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Abstract

This paper shows how to find lower bounds on, and sometimes solve globally, a
large class of nonlinear optimal control problems with impulsive controls using semi-
definite programming (SDP). This is done by relaxing an optimal control problem
into a measure differential problem. The manipulation of the measures by their
moments reduces the problem to a convergent series of standard linear matrix in-
equality (LMI) relaxations. After providing numerous academic examples, we apply
the method to the impulsive rendezvous of two orbiting spacecrafts. As the method
provides lower bounds on the global infimum, global optimality of the solutions can
be guaranteed numerically by a posteriori simulations, and we can recover simulta-
neously the optimal impulse time and amplitudes by simple linear algebra.

1 Introduction

Optimal control problems are still an active area of current research despite the availability
of powerful theoretical tools such as Pontryagin’s maximum principle or the Hamilton-
Jacobi-Bellman approach, that both provide conditions for optimality. However, numeri-
cal methods based on such optimality conditions rely on a certain number of assumptions
that are often not met in practice. In addition, state constraints are particularly hard to
handle for most of the methods.

On the other side, many numerical methods have been developed that deliver locally
optimal solutions satisfying sufficient optimality conditions. However, the users of these
methods are often left to wonder if a better solution exists. For example, in the particular
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case of impulsive controls, it is often not known if more regular solutions could provide
a better cost. For a recent survey on impulsive control see e.g. [11] and the references
therein. See also [7] for a recent application and for more references1. For historical works
see e.g. [17, 19, 22] and also [2].

This paper presents a method based on [12, 21] but covering a larger class of solutions,
including impulsive controls. This algorithm provides a sequence of non-decreasing lower
bounds on the global minimizers of affine-in-the-control polynomial optimal control prob-
lems. In particular, it may assert the global optimality of local solutions found by other
methods. As importantly, the algorithm is also able to provide numerical certificates of
infeasibility or unboundedness for ill-posed problems. Finally, in some cases, it is also
possible to generate the globally optimal control law.

At the end of the paper, this method is successfully applied to the problem of coplanar
space fuel-optimal linearised rendezvous. We show with two different examples from the
literature that the proposed algorithm is able to retrieve the impulsive optimal solution
conjectured by running a direct approach based on the solution of a Linear Programming
(LP) problem. Without assuming the nature of the propulsion (continuous or impulsive),
the obtained impulsive solution is certified to be a global fuel-optimal solution.

1.1 Contributions

The paper improves the method presented in [12, 21] in the following ways:

• Impulsive control can now be taken into account.

• Because controls are represented by measures and not by variables, the size of SDP
blocks is significantly reduced. This allows to handle larger problems in terms of
number of state variables as well as to reach higher LMI relaxations.

• Total variation constraints can be handled very easily.

These three improvements make it altogether possible to tackle problems such as con-
sumption minimization for space rendezvous, the other significant contribution of this
paper.

1.2 Notations

Integration of a function f : Rn → R with respect to a measure µ on a set X ⊂ R
n is

written
∫

X
f(x) dµ(x). The Lebesgue or uniform measure on X is denoted by λ whereas

the Dirac measure concentrated at point x is denoted by δx. A measure µ is a probability
measure whenever

∫

dµ = 1. The support of measure µ is denoted by suppµ. The
indicator function of set X (equal to one in X and zero outside) is denoted by IX .

1We are grateful to Térence Bayen for pointing out this reference to us.
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F (X) is the space of Borel measurable functions on X, whereas BV (X) is the space of
functions of bounded variation on X. R[z] is the ring of polynomials in the variable z.
B(X) denotes the Borel σ-algebra associated with X.

If k ∈ N
n denotes a vector of indices then xk with x ∈ R

n is the multi-index notation for
∏

xki
i . The degree of the index k is deg k =

∑

ki. Finally, N
n
d is the set of all indices for

which deg k ≤ d, k ∈ N
n.

2 The optimal control problem

This paper deals with the following nonlinear optimal control problem

V (x0) = inf
u(t)∈F ([0,T ])m

I(x0, u) =

∫ T

0

h(t, x(t))dt+

∫ T

0

H(t)u(t)dt+ hT (x(T ))

s.t. ẋ(t) = f(t, x(t)) +G(t)u(t), t ∈ [0, T ]

x(0) = x0 ∈ X0, x(T ) ∈ XT , x(t) ∈ X ⊂ R
n.

