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ABSTRACT
In order to compensate the loss of performances when scal-

ing resonant sensors down to NEMS, it proves extremely useful
to study the behavior of resonators up to very high displacements
and hence high non linearities. This work describes a com-
prehensive non linear multiphysics model based on the Euler-
Bernoulli equation which includes both mechanical and electro-
static nonlinearities valid up to displacements comparable to the
gap in the case of a capacitive doubly clamped beam. Moreover,
the model takes into account the fringing field effects, significant
for thin resonators. The model has been compared to electri-
cal measurements of devices fabricated on 200mm SOI wafers
and show a very good agreement. This model allows designers
to cancel out non linearities by tuning some design parameters
and thus gives the possibility to drive the resonator beyond its
critical amplitude. Consequently, the sensors performances can
be enhanced to the maximum bellow the pull-in amplitude, while
keeping a linear behavior.

Introduction
Nanoelectromechanical systems (NEMS) have been the fo-

cus of recent applied and fundamental research. With critical
dimensions down to a few tens of nm, most NEMS are resonant
devices. In this size regime, they display high fundamental res-
onance frequencies (recently going beyond 1GHz [1, 2]), dimin-
ished active masses, tolerable force constants and relatively high

quality factors in the range of 102 − 104. These attributes col-
lectively make NEMS suitable for a multitude of technological
applications such as ultrasensitive force and mass sensing, nar-
row band filtering, and time keeping. However, the smaller the
structures, the sooner nonlinearities occur [3], reducing their dy-
namic range and even making them extremely difficult to detect,
as proves the abundant literature about characterization tech-
niques [4]. The sensitivity of a resonant sensor may be given
by its frequency noise spectral density [5]:

Sω(ω) =
(

ωn

2Q

)2 Sx(ωn)
P0

(1)

Where Sx(ωn) is the displacement spectral density and P0 is
the displacement carrier power, ie the RMS drive amplitude of
the resonator 1

2 A2. The latter is classically driven below the
hysteretic limit (critical amplitude) due to the mechanical non-
linearity [3]. Following Postma et al. [3], the resonator open-loop
stability amplitude is Ac ∝

h
Q where h is the resonator vibrating

thickness and Q is its quality factor. It is easy to see how dras-
tic the performance degradation may be in the case of a NEMS
with small h. It has been shown that closed-loop control permits
operating beyond the critical amplitude [6]), eventually up to the
pull-in amplitude in the case of capacitive transduction. But to
do so, it is necessary -first, to precisely know this dynamic pull-
in amplitude, and -second, to avoid the noise aliasing issue [7],
so as not to degrade the amplitude noise density.
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To this end, the non linear behavior of resonators has to
be explored, and numerous models have been presented. Some
of them are purely analytical [8–10] but they include coarse as-
sumptions concerning nonlinearities. For example, Kozinsky et
al. [10] use a nonlinear model with a 3rd order Taylor series ex-
pansion of the electrostatic forcing applied to a nanoresonator in
order to tune the effective Duffing coefficient using an external
electrostatic potential. However, this approximation is limited by
the beam displacement (not more than 20% of the gap), and the
static displacement is used for tuning, which stays limited.
Other models [11, 12] are more complicated but use numerical
integrations (shooting and continuation) which make them less
interesting for M/NEMS designers.

In this paper, a compact and analytical model including all
main sources of nonlinearities is presented and validated thanks
to the characterization of a vibrating accelerometer sensing el-
ement, an electrostatically driven clamped-clamped beam. It
is shown how the model can be used to engineer the resonator
non-linearities in order to drive it at the highest possible am-
plitude while suppressing its hysteresis, thus retrieving a linear
behaviour.

