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Abstract

Although robots tend to be as competitive as CNC machines for some operations, they are not yet widely

used for machining operations. This may be due to the lack of certain technical information that is required

for satisfactory machining operation. For instance, it is very difficult to get information about the stiffness

of industrial robots from robot manufacturers. As a consequence, this paper introduces a robust and fast

procedure that can be used to identify the joint stiffness values of any six-revolute serial robot. This procedure

aims to evaluate joint stiffness values considering both translational and rotational displacements of the robot

end-effector for a given applied wrench (force and torque). In this paper, the links of the robot are assumed

to be much stiffer than its actuated joints. The robustness of the identification method and the sensitivity of

the results to measurement errors and the number of experimental tests are also analyzed. Finally, the actual

Cartesian stiffness matrix of the robot is obtained from the joint stiffness values and can be used for motion

planning and to optimize machining operations.

Keywords: Stiffness analysis; joint stiffness identification; Cartesian stiffness matrix; complementary stiff-

ness matrix; serial robots; robot machining.

1 Introduction

Serial robots are mainly used in industry for tasks that require good repeatability but not necessarily good global

pose accuracy (position + orientation as defined in ISO9283) of the robot end-effector (EE). For example, these

robots are generally used for pick-and-place, painting and welding operations. Nevertheless, they are now being

used for machining operations, such as the trimming, deflashing, degating, sanding and sawing of composite

parts, that require high precision and stiffness. Therefore, to perform these operations, the robots must show

good kinematic and elastostatic performance. In this context, it appears that conventional machine tools such

as the gantry CNC are still more efficient than serial robots. Therefore, it is important to pay attention

to robot performance to optimize their usefulness for machining operations. Some research works discuss the
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following: (i) tool path optimization considering both kinematic and dynamic robot performance [1, 2, 3]; (ii) the

determination of optimal cutting parameters to avoid tool chattering [3, 4]; (iii) robot stiffness analysis [5]; and

(iv) the determination of robot performance indices [6, 7, 8, 9, 10]. Robot stiffness is also a relevant performance

index for robot machining [11]. Accordingly, this paper discusses the stiffness modeling of serial robots and

identifies their stiffness parameters. Some stiffness models can be found in the literature for serial and parallel

manipulators [12, 13]; however, the identification of stiffness parameters has yet to be determined.

Two methods were presented in [14] to obtain the Cartesian stiffness matrix (CaSM) of a five-revolute

robot. The first method consists of clamping all of the joints except one to measure its stiffness. The joint

stiffness matrix of the robot is obtained by repeating the procedure for each revolute joint. Therefore, only

five experiments are required with this method to evaluate the CaSM of the robot throughout its Cartesian

workspace assuming that the stiffness of the links is known. The second method measures the displacements of

the robot end-effector due to certain applied loads and evaluates the robot Cartesian stiffness matrix throughout

its Cartesian workspace with some interpolations. This method provides a good approximation of the robot

CaSM when many tests are performed under different robot configurations. The second method gives better

results than the first. As far as the second method is concerned, all deformations are considered including those

due to the joint and link flexibilities along and about all of the axes. On the contrary, in the first method, the

links of the robot are assumed to be rigid, and only the stiffness of the joints is considered.

This paper introduces a method to identify the joint stiffness values of any six-revolute industrial serial robot.

The proposed method is based on conservative congruence transformation [15], requires few experimental tests,

is easy to implement and does not require any closed-loop control or actuator currents. This method also

considers both forces and moments applied on the robot end-effector. Therefore, both the translational and

rotational displacements of the robot end-effector are considered. Finally, the optimal number of experimental

tests and robot configurations used to perform the joint stiffness identification are given.

The Kuka KR240-2 robot is used as an illustrative example throughout the paper. Its kinematic performances

are analyzed in Section 2. Its Cartesian stiffness matrix is shown in Section 3. Section 4 contains a sensitivity

analysis of the Cartesian stiffness matrix of the robot to its complementary stiffness matrix and the determination

of the optimal robot configurations for joint stiffness identification. The subject of Section 5 is the robustness

of the proposed joint stiffness identification method with regard to measurement noise.