(1)

where the dot denotes differentiation w.r.t. time and the prime denotes transposition.
Criterion I(x0, u) is affine in the control u, and V is called the value function. It is assumed
that all problem data are polynomials, meaning that all functions are in R[t, x], and that
all sets are compact basic semialgebraic. Recall that such sets are those which may be
written as {x : ai(x) ≥ 0, i = 1, . . . ,m} for some family {ai}

m

j=1 ⊂ R[x]. A mild technical
condition (implying compactness of X) must be satisfied [13, Assumption 2.1], but it
is often met in practice (for instance, an additional standard ball constraint

∑

x2
i ≤ r2

enforces the condition). The reason for making these assumptions will be apparent in the
later sections.

Without additional assumptions and constraints, the infimum in problem (1) is generally
not attained in the space of measurable functions [26]. For this reason, in this paper we
consider problems for which controls are allowed to be generalized functions, i.e. measures,
thereby extending the original formulation as follows:

VR(x0) = inf
w(t)∈BV ([0,T ])m

I(x0, w) =

∫ T

0

h(t, x(t))dt+

∫ T

0

H(t)dw(t) + hT (x(T ))

s.t. dx(t) = f(t, x(t)) dt+G(t)dw(t), t ∈ [0, T ]

x(0) = x0 ∈ X0, x(T ) ∈ XT , x(t) ∈ X ⊂ R
n

(2)
where VR stands for the relaxed value function. In particular, in problem (2) controls
may be impulsive: the (vector) control can been seen as a (vector) distribution of the first
order and it is therefore the distributional derivative dw(t) of some (vector) function of
bounded variation w(t) ∈ BV ([0, T ])m, see e.g. [22] and [18, §4] or also [4, Prop. 8.3].
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3 The measure problem

In this section, we formulate problem (2) into a measure differential problem, a necessary
step towards obtaining a tractable SDP problem. Optimal control problems involving
measures have been introduced to accept solutions that are ruled out or ill-defined in
classical optimal control, see e.g. [26]. Multiple solutions, impulsive or chattering controls
can be handled naturally by the associated measure problem. This section, rather than
providing rigorous proofs, outlines the main ideas behind this transformation.

A few remarks are worth pointing out. First of all, it is crucial that G(t) be a matrix of
smooth functions, an hypothesis automatically fulfilled by polynomials. As a matter of
fact, multiplying distributions with such functions is a well-defined operation (unlike e.g.
the product of two distributions). Therefore, except for some very particular cases [15],
G cannot be a function of states xj that could potentially present jump discontinuities.
To simplify notations, we have simply assumed that G depends on t only2. Secondly, in
the absence of impulses, the distributional differential is the traditional differential, and
the dynamics are classical differential equations with controls dw(t) = u(t)dt which are
absolutely continuous with respect to the Lebesgue measure. Finally, it must be noted
that state trajectories x(t) are themselves functions of bounded variations, being the sum
of two such functions, and that this is their broadest class in the sense that there is no
more general distribution solutions for the states [22].

Because distributional derivatives of functions of bounded variation on compact supports
can be identified with measures [18, §50], the dynamics in problem (2) may be inter-
preted as a measure differential equation. As X ⊂ R

n is assumed to be compact, by
one of the Riesz representation theorems [10, §36.6], these measures can be put in dual-
ity correspondence with all continuous functions v(t, x(t)) supported on [0, T ] × X. We
will use these test functions to define linear relations between the measures. Note that
because continuous functions on compact sets can be uniformly approached by polynomi-
als by virtue of the Stone-Weierstrass theorem, it is enough to consider polynomial test
functions v(t, x(t)) ∈ R[[0, T ]×X].

By Lebesgue’s decomposition theorem [10, §33.3], we can split the control measures w(dt)
into two parts: their absolutely continuous parts with density u : [0, T ] → R

m (with
respect to the Lebesgue measure) and their purely singular parts with jump amplitude

vectors utj ∈ R
m supported at impulsive jump instants tj, j ∈ J , with J a subset of

Lebesgue measure zero of [0, T ], not necessarily countable3. We write

w(dt) = u(t)dt+
∑

j∈J

G(tj)utjδtj(dt)

to model jumps in state-space

x+(tj) = x−(tj) +G(tj)utj , ∀ j ∈ J.

2In all rigour, it could be possible to include state jumps in G, but this requires a careful definition of
what is meant by integration, as done e.g. for studying stochastic differential equations. This goes well
beyond the scope of this paper.