Model
A clamped-clamped microbeam is considered (Figure 1)

comprising a viscous damping per unit length c̃ and actuated by
an electric load v(t) = −V dc +Vaccos(Ω̃t̃), where V dc is the
DC polarization voltage, Vac is the amplitude of the applied AC
voltage, and Ω̃ is the excitation frequency.
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Figure 1. Schema of an electrically actuated microbeam

Equation of motion
The transverse deflection of the microbeam w(x, t) is gov-

erned by the nonlinear Euler-Bernoulli equation, which is the
commonly used equation of motion for a slender beam

EI
∂4w̃
∂x̃4 +ρbh

∂2w̃
∂t̃2 + c̃

∂w̃
∂t̃
−

[
Ñ +

Ebh
2l

∫ l

0

[
∂w̃
∂x̃

]2

dx̃

]
∂2w̃
∂x̃2

=
1
2

ε0
bCn1

[
Vaccos(Ω̃t̃)−V dc

]2

(ga− w̃)2 H1(x̃)

−1
2

ε0
bCn2 [V s−V dc]2

(gd + w̃)2 H2(x̃) (2)

With:

H1(x̃) = H(x̃− l + la
2

)−H(x̃− l− la
2

) (3)

H2(x̃) = H(x̃− l + ld
2

)−H(x̃− l− ld
2

) (4)

where x̃ is the position along the microbeam length, E and I are
the Young’s modulus and moment of inertia of the cross sec-
tion. Ñ is the applied tensile axial force due to the residual stress
on the silicon (or the effect of the measurand in the case of an
accelerometer), t̃ is time, ρ is the material density, h is the mi-
crobeam thickness, ga and gd are respectively the actuation and
the sensing capacitor gap width, ε0 is the dielectric constant of
the gap medium. The last term in Equation (2) represents an
approximation of the electric force assuming a resonator design
with 2 stationary electrodes : electrode 1 for the actuation and
electrode 2 for the sensing including the fringing field effect us-
ing the coefficients Cni. Since the electrodes do not act on the
whole length of the beam, the electrostatic force distributions are
modeled by means of Heaviside functions H(x̃). The boundary
conditions are:

w̃(0, t̃) = w̃(l, t̃) =
∂w̃
∂x̃

(0, t̃) =
∂w̃
∂x̃

(l, t̃) = 0 (5)

Normalization
For convenience and equations simplicity, let the following

nondimensional variables be introduced:

w =
w̃
gd

, x =
x̃
l
, t =

t̃
τ
, Rg =

ga

gd
(6)

where τ =
2l2

h

√
3ρ

E
.

Substituting Equation (6) into Equations (2) and (5) yields

∂4w
∂x4 +

∂2w
∂t2 + c

∂w
∂t

+α2Cn2
[V s−V dc]2

(1+w)2 H2(x)

= α2Cn1
[Vaccos(Ωt)−V dc]2

(Rg−w)2 H1(x)

+

[
N +α1

∫ 1

0

[
∂w
∂x

]2

dx

]
∂2w
∂x2 (7)

w(0, t) = w(1, t) =
∂w
∂x

(0, t) =
∂w
∂x

(1, t) = 0 (8)
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Solving
The beam total displacement w(x, t) can be written as a sum

of a static dc displacement ws(x) and a time-varying ac displace-
ment wd(x, t). However, for our devices, it is easy to check that
the static deflexion is negligible. Typically, the measured quality
factors Q are in the range of 104−5.104 and the V dc≤ 200Vac.
Thus, the ratio between the static and the dynamic deflexion is

ws(x)
wd(x, t)

≈ V dc
2Q.Vac

≤ 1%.