2 Kinematic Performance of the Kuka KR240-2 Robot

The kinematic chain of the Kuka KR240-2 robot is shown in Fig. 1. The sixth link carrying the operation point P

is connected to the base frame F0 through a serial chain composed of six revolute joints. The modified Denavit

Hartenberg parameters (DHm), described in [16], are used to parameterize the robot. Then, the kinematic

Jacobian matrix of the robot was obtained, and its kinetostatic performance is evaluated throughout both its

joint space and Cartesian workspace.

2.1 Parameterization

As illustrated in Fig. 1, the robot is composed of seven links, denoted as L0, . . . , L6, and six revolute joints.

Link L0 is the base of the robot, while link L6 is the terminal link. Joint j connects link j with link j − 1,

j = 1, . . . , 6. Frame Fj attached to link j, j = 0, . . . , 6, is defined such that:

• the zj axis is along the axis of joint j;
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• the xj axis is along the common normal between zj and zj+1. If the axes zj and zj+1 are parallel, the

choice of xj is not unique;

• the origin Oj is the intersection of zj and xj .

The DHm parameters of the Kuka KR240-2 robot are given in Tab. 1.
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Figure 1: DHm Parameterization of the Kuka KR240-2 robot

Table 1: DHm parameters of the Kuka KR240-2 robot

j a(j) µj σj αj dj θj rj

1 0 1 0 0 0 θ1 0
2 1 1 0 π/2 d2 θ2 0
3 2 1 0 0 d3 θ3 0
4 3 1 0 −π/2 d4 θ4 RL4
5 4 1 0 π/2 0 θ5 0
6 5 1 0 −π/2 0 θ6 RL6



C. Lecerf, S. Caro, S. Garnier and B. Furet 4

The Cartesian workspace of the robot is shown in Fig. 2, and its size is characterized as A = 3100 mm,

B = 3450 mm, C = 2700 mm, D = 1875 mm, E = 825 mm, and F = 1788 mm.
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Figure 2: Cartesian workspace of the Kuka KR240-2 robot

2.2 Kinematic Jacobian

The 6 × 6 kinematic Jacobian matrix J of the robot relates the joint rates to the twist of the end effector,

namely,

t =

[

ṗ

ω

]

= J θ̇ (1)

t is its end-effector twist, which is composed of its translational velocity vector ṗ and its angular velocity vector

ω expressed in F0.

θ̇ =
[

θ̇1 θ̇2 θ̇3 θ̇4 θ̇5 θ̇6

]T

(2)

θ̇i is the ith actuated revolute joint rate.

2.3 Kinetostatic Performance Index

We understand here under kinetostatics the mechanical analysis of rigid-body mechanical systems moving under

static, conservative conditions. Kinetostatics is thus concerned with the relations between the feasible twists

— point-velocity and angular velocity — and the constraint wrenches — force and moment — pertaining to

the various links of a kinematic chain [17].

Accordingly, we focus on issues pertaining to manipulability or dexterity. We understand these terms in the

sense of measures of the distance to singularity, which brings us to the concept of condition number in [18, 19].

Here, we adopt the condition number of the underlying kinematic Jacobian matrix based on the Frobenius norm

as a means to quantify distances to singularity. The condition number κF (M) of an m × n matrix M when
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m ≤ n, based on the Frobenius norm is defined as follows:

κF (M) =
1

m

√

tr(MTM)tr [(MTM)−1] (3)

Here, the condition number is computed based on the Frobenius norm because the latter produces a condition

number that is analytic in terms of the posture parameters, whereas the 2-norm does not. In addition, it is

costlier to compute singular values than to compute matrix inverses.

