear meshing period, as shown in Figs. 6b and 7c.

The FFT-plots are made dimensionless with respect to the highest component amplitude of the nonlinear model

spectrum. Moreover, on these plots, the normalized frequency f̄ unit is equal either to the pinion rotation frequency

for bearing 1 or to the gear rotation frequency for bearing 3. The consequence of this normalization, for bearing 1

(Fig. 7a) is that excitation due to unbalance on the pinion shaft appears for f̄p = 1, while the meshing excitation

has frequency f̄m = 26, corresponding to the 26 mesh periods during one pinion rotation. Similarly, for bearing 3

(Fig. 7c), the excitation due to the unbalance on the gear shaft appears for f̄g = 1, the excitation due to unbalance on

the pinion shaft appears for f̄p = 157/26 = 6.03, and the meshing excitation has frequency f̄m = 157. The presence

of these three frequencies in the response confirms not only the interaction between the gear and the bearings but also

the coupling between the two shafts through the gear.

4.2. Comparison of the models

This section presents some comparisons between the different bearing models. The first paragraph introduces

comparisons between the available numerical methods for the computation of fluid forces in the bearings. A second

paragraph illustrates the differences between the linear and nonlinear models. The same set of parameters as before is

used for the computations: ω=325 rad/s, T=220 N.m, emu=0.6 mm.
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Figure 7: Norm and FFT of the hydrodynamic forces in bearings 1 and 3 for a spur gear.

Table 4: Computational times for the different models.

Case Method Mesh Reynolds equations Time Error

0 L. - H.M. 192 32 0.60 0.02%

1 N.L. - S.B.T. × 290 × 103 0.69 12.40%

2 N.L. - H.M. 192 264 × 103 1 0.02%

3 N.L. - H.M. 384 264 × 103 1.36 0.005%

4 N.L. - M.M. 192 × 32 1012 × 103 130 Ref.

The following abbreviations used: L.=Linear model, N.L.=Nonlinear model, H.M.=Hybrid Method, S .B.T.=Short Bearing Theory,

M.M.=Multigrid Method.
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4.2.1. Comparison of the different computational methods for fluid forces

Table 4 provides two results: the first concerns the accuracy of the different methods in the evaluation of the

fluid forces in the bearings, followed by their influence on the overall computational cost of the dynamic algorithm

proposed in this paper. To do this, the eccentricity of the initial static position in bearing 1 is compared to that obtained

by the multigrid method serving as reference. Then, the nonlinear transient dynamic simulation is performed, 10 gear

revolutions are computed, i.e. 2048 mesh periods or 65536 time increments with the convergence limit set to l=10−5.

The corresponding total CPU-time is reported in Table 4 along with the number of Reynolds equations solved during

the dynamic simulation.

Five different methods are considered. Case 0 corresponds to a linear dynamic analysis (see section 3.3) and cases

1 to 4 correspond to a nonlinear analysis (see section 3.2). For a linear analysis the Jacobian matrices are computed

only once and kept constant throughout the simulation, whereas for a nonlinear simulation they must be computed

at every time step. Other differences are listed hereafter. For case 0, the linearized 8-coefficient model is used to

evaluate the bearing forces during the dynamic simulation. The initial static solution X0 and the corresponding fluid

forces and Jacobian matrices are determined numerically with the hybrid method. For case 1, the fluid forces and

Jacobian matrices are computed analytically using the short bearing theory [5]. For case 2, the hybrid method is used

to compute fluid forces and Jacobian matrices. Case 3 is similar to case 2, with a denser bearing mesh. Finally, the

multigrid method is used to compute bearing forces for case 4, and Jacobian matrices are computed with a first order

numerical differentiation.

For the same level of mesh refinement (cases 0, 2 and 4), the relative error on X0 between the hybrid method and

the reference multigrid method is only 0.02%. The minor improvement of the accuracy of the hybrid method with a

denser mesh (case 3) is not worth the extra computational cost. The short bearing theory (case 1) does not provide an

accurate initial static solution X0 because the ratio L/D=0.72 of Table 3 does not fit in the validity range of the short

bearing theory (L/D<1/8).

Case 2 is used as the reference for the computational cost. Eight minutes are needed to perform this simulation.

As expected, the linear simulation (case 0) requires less CPU-time because only the initial static solution requires

several resolutions of the Reynolds equation. For all the nonlinear simulations, each of the 65536 time steps requires

approximately 3 Newton-Raphson iterations, and each iteration requires several resolutions of the Reynolds equation,

therefore CPU-time is longer. The hybrid method (case 2) makes the overall dynamic algorithm 130 times faster

than the multigrid method. This is not only explained by the fact that fewer Reynolds equations are solved since the

Jacobian matrices are not computed by numerical differentiation, but also by the efficient separation of variables used

by the method. The hybrid method is also reported to be 100 times faster than a finite element method in Zheng et al.