A reduced-order model is generated by modal decomposition,
transforming Equation (7) into a finite-degree-of-freedom sys-
tem consisting in ordinary differential equations in time. The un-
damped linear mode shapes of the straight microbeam are used
as basis functions in the Galerkin procedure, and the deflection
is approximated by

w(x, t) =
n

∑
k=1

ak(t)φk(x) (9)

where n is the number of retained modes (size of the modal ba-
sis), ak(t) is the kth generalized coordinate and φk(x) is the kth

linear undamped mode shape of the straight microbeam, normal-

ized such that
∫ 1

0
φkφ jdx = 0 for k 6= j and governed by:

d4φk(x)
dx4 = λ

2
kφk(x) (10)

φk(0) = φk(1) = φ
′
k(0) = φ

′
k(1) (11)

Here, λk is the kth natural frequency of the microbeam. Multiply-
ing Equation (7) by φk(x) [(1+w)(Rg−w)]2, substituting Equa-
tions (9) and (10) into the resulting equation, and then integrating
the outcome from x = 0 to x = 1 yields a system of coupled or-
dinary differential equations in time.

Assuming that the first mode should be the dominant mode
of the system and neglecting the terms related to the higher order
modes, the following equation is obtained

ä1 +ωn
2a1 +µ1a1ä1 +µ2a1

2ä1 +µ3a1
3ä1 +µ4a1

4ä1

+cȧ1 + cµ1a1ȧ1 + cµ2a1
2ȧ1 + cµ3a1

3ȧ1 + cµ4a1
4ȧ1

+χ2a1
2 +χ3a1

3 +χ4a1
4 +χ5a1

5 +χ6a1
6 +χ7a1

7

+ν+ζ0 cos(Ωt)+ζ1a1 cos(Ωt)+ζ2a1
2 cos(Ωt)

+ζ3 cos(2Ωt)+ζ4a1 cos(2Ωt)+ζ5a1
2 cos(2Ωt) = 0 (12)

Some canonical nonlinear terms can be identified in Equation
(12), such as the cubic stiffness term (Duffing non linearity), the
nonlinear Van der Pol damping (cµ2a1

2ȧ1) as well as the para-
metric excitation (Mathieu term). Other terms correspond to

high-level nonlinearities and multifrequency parametric excita-
tions. All these terms come from the coupling between the me-
chanical and the electrostatic nonlinearities as well as the nonlin-
ear coupling between both electrostatic forces.
To analyse this equation of motion, it proves convenient to in-
voke perturbation techniques which work well with the assump-
tions of ”small” excitation and damping (Q > 10), typically valid
in MEMS resonators.

A detuning parameter is introduced as Ω = ωn + εσ and the
averaging method [13] is used in order to transform Equation
(12) into two first order non-linear ordinary-differential equa-
tions which describe the amplitude and phase modulation of the
response and permit a stability analysis

Ȧ = ε
sin[β]ζ0

2ωn
+ ε

A2 sin[β]ζ2

8ωn
− ε

Ac
2

−ε
A3cµ2

8
− ε

A5cµ4

16
+O(ε2) (13)

β̇ = εσ− ε
3A2χ3

8ωn
− ε

5A4χ5

16ωn
− ε

35A6χ7

128ωn
− ε

cos[β]ζ0

2Aωn

−ε
3Acos[β]ζ2

8ωn
+ ε

3
8

A2
ωnµ2 + ε

5
16

A4
ωnµ4 +O(ε2) (14)

The steady-state motions occur when Ȧ = β̇ = 0, which corre-
sponds to the singular points of Equations (13) and (14).Thus,
the frequency-response equation can be written in its parametric
form {A = K1(β), Ω = K2(β)} in function of the phase β.

The critical amplitude is the oscillation amplitude Ac above
which bistability occurs. The latter can be calculated using the
model and assuming that the mechanical nonlinearities are pre-
ponderant.

Ac = 1.685
h√
Q

(15)

All the numerical simulations and the experimental characteriza-
tion were carried out for one of ours devices with the following
set of parameters : l = 200µm, b = 4µm, h = 2µm, la = 20µm,
ga = 1µm, ld = 112µm, Vs = 0V , stress = 15MPa. Vac, Vdc and
gd were used for parametric studies.