3We suspect however that for the control problems studied in this paper, subset J can be assumed
countable without loss of generality.
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Now, given an initial state x0 ∈ X0 and given a control w(t) ∈ BV ([0, T ])m, denote by
x(t) ∈ BV ([0, T ])n the corresponding feasible trajectory. Then for smooth test functions
v : [0, T ]× R

n → R, it holds

∫ T

0

dv(t, x(t)) = v(T, x(T ))− v(0, x(0))

=

∫ T

0

(

∂v

∂t
+

(

∂v

∂x

)

′

f

)

dt

+

∫ T

0

(

∂v

∂x

)

′

Gudt

+
∑

j∈J

v(tj, x
+(tj))− v(tj, x

−(tj)).

(3)

We are going to express the above temporal integration (3) along the trajectory in terms
of spatial integration with respect to appropriate and so-called occupation measures. For
this purpose, define:

• The time-state occupation measure

µ[x0, w(t)](A× B) =

∫

A

IB(x(t)) dt, ∀A ∈ B([0, T ]), ∀B ∈ B(X)

which measures the occupation of A×B by the pair (t, x(t)) all along the trajectory.
Note that we write µ[x0, w(t)] to emphasize the dependence of µ on initial condition
x0 and control w(t). However, for notational simplicity, we may use the notation
µ. By a standard result on Borel measures on a cartesian product, the occupation
measure µ can be disintegrated into

µ(A× B) =

∫

A

ξ(B | t) dt,

where ξ(dx | t) is the distribution of x ∈ R
n, conditional on t ∈ [0, T ]. It is a

stochastic kernel, i.e.,

– for every t ∈ [0, T ], ξ(· | t) is a probability distribution on X, and

– for every B ∈ B(X), ξ(B | ·) is a Borel measurable function on [0, T ].

In our case, since the initial state x0 and the control w(t) are given, the stochastic
kernel ξ(dx | t) is well defined along continuous arcs of the trajectory as

ξ(B|t) = IB(x(t)) = δx(t)(B), ∀t ∈ [0, T ] \ J, ∀B ∈ B(X). (4)

On the other hand, at every jump instant tj ∈ J , we let

ξ(B | tj) =
λ(B ∩ [x−(tj), x

+(tj)])

λ([x−(tj), x+(tj)])
, ∀tj ∈ J, ∀B ∈ B(X).

This means that the state is uniformly distributed along the segment linking the
state before and after the jump, the above denominator ensuring that ξ(· | t) has
unit mass for all t.
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• The control-state occupation measure

ν[x0, w(t)](A× B) =

∫

A

ξ(B | t) dw(t), ∀A ∈ B([0, T ]), ∀B ∈ B(X).

• The final state occupation measure

µT [x0, w(t)](B) = IB(x(T )), ∀B ∈ B(XT ).

With these definitions, Eq. (3) may be written in terms of measures as:
∫

XT

v(T, x) dµT (x)− v(0, x0) = (5)

∫

[0,T ]×X

(

∂v

∂t
+

(

∂v

∂x

)

′

f

)

dµ(t, x) +

∫

[0,T ]×X

(

∂v

∂x

)

′

Gdν(t, x) =

∫

[0,T ]

[
∫

X

(

∂v

∂t
+

(

∂v

∂x

)

′

(f +Gu)

)

ξ(dx | t)

]

dt+
∑

j∈J

v(tj, x
+(tj))− v(tj, x

−(tj)).

Similarly, the criterion in (2) to evaluate the trajectory and the control reads:

I(µ, ν, µT ) =

∫

[0,T ]×X

h dµ+

∫

[0,T ]×X

H dν +

∫

XT

hT dµT .

In view of the above formulation with occupation measures, one may now define a relaxed

version (or weak formulation) of the initial (measure) control problem (2). First note that

VR(x0) = inf
w(t)

I(µ[x0, w(t)], ν[x0, w(t)], µ[x0, w(t)])

where the infimum is taken over all the occupation measures defined above, corresponding
to a given initial condition x0 and control w(t). Second, instead of searching for a control
w(t), we search for a triplet of measures that solves the infinite dimensional problem:

VM(x0) = inf
µ,ν,µT

I(µ[x0], ν[x0], µT [x0])

under the trajectory constraints (5) for all v ∈ R[t, x] and the support constraints suppµ =
supp ν = [0, T ]×X, suppµT = XT . The measures now depend only on initial condition
x0, since they just have to satisfy linear constraints (5). This motivates the notation µ[x0],
ν[x0], µT [x0] in the above problem. This problem is an obvious relaxation of problem (2)
which is itself a relaxation of (1), hence

VM(x0) ≤ VR(x0) ≤ V (x0).

