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Abstract

The need of computing with words has become an important topic in many ar-
eas dealing with vague information. The aim of this paper is to present different
tools which support computing with words. Especially, we are concerned with the
weighted aggregation of linguistic term sets, without using fuzzy concepts.

We propose a new aggregation operator, referred to as the symbolic weighted
median that computes the most representative element from an ordered collection
of weighted linguistic terms. This operator aggregates the linguistic labels such that
its result is expressed in terms of the initial linguistic term set though is modified
by using dedicated tools called the generalized symbolic modifiers. One advantage
of this proposal is that the expression domain does not change: we increase or
decrease the granularity only where it becomes necessary. Additionally this new
operator exhibits several interesting mathematical properties.

Key words: Linguistic tools, symbolic modifiers, decision making, median
aggregation operator, weighted information

1 Introduction

The problem raised in this paper is the weighted aggregation of linguistic
statements [2,18–20]. It is a part of the Computing with Words (CW) paradigm
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proposed by Zadeh [21] and recently discussed e.g., in [22]. The fuzzy logic
framework and especially fuzzy sets themselves [21] that underlie CW are not
always easy to obtain from the linguistic term sets. That is why we choose
to keep the words themselves — called linguistic symbols — without going
through a fuzzy modeling.

An important point in the CW is the granularity of information that allows
for a better approximation of the concepts when it is needed [6]. In [1,14] we
introduced linguistic modifiers that offer refinements of a linguistic symbol. In
such a way, data can be represented at the most appropriate level of precision.
Linguistic modifiers associate linguistic terms with functions.

In this paper, we focus interest on the mean, the median [20] and others
operators for linguistic information [7,8]. As a result of the aggregation of
linguistic symbols, the aim of the approach is to obtain a linguistic symbol,
which more or less resembles another symbol coming from the initial set. The
resemblance is expressed by means of linguistic modifiers and the proposed
process allows for the use of the same linguistic term set by being only extended
by these modifiers. This approach is quite convenient and interesting since
experts, users, decision makers involved in the problem defined in the linguistic
framework do not have to deal with new terms nor with an artificial expression
domain.

The paper is organized as follows: in Section 2, we focus on some interesting
operators that deal with weighted linguistic information. We also present the
basic aggregation operators like means or medians. In Section 3, we then
introduce our tools which allow us to modify values in a linguistic context:
the generalized symbolic modifiers. Section 4 details our proposal, i.e. a median
for weighted linguistic values. Finally, Section 5 concludes this study.

2 Existing aggregation operators

2.1 Operators for weighted linguistic information

Some authors like Herrera & Herrera–Viedma have proposed aggregation op-
erators dealing with weighted linguistic information [7]. These operators are
useful when there are various information sources providing linguistic infor-
mation that is not equally relevant. The authors propose three aggregation
operators: the linguistic weighted disjunction (LWD), the linguistic weighted
conjunction (LWC), and the linguistic weighted averaging (LWA). According
to them, aggregation comprises two operations: (1) the aggregation of weights
and (2) the aggregation of information combined with the weights. To accom-
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plish step (1) different operations such as LWD, LWC and LWA operators
based on the LOWA (linguistic ordered weighted averaging) operator [11] can
be used. For step (2), they propose a different function for each aggregation
operator based on a min, max or a LOWA operator.

Another aggregation operator has been introduced in [10,13] in order to deal
with multiple linguistic scales. The result of the aggregation is determined
by using linguistic hierarchies and their computational model. A linguistic
hierarchy is a set of levels, where each level is a linguistic term set coming
at a certain level of granularity. The authors also introduced the concept of
2-tuple [12] composed of a linguistic term in a certain hierarchy and a symbolic
translation that mathematically expresses a reinforcement or a weakening of
the term. The linguistic information (converted into 2-tuples) is aggregated
using an arithmetic means that gives a new 2-tuple [9,12]. It is to notice that
in [10] they consider the use of linguistic term sets that are non uniformly
distributed on the given scale.