The terms of matrix J are not homogeneous as they do not have same units. Therefore, as shown in [20]

and [21], the Jacobian matrix can be normalized by means of a normalizing length, which is called characteristic

length and denoted as L. Let JN be the normalized Jacobian matrix of the Kuka KR240-2 robot:

JN =





1

L
I3×3 03×3

03×3 I3×3



J (4)

I3×3 is the 3× 3 identity matrix and 03×3 is the 3× 3 zero matrix. The characteristic length of the Kuka robot

used in this study is equal to 0.682 m and was obtained by means of the methodology proposed in [22]. The

condition number is used to have an idea of the zones (on θ2 and θ3 ranges) where the robot has good dexterity.

It appears that a change in the condition number of JN throughout the robot Cartesian workspace does not

depend on L, although its value depends on L.

Because the second and the third revolute joints are the most influential joints on the translation motions

of the robot end-effector, and because the first revolute joint does not affect manipulator dexterity, θ1 is null,

and the wrist angles θ4, θ5 and θ6 are set to 45◦ so that the corresponding wrist configuration is far from

singularities.
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Figure 3: Contours of the inverse condition number of JN : (a) in the robot Cartesian workspace and (b) in the
robot joint space θ2, θ3

Figure 3(a) depicts the isocontours of the inverse condition number of JN based on the Frobenius norm,
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κF (JN )−1, throughout the robot’s Cartesian workspace. The higher κF (JN )−1, the better the dexterity. On

the contrary, the lower κF (JN )−1 is, the closer the robot to singularities.

Likewise, Fig. 3(b) shows the isocontours of κF (JN )−1 throughout the robot joint space. The blacker the

color, the closer the manipulator to singularities. The oblique black line characterizes the configurations in

which the wrist center is located on the first joint axis. The horizontal black line in Fig. 3(b) characterizes the

singularities when the arm is folded.

Figures 3(a)-(b) are useful in choosing the optimal robot configurations for joint stiffness identification as

explained in Section 4.

3 Cartesian Stiffness Matrix Formulation

The Cartesian stiffness matrix of a robot depends on its configuration, link stiffness, control loop stiffness and

actuators mechanical stiffness. In this paper, the last two sources of stiffness are considered. The links of the

robot are assumed to be rigid, the damping is neglected and the stiffness of the joints is represented with linear

torsional springs.

Conservative congruence transformation was proposed by Chen and Kao [23] to define the spatial CaSM of

a serial robot. We obtain the relation:

w = KX∆X (5)

with

KX = J−T (Kθ −KC)J
−1 (6)

w is the 6-dimensional wrench vector composed of the forces and torques applied on the end-effector and

expressed in F0. KX is the 6×6 CaSM of the robot expressed in F0. ∆X is the 6-dimensional vector composed

of the translational and rotational displacements of the end-effector expressed in F0. J is the kinematic Jacobian

matrix of the robot defined in Eq. (1). Kθ is the diagonal joint stiffness matrix defined as follows:

Kθ =























kθ1 0 0 0 0 0

0 kθ2 0 0 0 0

0 0 kθ3 0 0 0

0 0 0 kθ4 0 0

0 0 0 0 kθ5 0

0 0 0 0 0 kθ6























(7)

Where kθi , i = 1, . . . , 6, is the ith joint stiffness value. KC is the complementary stiffness matrix (CoSM)

defined in [15] that takes the form:

KC =

[

∂JT

∂θ1
w

∂JT

∂θ2
w

∂JT

∂θ3
w

∂JT

∂θ4
w

∂JT

∂θ5
w

∂JT

∂θ6
w

]

(8)

It is noteworthy that this expression is equivalent to Salisbury’s when there is no force or torque applied on

the robot end-effector. Matrix KC is not null and affects matrix KX . This expression respects the principle

of virtual work and has been tested on several robots [15, 24]. The identification of the joint stiffness values

kθi , i = 1, . . . , 6, is the subject of the next section because they are required to evaluate KX for any robot

configuration.
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4 Joint Stiffness Matrix Evaluation

Figure 4 shows a procedure to evaluate the joint stiffness matrix Kθ, which was expressed in Eq. (7). First, the

zones of the robot workspace and joint space where the robot has good dexterity are identified in Figs. 3(a)-

(b). Then, for a given wrench applied on the robot end-effector, the areas of the previous zones where the

complementary stiffness matrixKC is negligible with respect toKθ are determined. Certain robot configurations

are chosen from those areas for the tests. For each test, a given wrench is applied on the robot end-effector,

and its displacements (translations and rotations) are measured. Finally, the joint stiffness values are obtained

by a given number of tests.