In the remainder of the paper, we will deal with this relaxed version of the occupation
measures problem. However, for a well-defined control problem (2) one expects that in fact
VM(x0) = VR(x0) and that an optimal solution of the relaxed problem will be the triplet
of occupation measures corresponding to an optimal trajectory of problem (2) with given
initial state x0 and control w(t). Note that for the standard polynomial optimal control
problem (1), without impulsive controls, and under additional convexity assumptions, it
has been proved in [12] that indeed VM(x0) = VR(x0) = V (x0).
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3.1 Initial state with a given distribution

Recall that the occupation measures defined in the previous section all depend on x0.
Observe that if µ0 is a given probability measure on X0 ⊂ R

n and if one now defines:

µ(A× B) =
∫

X0
µ[x0](A× B) dµ0(x0),

ν(A× B) =
∫

X0
ν[x0](A× B) dµ0(x0),

µT (B) =
∫

X0
µT [x0](B) dµ0(x0)

for all A ∈ B([0, T ]) and B ∈ B(X), then

I(µ[µ0], ν[µ0], µT [µ0]) =

∫

X0

I(µ[x0], ν[x0], µT [x0])dµ0(x0)

becomes the expected average cost associated with the trajectories and with respect to
the probability measure µ0 on X0.

Therefore, the relaxed problem with measures now reads as follows:

VM(µ0) = inf
µ,ν,µT

I(µ[µ0], ν[µ0], µT [µ0]) =

∫

hdµ+

∫

Hdν +

∫

hTdµT

s.t.

∫

v dµT −

∫

v dµ0 =

∫
(

∂v

∂t
+

(

∂v

∂x

)

′

f

)

dµ+

∫
(

∂v

∂x

)

′

Gdν

suppµ = supp ν = [0, T ]×X, suppµT = XT .

(6)

Note that in this case, the stochastic kernel ξ(dx|t) along continuous arcs of the trajectory
is generally not a Dirac measure as in (4), unless µ0 is a Dirac measure supported at x0

and the optimal control w is unique.

By solving this relaxed problem we expect that its optimal value satisfies

VM(µ0) =

∫

X0

VM(x0)dµ0(x0),

i.e. that VM(µ0) is the expected average cost associated with optimal trajectories and
with respect to the probability measure µ0 on X0.

3.2 Free initial state

In this case, in addition to the control we also have the freedom of choosing the best
possible initial state. For this purpose introduce an unknown probability measure µ0 on
X0. Then the relaxed problem with measures, analogue of (6), reads almost the same
except that:

• we now optimize over µ, ν, µ0, µT ;

• in the support constraints we introduce the additional constraint suppµ0 = X0.

By solving this relaxed problem we now expect that its optimal value denoted VM(X0)
satisfies:

VM(X0) = inf
µ0

VM(µ0) = inf
x0∈X0

VM(x0).
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3.3 Decomposition of control measures

All measures in (6) are positive measures, except for the signed measures ν which deserve
special treatment for our purposes. Using the Jordan decomposition theorem [10, §34],
these measures may be split into a positive part ν+ and negative part ν−, that is ν =
ν+ − ν−, both being positive measures.

This decomposition has the added benefit of providing an easy expression for the L1

norm of the control, which is sometimes to be constrained or optimized in some problems.
Indeed, define the total variation control measure by

|ν| = ν+ + ν−.

The total variation norm of the measure ν is just the mass of |ν|, i.e.,

‖ν‖TV =

∫

d|ν|.

3.4 Handling discrete control sets

It is often desirable to restrict the set of admissible controls to be a subset of R. Here we
will limit ourselves to the very important case of handling discrete control sets. Let us
assume that controls u are only allowed to take their values in U = {u1, ..., um}. Define νi
as the probability measures of choosing controls ui. Then clearly, the total probability of
choosing one of the controls in U must be 1 at each time along the trajectory. Then the
control measures ν are simply the linear combination of the probability measures weighted
by their respective control values:

ν =
∑

i

ui νi.

Using the same method as in §3, we have ∀ v(t) ∈ R[t]:

∑

i

∫

v(t) ui dνi(t, x) =

∫

v(t) dν(t, x).

Note that with this substitution, all measures involved in the measure problem are now
positive; there is no need to implement the trick of §3.3. Using these extra constraints, it
is now possible to solve bang-bang control problems.

3.5 Summary

To summarize, the advantages for introducing the relaxed control problem (6) with mea-
sures are the following:

• controls are allowed to be measures with absolutely continuous components and
singular components including impulses;
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• state constraints are easily handled via support constraints;

• the initial state has a fixed given distribution on some pre-specified domain;

• a free initial state in some pre-specified domain is also allowed.

4 The moment problem

So far, the hypothesis of polynomial data has not been used, but its crucial importance
will appear in this section, where measures will be manipulated through their moments.
This will lead to a semi-definite programming (SDP) problem featuring countably many
equations.