This analytical model enables the capture of all the non lin-
ear phenomena in the resonator dynamics and describes the com-
petition between the hardening and the softening behaviors. In
addition, the model allows the optimization of resonator designs

by tuning the parameter
h
gd

in order to cancel out the nonlineari-

ties as shown in Figure 2 for gd = 500nm (black curve) and thus
enhancing the limit of detection of MEMS and NEMS resonant
sensors.
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Figure 2. Predicted forced frequency responses
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Figure 3. Connection layout for the electrical characterization

Experimental characterization
The fabricated resonators are electrostatically actuated in-

plane and their measured quality factors are very high (104 −
5.105). As a consequence, the critical amplitude is around 15nm
and thus, the capacitance variation is around 2 aF . Considering
the low capacitance variations [14] and the high motional resis-
tance combined with the important parasitic capacitances, track-
ing the resonance peak purely electrically is rather awkward. Be-
ing at the limit of electric direct measurement, a SEM set-up was
developed as a first step, coupled with a real-time in-situ elec-
trical measurement using an external low noise lock-in amplifier
(Figure 3).

(a)

(b)

2.552 µm

2.183 µm

1.905 µm

2.040 µm

412nm

661nm

683nm

960nm

Figure 4. (a): SEM image of the resonator resonance. (b): SEM image
of the resonator at rest. Dimensions: 200µm×2µm×4µm.

This set-up allows the simultaneous visualization of the reso-
nance by SEM imaging (Figure 4) and the motional current fre-
quency response measurement.

As a second step, once the resonance frequency was found,
the SEM setup was not used to permit precise measurements and
the device was placed in a vacuum chamber and measurements

were performed at room temperature. The residual stress (
Ñ
bh

)
calculated knowing the frequency shift between the natural fre-
quency and the measured frequency is around 15MPa and the
fringing field effect coefficients are Cn1 = 1.6 and Cn2 = 1.5. As
shown in Figure 5, the raw signal given by the lock-in amplifier
shows a weak resonance peak drowned in a large background,
followed by an antiresonance, both due to a large feedthrough
capacitance. To get rid of this effect, a measurement is carried
out with null DC voltage. In this case, the beam does not res-
onate and thus, no motional signal is measured. The vectorial
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Figure 5. The raw signal given by the lock-in amplifier
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ZLock-in

Vac Vout

Figure 6. Equivalent electric circuit

subtraction of the two signals gives the signal purely due to the
motional current which is compared with the model results.

Considering the equivalent electrical scheme of the measurement
chain (see Figure 6), the output voltage generated by this system
can be expressed as:

Vout(t) =
ZcableZLockin

Zcable +ZLockin
(V dc−V s)

dCres

dt
(16)

dCres

dt
=

∫ l+ld
2l

l−ld
2l

bCn2ε0φ1(x)a′1(t)
(1−a1(t)φ1(x))2 dx (17)

Where Vs is the DC voltage applied to the sensing electrode,
ZLockin is the internal impedance of the lock-in amplifier and
Zcable is the impedance of the parasitic capacitances due to the
connection cables.

The output voltage was calculated analytically using the results
of the reduced order model in displacement (Equations (16) and
(17)) and a Taylor series expansion of the capacitance. All re-
sults shown below were obtained with the same device using the
same experimental conditions, and in particular at low enough a
pressure so that the quality factor has reached saturation. Only
the bias and drive voltages may vary as indicated on the graphs.

490.5 491.0 491.5 492.0 492.5 493.0
fHKHzL

5.µ 10-7

1.µ 10-6

1.5 µ 10-6

2.µ 10-6

2.5 µ 10-6

Vout HVL - Model V dc = 1 V and Q = 50000

- Model V dc = 3 V and Q = 23000

- Model V dc= 5 V and Q = 11000

… Experimental points

1.6 KHz

0.8 KHz

Vac = 5 mV

Vdc

Figure 7. Measured and predicted frequency responses

Linear case (A < Ac):
The vibration amplitude of the resonator is lower than the

critical amplitude. It is paradoxically a difficult condition to ob-
tain, as it demands a low drive, and thus the signals are very
weak. A great effort has been needed on the noise and output
capacitances reduction to get the peaks out of the background.