Identify the zones of the joint space where the robot has a good dexterity

Zones where the robot has a good dexterity are known

Identify the areas of the previous zones where KC is negligible with respect to Kθ

Zones where KX ≈ J
−T (Kθ)J

−1 are known

Select a robot configuration

An optimum robot configuration is selected for the test

Apply a wrench (force and moment) on the robot end-effector

The robot end-effector is loaded with a given wrench

Measure the displacements (translations and rotations) of the end-effector

The displacements of the robot end-effector are found

Evaluate the joint stiffness values with Eq.(21)

i = n, where n is the number of tests required and determined in Section 4.2

Kθ is found

i < n

i = i + 1

Figure 4: Procedure for the evaluation of the joint stiffness values

4.1 Influence of KC on KX

From Eq. (6), KX depends on both Kθ and KC . It makes sense that joint stiffness identification is easier

when KC is negligible with respect to Kθ. Consequently, this section analyzes the influence of KC on KX .

From Eq. (8), the higher the wrench applied on the robot end-effector, the higher the influence of KC on KX .

Consequently, the worst-case scenario appears when the force and the moment applied on the robot end-effector

are at the maximum. Let the components of the force vector along x0, y0 and z0 axes be equal to 2200 N, and

the components of the moment vector about x0, y0 and z0 axes be equal to 400 Nm. For the sake of clarity,

the first three joint stiffness values are assumed to be equal to those found in [24], and the other three joint

stiffness values are chosen arbitrarily as shown in Table 2.
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Table 2: Joint stiffness values given in [24] and expressed in [Nm/rad]

kθ1 kθ2 kθ3 kθ4 kθ5 kθ6
1409800 400760 935280 360000 370000 380000

The norm δp of the robot end-effector small displacement screw is expressed as:

δp =

√

δpx
2 + δpy

2 + δpz
2 (9)

where δpx, δpy and δpz are its displacements along the x0, y0 and z0 axes, respectively. Let δrx, δry and δrz

be the small rotations of the robot end-effector about x0, y0 and z0 axes, respectively.

Let δpKC
and δp

KC
be the point-displacement of the robot end-effector obtained with Eqs. (5) and (6)

assuming that matrix KC is not null and null, respectively. Likewise, let δrxKC
, δryKC

, δrzKC
and δr

xKC
,

δr
yKC

, δr
zKC

be the small rotations of the robot end-effector about the x0, y0 and z0 axes obtained with qs.(5)

and (6), respectively, assuming that matrix KC is not null and null, respectively.

To analyze the influence of KC on KX throughout the robot workspace, we introduce indices νp and νr,

which characterize the influence ofKC on the evaluation of the robot translational and rotational displacements,

respectively:

νp =

∣

∣

∣
δpKC

− δp
KC

∣

∣

∣

max
(

δpKC
, δp

KC

) (10)

and

νr = max
{∣

∣

∣
δrxKC

− δr
xKC

∣

∣

∣
,
∣

∣

∣
δryKC

− δr
yKC

∣

∣

∣
,
∣

∣

∣
δrzKC

− δr
zKC

∣

∣

∣

}

(11)

Figures 5(a)-(b) illustrate the isocontours of νp and νr throughout the robot joint space (θ2, θ3). The blacker

the color, the higher the influence of KC on the evaluation of the end-effector displacements. The shapes of

Fig. 5(a) and Fig. 5(b) are similar. This finding means that the robot configurations for which the influence

of KC on the end-effector translational displacements is at its maximum are the same as those for which the

influence of KC on the end-effector rotational displacements is at its maximum. As shown in Fig. 3(b) and

Figs. 5(a)-(b), the robot configurations for which the influence of KC on KX are at their maximum are also

those for which κF (JN )−1 is at its minimum, i.e., close to singularity.