Define the moments of measure µ as

y
µ
k =

∫

X

zk dµ(z). (7)

Then, with a sequence y = (yk), k ∈ N
n, let Ly : R[z] → R be the linear functional

f

(

=
∑

k

fkz
k

)

7→ Ly(f) =
∑

k

fkyk, f ∈ R[z].

Define the moment matrix of order d ∈ N associated with y as the real symmetric matrix
Md (y) whose (i, j)th entry reads

Md(y)[i, j] = Ly

(

zi+j
)

= yi+j, ∀i, j ∈ N
n
d .

Similarly, define the localizing matrix of order d associated with y and h ∈ R[z] as the
real symmetric matrix Md(h y) whose (i, j)th entry reads

Md(h y)[i, j] = Ly

(

h(z) zi+j
)

=
∑

k

hk yi+j+k, ∀i, j ∈ N
n
d .

As a last definition, a sequence yµ = (yµk ) is said to have a representing measure if there
exists a finite Borel measure µ on X, such that relation (7) holds for every k ∈ N

n.

Now comes the crucial result of the section: a sequence of moments yµ has a representing
measure defined on a semi-algebraic set Xµ = {x : a

µ
i (x) ≥ 0, i = 1, 2, . . .} if and

only if Md(y
µ) � 0, ∀ d ∈ N and Md(a

µ
i y

µ) � 0, ∀ d ∈ N and ∀aµi defining set Xµ [13,
Theorem 3.8]. This has the very practical implication that the measure problem defined
in (6) has an equivalent formulation in terms of moments. Indeed, because all problem
data were assumed to be polynomial, the criterion in (6) can be transformed into a linear
combination of moments to be minimized:

Vm = inf
y

(bµ)′yµ + (bν)′yν + (bµT )′yµT = b′y (8)
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where the infimum is now over the aggregated sequence y of moments of all the measures.
Because the test functions were also restricted to be polynomials, the constraints in (6)
can be turned into countably many linear constraints on the moments:

Aµyµ + Aνyν + Aµ0yµ0 + AµT yµT = Ay = 0. (9)

The only non-linear part are the SDP constraints for measure representativeness, to be
satisfied ∀d ∈ N:

Md(y
µ) � 0, Md(a

µ
i y

µ) � 0,

Md(y
ν) � 0, Md(a

ν
i y

ν) � 0,

Md(y
µ0) � 0, Md(a

µ0

i yµ0) � 0, (10)

Md(y
µT ) � 0, Md(a

µT

i yµT ) � 0.

5 LMI relaxations

The final step to reach a tractable problem is relatively obvious: we simply truncate
the problem to its first few moments. Let d1 ∈ N be the smallest integer such that all
criterion monomials belong to N

n+1
2d1

. This is the degree of the so called first relaxation.
For each relaxation, we reach a standard LMI problem that can be solved numerically by
off-the-shelf software by simply truncating Eq. (8), (9) and (10) to involve only moments
in N

n+1
2d , with d ≥ d1 the relaxation order.

Observe that dj > di ⇒ V
dj
M ≥ V di

M . Therefore, by solving the truncated problem for
ever greater relaxation orders, we will obtain a monotonically non-decreasing sequence of
lower bounds to the true cost. In the examples below, we will see that in practice, the
optimal cost is usually reached after a few relaxations.

6 Academic examples

In this section, many examples are presented to showcase the different features of the
method. Ex. 1 to 5 are variations of the same basic problem to give a thorough tour
of the method’s capabilities. Ex. 6 is taken from the literature and shows how the
method compares to, or rather nicely complements, existing optimal control algorithms.
All examples use GloptiPoly [9] for building the truncated LMI moment problems and
SeDuMi [24] for their numerical solution.

Before proceeding to the examples, define the marginal Md (y, z) of a moment matrix with
respect to variable z as the moment matrix of the subsequence of moments concerning
polynomials of z only.

Example 1 (Basic impulsive problem).

V = inf
u(t)

∫ 2

0

x2(t) dt

10



Figure 1: Trajectory for Ex. 1

such that

ẋ(t) = u(t)

x(0) = 1, x(2) =
1

2
x2(t) ≤ 1.

In this introductory example, it is straightforward to notice that the optimal solution
consists of reaching the turnpike x(t) = 0 by an impulse at initial time t = 0, and
likewise, departing from it by an impulse at final time t = T = 2, see Fig. 1.