[30].

All the following calculations use the hybrid method with the mesh corresponding to case 2 as it turns out to be a good

compromise between accuracy and computational cost.

4.2.2. Comparison of linear and nonlinear algorithms

Figure 7 presents results from the linearized 8-coefficient and the nonlinear models of section 3. For each model

the norm of the hydrodynamic forces ‖Fb‖ in bearings 1 and 3 and the spectrum of these forces are presented. The

plots correspond to the steady-state orbits of Fig. 6, i.e. to the last 26 mesh periods for bearing 1 on the pinion shaft,

and to the last 157 mesh periods for bearing 3 on the gear shaft. The hydrodynamic forces computed with the lin-

earized 8-coefficient model and the nonlinear model are identical in bearing 1 (Figs. 7(a)-(b)) as well as in bearing 3

(Figs. 7(c)-(d)). The fundamental frequencies f̄g, f̄p and f̄m are clearly identified on these charts, as are the harmon-

ics of order 2, 3, 5 and 6 of f̄m. The linearized 8-coefficient model performs very well because the dynamic solution

(Fig. 6) remains close to the static solution, so that the assumption of small displacements and velocities in the vicinity

of the static position X0 is valid. Fig. 8 compares the evolution of the dynamic tooth load factor R in the gear with the

peak-to-peak value of the norm of the hydrodynamic forces ‖Fb‖ in bearings 1 and 3. The dynamic tooth load factor

is defined as the maximum dynamic-to-maximum static mesh load ratio. The comparison is performed with the same

set of parameters as before and with an input rotation speed ranging from 100 rad/s to 1200 rad/s. As shown in Fig. 8,

the bearing forces and the dynamic tooth load factor R obtained at different speeds exhibit a nonlinear behavior.

Considering bearing forces, the two models give similar results due to the small displacements in the vicinity of the

static position. The dynamic tooth load factor R seems to be insensitive to the model used to evaluate bearing forces,

as shown in Fig. 8a. The dynamic tooth load factors obtained by the two models are very close and are dominated by
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Figure 8: Comparison of the different bearing models: (a) Dynamic tooth loading R, (b) Peak-to-peak value of hydrodynamic load Fb in bearing
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Figure 9: Influence of the input torque: Orbits of shaft 1 in bearing 1 for a spur gear (ω=325 rad/s).

amplitude jumps and shocks at the critical frequencies.

It can also be observed that Fig. 8a and Figs. 8b-c are correlated. The dynamic tooth load factor R and the hydrody-

namic forces obtained with the linearized 8-coefficient and nonlinear bearing models exhibit very similar evolutions.

This confirms the previous conclusion about the interaction between the gear and the bearings.

4.3. Influence of parameters

4.3.1. Influence of input speed

The input speed of rotation ω has a major influence. As already stated in the previous section, it has a nonlinear

influence on the peak-to-peak value of ‖Fb‖ and on the dynamic tooth loading factor R (see Fig. 8). The input rotation

speed also governs the static positioning of the shafts in the bearings. The shaft eccentricities are all the smaller as the

speed is high. Moreover the size of the steady-state orbits of the shafts in the bearings depends on the mass unbalance,

on the hydrodynamic forces and on the dynamic tooth loading which in turn depend in a nonlinear way on the rotation

speed.

4.3.2. Influence of input torque

Increasing the transmitted load leads to higher strains in the structure, to higher mesh excitations in the gear and

to higher hydrodynamic loads in the journal bearings. As a result, the eccentricity of the shafts in the bearings is

increased. This is illustrated in Fig. 9 which shows the steady-state orbit of the input shaft in bearing 1 for a constant

rotation speed ω=325 rad/s and increasing input torque values. Each orbit is approximated with an ellipse using a

least-square method and the coordinates (sc, tc) of the center of the ellipse give the mean eccentricity of the bearing.

As the input torque increases the shaft eccentricity also increases, as do the oscillations on the orbits due to higher

meshing forces. The shape of the orbit changes due to increasing hydrodynamic and mesh forces while its diameter

remains the same due to a fixed mass unbalance at the given rotation speed. The motion is therefore dominated by

mesh excitations for high values of the torque whereas it is dominated by mass unbalance for smaller values.