Nevertheless, the νp and νr values are very small, νp ≤ 0.016 and νr ≤ 0.025 deg throughout the robot joint

space. Accordingly, KC is negligible with respect to Kθ, and Eq.(6) can be reduced to:

KX ≈ J−TKθJ
−1 (12)

The above-mentioned tests were conducted with different joint stiffness values than those given in Table 2.

The shapes of the νp and νr isocontours remained the same, and KC remained negligible with respect to Kθ.

Equation (12) and the robot configurations for which νp and νr are at their minimum re used in the next section

to identify the joint stiffness values of the robot. Then, Eq. (6) is be used to evaluate KX throughout the robot

Cartesian workspace for the sake of accuracy.
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Figure 5: Isocontours of (a) νp and (b) νr in the joint space (θ2, θ3)

4.2 Identification of the Joint Stiffness Values

For the robot configurations in which KC is negligible with respect to Kθ, Eq. (5) takes the form:

w = J−TKθJ
−1δd (13)

As a consequence, the 6-dimensional robot end-effector small displacement screw δd can be expressed as:

δd = JKθ
−1JT

w (14)

Let the joint compliances1 be the components of the 6-dimensional vector x, namely:

x =
[

1/kθ1 1/kθ2 1/kθ3 1/kθ4 1/kθ5 1/kθ6

]T

(15)

1The compliance stands for the inverse of the stiffness
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From Eq. (14), it turns out that

δd =

























∑6

j=1

(

xjJ1j
∑i=6

i=1
Jijwi

)

. . .

. . .

. . .

. . .
∑6

j=1

(

xjJ6j
∑i=6

i=1
Jijwi

)

























(16)

where xj is the jth component of vector x, i.e., xj = 1/kθj , j = 1, . . . , 6.

By isolating the components of vector x in Eq. (16), the joint compliances can be expressed with respect to

the displacements of the robot end-effector as follows:

Ax = δd (17)

where A is a 6× 6 as follows:

A =























J11
∑6

i=1
Ji1wi J16

∑6

i=1
Ji6wi

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

J61
∑6

i=1
Ji1wi J66

∑6

i=1
Ji6wi























(18)

Therefore, a 6-dimensional wrench vector, a 6-dimensional EE displacement vector and a 6 × 6 A matrix

are associated with each test. When only one test is considered, A is a 6-dimensional square matrix. If it is

nonsingular, then Eq. (17) has a unique solution, namely:

x = A−1δd (19)

When several tests are considered, the equation system (17) becomes overdetermined. Assuming that n tests

are considered, n > 1, matrix A becomes 6n× 6. Because matrix A is no longer square, the joint compliance

vector x cannot be calculated using Eq. (19). Because the number of equations is higher than the number of

unknows, it is usually not possible to find a vector x that verifies all 6n equations. Accordingly, we look for the

vector x that minimizes the following error:

minimize E (x) ≡
1

2
‖Ax− δd‖

2

2
(20)

over x

The value of x that minimizes the Euclidean norm of the approximation error of the system is

x0 =
(

ATA
)−1

AT δd = AIδd (21)

where AI is the generalized inverse of A, which is also known as the left Moore-Penrose generalized inverse of

A. The Matlab function ”pinv” has been used to compute this matrix.
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5 Robustness of the Joint Stiffness Identification Method with Re-

gard to Measurement Noise

Alici and Shirinzadeh [24] introduced a method to identify the stiffness values of the first three joints of a

six-revolute robot by measuring only translational displacements of its end-effector. Therefore, they did not

considered the coupling between the rotational and translational Cartesian motions. On the contrary, our

method considers both rotational and translational displacements of the end-effector, and the stiffness values

of the six actuated joints can be identified as explained in the previous section. Finally, a graphical user

interface (GUI), which is shown in Fig. 6, was developed to test our method and to analyze the sensitivity of

the results to measurement noise.