The associated measure problem reads:

VM = inf
µ,ν

∫

[0,T ]×X

x2 dµ

such that
∫

XT

v dµT −

∫

X0

v dµ0 =

∫

[0,T ]×X

∂v

∂t
dµ+

∫

[0,T ]×X

∂v

∂x
dν ∀ v ∈ R[t, x]

µ0 = δ0 X0 = {1} µT = δ 1

2

XT =

{

1

2

}

X =
{

x ∈ R : 1− x2 ≥ 0
}

.

Using the procedure outlined above, one obtains a series of truncated moment problems
that can be solved by semi-definite programming. Letting y

µ
ij =

∫

tixj dµ, the first LMI
relaxation is

V 1
M = inf

y
y
µ
02
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subject to the linear constraints associated to the dynamics:

y
µT

00 − y
µ0

00 = 0

y
µT

10 − y
µ0

10 = y
µ
00

y
µT

01 − y
µ0

01 = yν
+

00 − yν
−

00

y
µT

20 − y
µ0

20 = 2yµ10

y
µT

11 − y
µ0

11 = y
µ
01 + yν

+

10 − yν
−

10

y
µT

02 − y
µ0

02 = 2yν
+

01 − 2yν
−

01 ,

to the SDP representativeness constraints for τ = {µ, ν+, ν−}:




yτ00 yτ10 yτ01
yτ10 yτ20 yτ11
yτ01 yτ11 yτ02



 � 0, yτ00 − yτ02 ≥ 0,

and to the boundary conditions:
[

y
µ0

00 y
µ0

10 y
µ0

01 y
µ0

20 y
µ0

11 y
µ0

02

]

=
[

1 0 1 0 0 1
]

,
[

y
µT

00 y
µT

10 y
µT

01 y
µT

20 y
µT

11 y
µT

02

]

=
[

1 2 1
2

4 1 1
4

]

.

It turns out that the optimal value VM = 0 is estimated correctly (to numerical toler-
ance) from the first relaxation on and that the optimal trajectory x(t) = 0 can easily
be recovered. Indeed, the marginal Md (y

µ, x) is the length of the time interval multi-
plying a truncated moment matrix of a Dirac measure concentrated at x = 0, while its
marginal with respect to t equals a truncated Lebesgue moment matrix on the [0, 2] in-
terval. More importantly, one can recover the optimal controls as the marginal Md(y

ν , t)
is the weighted sum of Dirac measures located at the impulse times, the weights being
the impulse amplitudes. In summary, we can recover numerically the optimal measures

µ(dt, dx) = I[0,2](dt)δ0(dx), ν(dt, dx) = −δ0(dt)I[0,1](dx) + δ2(dt)I[0, 1
2
](dx).

Example 2 (Total variation constraints). We take back Ex. 1 with an additional con-
straint on the total variation of the control:

∫ 2

0

|u(t)| dt ≤ 1

whose measure equivalent reads:
‖ν‖TV ≤ 1.

Clearly, the solution of Ex. 1, with a total variation of 3
2
, violates this extra constraint,

so the algorithm should converge to another solution. Again, from the first relaxation
on, the cost of the associated truncated moment problem is 1

8
. It is also plain to see

that Md (y
µ, x) is the truncated moment matrix of a Dirac located at x = 1

4
, hinting a

trajectory x(t) = 1
4
. On the control side, starting from the second relaxation, it also

becomes evident that Md (y
ν , t) is the truncated moment matrix of the signed measure

−3
4
δ0 +

1
4
δ2, revealing the times and amplitudes of impulses compatible with admissible

controls. This leads to the trajectory of Fig. 2, which therefore is an optimal solution of
the problem.
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Figure 2: Trajectory for Ex. 2

Figure 3: Trajectory for Ex. 3

Example 3 (Discrete control set with chattering). We take again Ex. 1 with the ad-
ditional constraint that the control u(t) takes its value in the set U = {±1}, using the
method explained in Section 3.4. The solution to this problem is easy to infer: reach
the turnpike x(t) = 0 as quickly as possible by applying the negative control until t = 1,
then chatter with equal probability to remain on the turnpike until t = 3

2
, after which the

positive control must be applied until t = 2 (see Fig. 3). This solution has an optimal
cost of 3

8
≈ 0.375. Compare this value with those of Table 1, which presents the evolution

of the criterion with respect to the relaxation order of the truncated problem. After the
fourth relaxation, the marginal w.r.t. x of the control measure corresponding to the con-
trol u(t) = +1 closely approaches the positive measure 1

2
I[1, 3

2
](dx) + I[ 3

2
,2](dx) while the

marginal w.r.t. x of the control measure of u(t) = −1 converges to I[0,1](dx)+
1
2
I[1, 3

2
](dx),

as expected.