4.3.3. Influence of mass unbalance

The diameter of the shaft orbits is set by the amplitude of mass unbalance. When mass unbalance increases, the

displacements become larger and the dynamic motion no longer remains in the vicinity of the static position. As

a consequence, the 8-coefficient linear bearing model is no longer valid and gives inaccurate results. To illustrate

this, the peak-to-peak value of the hydrodynamic forces Fb in bearing 1 is plotted in Fig. 10a for different values of

unbalance amplitude emu and an input speed varying from 100 to 1200 rad/s. Differences between the linear and the

nonlinear models are clearly visible at high speeds. They are all the greater as the mass unbalance amplitude emu

increases. On the other hand, mass unbalance forces barely affect the dynamic factor R, as shown in Fig. 10b.
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Figure 10: Influence of mass unbalance: (a) Peak-to-peak value of the hydrodynamic load Fb in bearing 1, (b) Dynamic tooth loading R for a spur

gear. (T=220 N.m, ω=325 rad/s)

4.3.4. Influence of gear helix angle

Figure 11(a) shows the evolution of R for increasing values of helix angle β. The peaks correspond to high

dynamic loading or shocks between gear teeth while in operation and can be used to identify critical rotation speeds.

These peaks exist whatever the value of β and their amplitude decreases when β is increased. This is a well known

smoothing property of helical gears, due to the increase of the contact ratio when helix angle β increases. The peak-

to-peak value of hydrodynamic forces ‖Fb‖ in bearings 1 and 2 is plotted in Figs. 11(b) and 11(c). As expected,

these plots exhibit the same behavior as the dynamic coefficient R and the same dependence on helix angle β. This

confirms once again the coupling and the proper transfer between the gear and the bearings. A comparison between

the transient motion of shaft 1 in bearings 1 and 2, and shaft 2 in bearings 3 and 4 respectively, for spur and helical

gears is proposed in Fig. 12. The figure shows the transient motion from the static solution X0 to the steady-state

solution for an input rotation speed ω=325 rad/s, an input torque T=220 N.m and an unbalance amplitude on each

shaft emu=0.6 mm. For spur gears, the steady-state orbits in bearings 1 and 2, bearings 3 and 4 respectively, are both

centered on the static solution X0 due to the symmetry of the system. For helical gears, this is no longer the case.

The steady-state orbits shift to each side of the static solution, resulting in shaft misalignment. This shift depends

on several parameters among which the helix angle β and profile and lead correction parameters. This deviation can

be explained by different load distributions on gear teeth for spur and helical gears as plotted in Fig. 13. The load

distribution is uniform along the gear width for the spur gear, whereas it is not for the helical gear. This non-uniform

load leads to a loss of balance that changes the position of the shafts in the bearings. The influence of helix angle β is

analyzed in Fig. 14, where the steady-state periodic orbit of shaft 1 in bearing 1 is plotted for increasing values of β at

input speed ω=325 rad/s. The first (β=0◦) and last (β=12.5◦) orbits correspond to the orbits in bearing 1 in Fig. 12(a).

All these orbits differ in two ways. First, considering the coordinates of the center written below each orbit, it can

be seen that these orbits are not centered on the same point. Moreover, the distance from the static position increases

with β. Second, the meshing oscillations superimposed on the basic mass unbalance orbits become smaller with the

increase of the helix angle, in good agreement with the decrease of the dynamic coefficient R observed in Fig. 11(a).

All the orbits have the same size, which indicates that the unbalance excitation is not affected by the variation of the

helix angle.

Since the meshing excitations are transmitted to the bearings through the shafts, hydrodynamic forces Fb in the

bearings are also affected by the variation of the helix angle. Hydrodynamic forces in bearings 1 and 3 for a helical

gear (β=12.5◦) are plotted in Figs. 15(a) and 15(c) respectively. Compared to Figs. 7(a) and 7(c) related to a spur gear,

these figures confirm that helical gears soften mesh excitations. High frequency oscillations are remarkably reduced

when helix angle β is increased. FFT analyses, which are made dimensionless with respect to the higher amplitude of

the spur gear spectrum, illustrate this filtering action. All the peaks corresponding to multiples of the mesh excitations

have disappeared with the helical gear which acts as a low-pass filter.

A comparison between the linear and nonlinear models was also performed for β=12.5◦. The resulting loads and

corresponding FFT are plotted in Figs. 15(a)-(d). The evolution of dynamic factor R and the peak-to-peak value of
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Figure 11: Influence of helix angle β on the dynamic load: (a) Dynamic tooth loading R, (b) Peak-to-peak value of the hydrodynamic load Fb in
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Figure 13: Load distribution along the gear width obtained with the present distributed meshing formulation: (a) spur gear and (b) helical gear

β=12.5◦.
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Figure 14: Influence of the helix angle β on the orbits of shaft 1 in bearing 1 at ω=325 rad/s for β ranging from 0 to 12.5◦.