Figure 6: Graphical user interface — robustness of the joint stiffness identification method

5.1 Measurement Noise

This graphical user interface requires the knowledge of the geometric and stiffness models of the robot under

study. The displacements (translations and rotations) of the robot end-effector are assessed for a given wrench

and given joint stiffness values. Then, assuming that the joint stiffness values are no longer known, the GUI

aims at evaluating them from the end-effector displacements.

The GUI returns the exact joint stiffness values when a significant wrench is applied on the robot end-

effector and when the robot does not reach any singularity. To be more realistic, the errors are considered at

the identification stage. The different types of errors, which are given in Table 3, are considered and assumed

to follow a normal distribution.
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Table 3: Sources of errors

Source of errors Magnitude (±)
Position measuring system (tracker resolution) 0.03 mm
Orientation measuring system (tracker resolution) 0.0003 rad
Geometric parameters errors (geometric calibration) 0.03 mm
Force measurement (force sensor) 0.25 N
Torque measurement (torque sensor) 0.0125 Nm
Joint angles (encoder resolution) 0.0001 rad

5.2 Optimal Number of Experiments

From the equation system (17), it is apparent that the higher the number of tests, the higher the degree of

constraint of the equation system, the more accurate the solution.

Let us assume that the actual joint stiffness values of the robot are those given in Table 2, and the wrench

applied on the robot end-effector is:

weff =























0 N

2200 N

2200 N

200 Nm

200 Nm

0 Nm























(22)

Figure 7 illustrates the mean and standard deviation of the joint stiffness values obtained by using the proposed

identification method and for different numbers of tests. From Eq. (17), matrix A has the size of 6n× 6 for n

tests.

We can see that the higher n, the lower the standard deviation of the joint stiffness values, i.e., the more

accurate the evaluation of the joint stiffness values. Obviously, the higher the number of tests, the more expensive

the identification of the joint stiffness values. Therefore, the user must compromise between identification

accuracy and identification cost. Figure 7 shows that five tests are a good compromise.

5.3 Optimal Robot Configurations

The joint stiffness identification method is based on Eq. (21), which requires matrix A to be invertible. To this

end, the robot configuration must be chosen such that κF (JN )−1, where JN is defined in Eq.(4), is as high as

possible.

Figure 8 depicts three zones in the joint space that were obtained from Figs. 3(a) and 3(b). The sensitivity

of the solution of Eq. (21) to errors is at its minimum in the light grey zones. On the contrary, this sensitivity

reaches its maximum in the black zones. Therefore, Table 4 gives θ2 and θ3 ranges associated with good robot

configurations for joint stiffness identification.

Furthermore, matrix KC should be negligible for all robot configurations used for the joint stiffness identi-

fication. Thus, the light grey zones shown in Fig. 8 are correct according to Figs. 5(a) and 5(b).

The GUI shown in Fig. 6 allows the user to analyze the sensitivity of the results to the errors described in

Table 3. The broken lines correspond to the joint stiffness values obtained with different sets of errors. We

can notice that the sixth joint stiffness value, i.e., kθ6 , is the most sensitive to errors because the distance

between the broken lines is a maximum for this joint stiffness value. It means that the identification of kθ6 is
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Figure 7: Mean and standard deviation of the joint stiffness values as a function of the number of tests

more difficult than the identification of its counterparts. This result makes sense because the initial value of

kθ6 given in Table 2 is higher than those of kθ4 and kθ5 . The first three joint stiffness values are determined

correctly because the first three components of weff given in Eq. (22), i.e., the forces applied on the robot

end-effector along the x0, y0 and z0 axes, are high enough to cause a significant translational displacement of

the end-effector.

The user can easily check the sensitivity of the results to variations in each parameter by using the scrollbars.