It is important to underline that all the inputs of the model
are known physical parameters including the fringing field co-
efficients computed using the analytical formulas [15], except
the quality factor Q measured experimentally. No parameter has
been tuned to fit the experimental results, in order to assess the
prediction capability of the model.

Figure 7 shows 3 linear peaks obtained for different values
of the bias voltage Vdc (1V − 3V − 5V ) and same drive volt-
age. The reader will note that the loaded quality factor change
(5.104−2.3.104−1.1.104) accordingly [16]. The resonance fre-
quencies also decrease from 493 KHz (Green curve) to 490.5
KHz (Black curve) due to the negative stiffness, phenomenon
very well displayed by the model. Precisely, the effect of the
negative electrostatic stiffness gives frequency shifts of 0.8KHz
between the green and the red curves and 1.6KHz between the
red and the black curve. Moreover, the shape of the peaks and
their predicted amplitudes using the model are in excellent corre-
lation with the experimental measured points. Both red and black
linear peaks are in the same range of oscillation amplitude (1.8
V for the red peak and 2.4V for the black curve). However, the
red peak with high quality factor (Q = 23000) is very close to
the critical amplitude (Vout = 1.9V ), which is well in agreement
with Equation (15).

Nonlinear case (A > Ac):
The vibration amplitude of the resonator is higher than the

critical amplitude. The actuation voltage Vac is increased from
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Figure 8. Measured and predicted frequency responses

5mV used for linear peaks to 20mV here. Figure 8 shows 3
non linear peaks, again obtained for different values of Vdc
(1V − 3V − 5V ). The use of the same resonator, same vacuum
conditions and same bias values as in the linear case allows for
the identification of the quality factors from the measurements
in Figure 7, assuming that no extra damping mechanism takes
place. The predicted curves using the model are in very good cor-
relation in shape and frequency shift (negative stiffness) with the
measured points, although the model displays slightly higher am-
plitudes; the unstable jumps make it awkward to obtain precise
comparison of high quality factor peaks. Indeed, it is easy to fit
perfectly the experimental curves with slightly different values of
width, quality factor and residual stress. This is confirmed by the
fact that the ratio between the critical amplitude calculated us-
ing the model and the peak amplitude measured experimentally
Vout

Vc
is around 5 for the red curve (for which the discrepancy is

highest) and 3 for the green and the black curves. Consequently,
the red peak is more non linear than the 2 other peaks which is
clearly shown in Figure 8 from the curvature of each peak. Also,
this validates the close form expression of the critical amplitude
(Equation (15)).

Conclusion
This work has detailed the development of an analytical

model and its validation to quantitatively assess the non lin-
ear dynamics of M/NEMS resonators. This model includes all
sources of non linearities, in particular of the electrostatic ones
without approximation and is based on the modal decomposition
using the Galerkin procedure combined with a perturbation tech-
nique (the averaging method). It has been chosen here to study
clamped-clamped beams, but this research will be extended in
the future to other types of boundary conditions and structures.

Experimental validation has been performed thanks to the

fabrication and electrical measurements of M/NEMS resonators,
driven at different (linear and non linear) conditions. All param-
eters of the model except the quality factor are set prior to the
comparison, which shows an excellent agreement in frequency,
peak shape and amplitude, although the latter is slightly higher
in the model results for highly non linear resonances, which will
be further studied. This shows nonetheless it can be an efficient
predictive tool.

It has shown how it is possible to tune some design param-
eters (like the ratio between the beam vibrating width h and the
detection gap thickness gd) to keep a linear behavior up to the
pull-in point. The consequence of this may be a great gain in
sensors’ sensitivity, as the resonator’s carrier power is largely in-
creased while keeping linear may prevent most of noise aliasing.
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