18

Pr
od

ui
t p

ar
 H

AL
 - 

18
 S

ep
 2

01
4



0
00 6.5 13 19.5 26

2000

2100

2200

2300

2400

2500

50 100 150 200

0.25

0.5

0.75

1

Normalized time (Unit=Mesh period) Normalized frequency (Unit = Pinion rotation frequency)

F
F

T
o
f

th
e

n
o
rm

o
f
F

b

of

(a
)

N
o
n
li

n
ea

r

N
o
rm

o
f
F

b
(N

)

0
00 6.5 13 19.5 26

2000

2100

2200

2300

2400

2500

50 100 150 200

0.25

0.5

0.75

1

Normalized time (Unit=Mesh period) Normalized frequency (Unit = Pinion rotation frequency)

F
F

T
o
f

th
e

n
o
rm

o
f
F

b

b
ea

ri
n

g
1

(b
)

8
-c

o
ef

fi
ci

en
t

N
o
rm

o
f
F

b
(N

)

0
00 39.25 78.5 117.75 157

2000

2100

2050

100 200 300 400

0.25

0.5

0.75

1

Normalized time (Unit=Mesh period) Normalized frequency (Unit = Gear rotation frequency)

F
F

T
o
f

th
e

n
o
rm

o
f
F

b

(c
)

N
o
n
li

n
ea

r

N
o
rm

o
f
F

b
(N

)

0
00 39.25 78.5 117.75 157

2000

2100

2050

100 200 300 400

0.25

0.5

0.75

1

Normalized time (Unit=Mesh period) Normalized frequency (Unit = Gear rotation frequency)

F
F

T
o
f

th
e

n
o
rm

o
f
F

b

b
ea

ri
n

g
3

(d
)

8
-c

o
ef

fi
ci

en
t

N
o
rm

o
f
F

b
(N

)

f̄p f̄m

f̄g

f̄p

f̄m

2f̄m

Figure 15: Norm and FFT of the hydrodynamic forces in bearings 1 and 3 for a helical gear β=12.5◦ at ω=325 rad/s.
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Figure 16: Comparison of the different models for a helical gear β=12.5◦: (a) Dynamic tooth loading R, (b)(c) Peak-to-peak value of the hydrody-

namic load Fb in bearing 1 and 3 respectively.

‖Fb‖ are shown in Fig. 16. The nonlinear model, used for all previous computations concerning helical gears, is chosen

as reference. The lumped-spring model is unable to predict correct hydrodynamic loads. The linearized 8-coefficient

model performs well in bearing 1 but is inaccurate in bearing 3, whereas it was accurate in both bearings in the case

of a spur gear (see Fig. 7). This can be explained with Fig. 17 which provides the transient motion of the output shaft

in bearings 3 and 4 computed with the 8-coefficient and the nonlinear models. It can be clearly observed that the

center of the shaft moves away from the static position X0. As a result the assumption of small displacements in the

vicinity of X0 is not verified anymore and the 8-coefficient and nonlinear models give different transient motions and

different periodic orbits when steady state is reached. The hydrodynamic forces in bearing 3 during one period of

the periodic motion are plotted in Figs. 15(c) and (d) for both models. From these figures it is also observed that the

meshing excitations transmitted to the bearings are clearly underestimated when using the 8-coefficient model. These

results are confirmed by the evolution of the dynamic tooth load factor R and the peak-to-peak value of the norm of

the hydrodynamic forces in Fig. 16.

5. Conclusions

In this paper we have presented a model of gear-shaft-bearing systems that accounts for various time-varying

contact nonlinearities and couplings. The proposed numerical procedure combines a very efficient algorithm for

computing hydrodynamic forces in finite-length bearings, an accurate semi-analytic distributed gear model, a finite

element formulation, and a robust algorithm for nonlinear transient dynamics.

Several representative numerical simulations involving spur as well as helical gears have been presented to demon-

strate the good performance of the overall algorithm. The analysis of the dynamic tooth loading, shaft orbits and

hydrodynamic fluid forces highlights the coupling between the different components of the gear-shaft-bearing assem-

bly. In particular, it has been shown that mesh excitations appear in the dynamic response although bearing force

amplitudes are usually dominated by unbalance. By contrast, dynamic tooth loading sensitivity to once-per-revolution
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Figure 17: Transient motion in bearings 3 and 4 using linear and nonlinear bearing models for a helical gear β = 12.5◦ at ω=325 rad/s.

excitations seems very limited. Finally, examples have demonstrated that, for accurate predictions of vibration trans-

fer through bearings, bearing nonlinear behavior must be taken into account in the case of large dynamic forces,

especially with helical gears.
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