The lower the torque applied on the robot end-effector, the lower the standard deviations of kθi , i = 1, . . . , 6.

Finally, the user must pay attention to the measurement system used to assess the end-effector orientation

because the corresponding results are very sensitive to measurement noise.

6 Conclusions

The subject of this paper was to develop a new methodology for the joint stiffness identification of six-revolute

industrial serial robots. A robust procedure for joint stiffness identification was proposed, and the Kuka KR240-

2 robot was used as an illustrative example throughout the paper. First, the robot kinematic model was

obtained to determine the optimal robot configurations according to the condition number of its kinematic

Jacobian matrix. Then, its stiffness model was developed through its Cartesian stiffness matrix KX and its

complementary stiffness matrix KC . The links of the robot were assumed to be much stiffer than the joints.

Because the stiffness model and, as a consequence, joint stiffness identification become simple when KC is

negligible with respect to Kθ, we determined the robot configurations that minimized the influence of KC on

KX . The robustness of the method was also studied with a sensitivity analysis of the results to measurement
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urations in the joint space

Table 4: Optimal robot configurations:
ranges of θ2 and θ3

Zone θ2 θ3
1 0◦ to 110◦ −245◦ to −170◦

2 0◦ to 25◦ 0◦ to 29◦

3 100◦ to 146◦ 0◦ to 29◦

errors and to the number of experimental tests. Moreover, the proposed methodology will be improved in a

future work that will identify the link stiffness in addition to the joint stiffness of industrial robots. Finally,

experimental tests will be performed to validate the proposed method.

References

[1] Zha, Xuan F. (2002). “Optimal Pose Trajectory Planning for Robot Manipulators,” Mechanism and

Machine Theory, 37, pp. 1063-1086.

[2] Kim, T. and Sarma, S-E. (2002). “Toolpath Generation along directions of Maximum Kinematic Perfor-

mance; a first cut at Machine-Optimal Paths,” Computer-Aided Design, 34, pp. 453-468.

[3] Matsuoka, S.-I.,Shimizu, K.,Yamazaki, N. and Oki, Y. (1999). “High-Speed End Milling of an Articulated

Robot and its Characteristics,” Elsevier, Journal of Materials Processing Technology, 95, pp. 83–89.

[4] Pan, Z., Zhang, H., Zhu, Z. and Wang, J. (2006). “Chatter Analysis of Robotic Machining Process,”

Journal of Materials Processing Technology, 173, pp. 301-309.

[5] Nagata, F.,Hase, T.,Haga, Z.,Omota, M. and Watanabe, K. (2007). “CAD/CAM-based Position/Force

Controller for a Mold Polishing Robot,” Elsevier, Mechatronics, 17, pp. 207–216.

[6] Zhang, H., Hang, H., Wang, J., Zhang, G., Gan, Z., Pan, Z., Cui, H. and Zhu, Z. (2005). “Machining

with Flexible Manipulator: Toward Improving Robotic Machining Performance,” Proceedings of the 2005

IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Monterey, California, USA,

24-28 July.

[7] Nawratil, G. (2007). “New Performance Indices for 6R Robots,” Mechanism and Machine Theory, 42,

pp. 1499-1511.



C. Lecerf, S. Caro, S. Garnier and B. Furet 15

[8] Kucuk, S. and Bingul, Z. (2006). “Comparative Study of Performance Indices for Fundamental Robot

Manipulators,” Robotics and Autonomous Systems, 54, pp. 567-573.

[9] Mansouri, I. and Ouali, M.(2009). “A new homogeneous manipulability measure of robot manipulators,

based on power concept,” Mechatronics, 19, pp. 927–944.

[10] Kim, B.H., Yi, B.J., Oh, S.R. and Suh, I.H. (2004). “Non-dimensionalized performance indices based

optimal grasping for multi-fingered hands,” Mechatronics, 14, pp. 255-280.

[11] Lecerf-Dumas, C. and Furet, B. (2009). “La Robotique au service de l´ Entreprise: Nécessité de matriser
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