Example 4 (Infeasible problem). If the problem is infeasible, it may be detected by the
infeasibility of one of the LMI relaxations. Take Ex. 1 with the additional total variation

13



Table 1: Criterion as a function of LMI relaxation order for Ex. 3
d 1 2 3 4

V d
M 0.000 0.288 0.368 0.372

constraint
∫ 2

0
|u(t)| dt ≤ 1

4
that puts the end point out of reach from the starting point.

Indeed, at the first relaxation, the LMI problem is flagged as infeasible with a Farkas dual
vector, providing a certificate of infeasibility of the original problem.

Example 5 (Unbounded problem). If the problem is unbounded, it will be detected at
the first LMI relaxation. Consider the problem of maximizing the total variation of a
linear control problem:

sup
u(t)

∫ 1

0

|u(t)| dt (11)

such that

ẋ(t) = u(t)

x(0) = 0, x(1) = 0

x2(t) ≤ 1.

As expected, the LMI problem from the first relaxation on is flagged as unbounded because
its dual is flagged as infeasible.

Example 6 (Bang-bang control of the Vanderpol equation). Consider the following time-
optimal problem of the Vanderpol equation:

inf
u(t)∈U

T

such that

ẋ1(t) = x2(t)

ẋ2(t) = −x1(t)− (x2
1(t)− 1) x2(t) + u(t)

x(0) =
[

−0.4 −0.6
]

′

, x(T ) =
[

0.6 0.4
]

′

U = {±1} .

In [23], this problem is solved by applying a gradient-based optimization technique on
a parametrization of admissible trajectories, with a minimum time of 2.14. However,
this method can only prove the local optimality of solutions. Applying our method, we
obtain a cost of 2.15 at the fifth relaxation, providing a (numerical) certificate of global
optimality for that local solution.

7 The fuel-optimal linear impulsive guidance rendezvous

problem

In this section, the proposed approach is applied to the far-range rendezvous in a linearised
gravitational field. This problem is defined as a fixed-time minimum-fuel impulsive orbital
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transfer between two known circular orbits. Under Keplerian assumptions and for a
circular rendezvous, the complete rendezvous problem may be decoupled between the
out-of-plane rendezvous problem for which an analytical solution may be found [5] and
the coplanar problem. Therefore, only coplanar circular rendezvous problems based on
the Hill-Clohessy-Wiltshire equations and associated transition matrix [6] are considered
for numerical illustration of the proposed results. The general framework of the minimum-
fuel fixed-time coplanar rendezvous problem in a linear setting is recalled in [5] and [1]
where an indirect method based on primer vector theory is proposed. Considering the
necessity of easy-to-implement numerical solution for on-board guidance algorithms, direct
methods based on linear programming (LP) problem may be used as in [16]. For an a

priori fixed number of impulsive manoeuvres and using a classical transcription method [3]
[14], the genuine infinite-dimensional problem may be converted into a finite-dimensional
approximation given by the following LP problem:

VLP = min
u

N
∑

i=1

‖uθi‖1

s.t. x(θf ) = Φ(θf , θ1)x(θ1) +
N
∑

i=1

Φ(θf , θi)Buθi

x(θ1) = x0, x(θf ) = xf

(12)

where Φ is the Hill-Clohessy-Wiltshire transition matrix, B =
[

02×2 12
]

′

and uθi is the
vector of velocity increments at θi in the local vertical local horizontal (LVLH) frame [1].
Time has been changed to the true anomaly θ for the independent variable as is usual in
the literature [5], and it ranges in the interval [θ1, θf ]. Note that this formulation implies
that only the impulsive solution of the general linear rendezvous problem may be obtained
for a fixed number of velocity increments.

To be consistent with our previous notations we let t = θ, θ0 = 0 and θf = T . Our
impulsive optimal control problem (2) writes

VM = inf
w(t)

∫ T

0

|dw1|(t) + |dw2|(t)

s.t. dx =









0 0 1 0
0 0 0 1
0 0 0 2
0 3 −2 0









x(t)dt+









0 0
0 0
1 0
0 1









dw(t)

x(0) = x0, x(T ) = xf

where state components model positions (X,Z) = (x1, x2) in the orbital plane, and their
respective velocities (Ẋ, Ż) = (x3, x4). It clearly encompasses formulation (12) since
it allows to consider continuous or impulsive thrusters as well. In both cases, the fuel
consumption is measured by the one-norm of vector function [θ1, θf ] → ‖dw‖1 [20] whereas
the two-norm of this vector is used in general in the literature, see [5], [1] and references
therein.

For the sake of comparison between these two approaches, two academic examples taken
from [5] are presented.
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Example 7 (In-plane rendezvous 1). Consider the first case presented in [5]. It consists of
a coplanar circle-to-circle rendezvous with zero eccentricity. The rendezvous manoeuvre
must be completed in one orbital period with boundary conditions x0 = [ 1 0 0 0 ]′

and xf = [ 0 0 0 0 ]′. This type of rendezvous is usually difficult to handle by numer-
ical methods because of its singularity due to the high number of symmetries involved.

With a grid of N = 50 points, the LP algorithm gives a two-impulse solution at the initial
and final times of the rendezvous without interior impulse nor initial or final coasting pe-
riod. The optimal impulses are both horizontal and opposite u0 = −u2π =

[

0.05305 0
]

′

.
The fuel cost is given by VLP = 0.1061. The LMI method has no difficulty to recover
the optimal solution given by the LP algorithm. A cost of 0.1061 is obtained for each
relaxation. It is then easy to extract from the matrices that the optimal solution for the
first control consists of two symmetric impulses of magnitude 0.0531 at the initial and
final times, while the second control is identically 0. The optimal trajectory in the orbital
plane is depicted in Figure 4 where + indicates the 50 points of discretization.

Figure 4: Trajectory in the orbital plane (X,Z) in LVLH: Case 1 of [5]

Figure 5 shows position, velocity and impulses history versus true anomaly.
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Figure 5: Positions (X solid, Z dashed), velocities (Ẋ solid, Ż dashed) and impulses (on
X axis): Case 1 of [5]

Example 8 (In-plane rendez-vous 2). As a second example, the third case of [5] is revis-
ited. The rendezvous is nearly identical to the previous one except for the final condition
that imposes to reach the target with relative velocity of 0.427 in the Z direction, namely
x0 = [ 1 0 0 0 ]′ and xf = [ 0 0 0 0.427 ]′.

Again, a grid of N = 50 points is used when running the LP algorithm. It converges to
a four-impulse trajectory depicted in Fig. 6. The numerical results are summarized in
Table 3.
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Figure 6: Trajectory in the orbital plane (X,Z) in LVLH: Case 3 of [5]

Table 2: Impulse times and amplitudes for Ex. 8

LMI method LP method

θi (uθi)1 (uθi)2 θi (uθi)1 (uθi)2

0 -0.0386 0 0 -0.0392 0

1.791 +0.109 0 1.795 +0.109 0

4.495 -0.109 0 4.488 -0.109 0

6.283 +0.0389 0 6.283 +0.0392 0

Using our algorithm, we reached the same criterion (within numerical tolerance) after the
fourth relaxation (see Tab. 3). As usual, the controls can be inferred from the moment
matrix of the ν measures. Indeed, ν1 converges to the measure

∑

(uθi)1 δθi with impulse
amplitudes (uθi)1 and anomaly θi taken from Table 2, while ν2 converges to an all zero
measure. Not only does this result prove the global optimality of the conjectured solution
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within the class of all impulsive solutions no matter the number of impulses, but it also
shows that it is optimal over all measure thrust solutions.

Table 3: Criterion as a function of LMI relaxation order for Ex. 8
d 1 2 3 4

V d
M 0.0463 0.0680 0.2188 0.2972

Finally, position, velocity and impulses history are illustrated in Figure 7. Note the
symmetry of the optimal four-impulse solution.

Figure 7: Positions (X solid, Z dashed), velocities (Ẋ solid, Ż dashed) and impulses (on
X axis): Case 3 of [5]
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8 Conclusion

The focus of this work is on actual computation of optimal impulsive controls for systems
described by ordinary differential equations with polynomial dynamics and polynomial
(semialgebraic) constraints on the state. State trajectory and controls are measures which
are linearly constrained, resulting in an infinite-dimensional linear programming (LP)
problem consistent with the formalism of our GloptiPoly software [9]. This LP problem
on measures can then be solved numerically via a hierarchy of linear matrix inequality
(LMI) relaxations, for which off-the-shelf semi-definite programming (SDP) solvers can be
used. The optimal impulse sequence can then be retrieved by simple linear algebra, and
global optimality can be verified by a posteriori simulation or comparison with suboptimal
control sequences computed by alternative techniques.

For space rendezvous, our technique can be readily adapted to cope with state (e.g.
obstacle avoidance) constraints, as soon as they are basic semialgebraic. Other criteria
than the total variation can also be handled. Smoother solutions can be expected, maybe
consisting of a mix of absolutely continuous and singular controls, including impulsive
controls.
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