Other authors like Valls & Torra use clustering techniques to aggregate data
[17]. They consider heterogeneous data, often involved in multi criteria decision
making, and propose a method to classify the alternatives according to criteria.
The authors study each alternative in relation to the others. They give a
result in linguistic terms as defined by one of the experts. We will see that
the approach proposed in this paper also aims at giving a linguistic answer
obtained from a dictionary.

2.2 Means and medians

Let us present now the three usual forms of the median: let x1, x2 . . . xn be n
arguments, with x1 < x2 < . . . < xn. The pessimistic (i), optimistic (ii) and
“middle” (iii) medians A are defined as:

(i) A(x1, x2, . . . , xn) =











xn+1
2

if n is odd

xn
2

if n is even

(ii) A(x1, x2, . . . , xn) =











xn+1
2

if n is odd

xn
2
+1 if n is even

(iii) A(x1, x2, . . . , xn) =











xn+1
2

if n is odd

1
2
(xn

2
+ xn

2
+1) if n is even

Considering that the elements may not always be equally important, Yager has
proposed a weighted median with the condition that the weights are ordered
before the computation [20]:
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Computation of the median for each end point (after ordering):

0

Median (.4, .5, .6, .7)

.2
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.8

.9

.1

.5

.4

.9

1 1

.9

.6

.5

.2

1

1

.7

.55

.4

E (.9, 1, 1, 1)

D (.8, .9, .9, 1)

C (.4, .4, .5, .55)

B (.2, .5, .6, .7)

A (0, .1, .2, .4)

Fig. 1. Median for fuzzy subsets.

Let (x1, w1), (x2, w2), . . . , (xn, wn) be the elements to aggregate, with wi ∈
[0, 1] and

∑

wi = 1. Let Tj =
∑i

j=1 wj be the sum of the first i weights. The
weighted median is xk where k is defined by: Tk−1 < 0.5 and Tk ≥ 0.5.

However, operators such as medians are usually used to aggregate numbers.
Aggregating fuzzy numbers (representing linguistic statements) with a median
is very interesting. Let us suppose that the information is represented by means
of trapezoidal fuzzy subsets. They can be characterized by using the end points
of their core and support (cf. Figure 1). We propose to compute one median
per type of end point, i.e. we obtain four medians. The end points of the same
kind (i.e. left support limits, or left core limits. . . ) are grouped together and
ordered (cf. definition of the median).

Figure 1 shows an example where the median is not equivalent to an initial
subset: we can say that the result is composed of “some” B and “a little” C.
The problem is now about a suitable representation of this median. Applying
fuzzy modifiers [3–5] on the initial subsets shall provide good results.

In this paper, the approach is similar to that one but the median deals with
linguistic symbols directly, not with numeric values or fuzzy numbers. The
median we define is expressed by the initial symbols after having applied a
certain modification to them. This modification is performed by specific tools
defined in [1] that is the generalized symbolic modifiers.
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3 Generalized symbolic modifiers

The truth of a proposition can be evaluated by means of adverbs that are
represented on a scale of linguistic degrees or linguistic symbols. In [1], we
have proposed tools to combine such degrees. In particular these tools are
useful to measure differences between linguistic symbols. They allow us to
express the modification that a linguistic symbol must undergo to resemble or
to become another linguistic symbol: they are called the linguistic modifiers
or generalized symbolic modifiers. Only one condition must be satisfied: the
linguistic symbols have to be totally ordered.

A generalized symbolic modifier (GSM) is a mapping from an initial pair (a, b)
to a new pair (a′, b′). A pair is composed of a symbol a (also called degree) and
an integer b (corresponding to the total number of symbols). Using a certain
radius ρ — considered as a strength — the new pair is more or less close to
the initial pair: the higher the radius, the less the pairs are close. The position
of a degree a in a scale is denoted p(a), with p(a) ∈ N. A general definition of
a GSM is the following:

Definition 1 Let Lb be a collection of b linguistic terms, with b ∈ N
∗

r {1}.
A GSM mρ is defined as:

mρ : Lb → Lb′

a 7→ a′

i.e. mρ(a) = a′, with b′ ∈ N
∗

r {1}, p(a) < b, p(a′) < b′ and ρ ∈ N
∗.

A proportion or an intensity rate is associated with each linguistic degree on

the considered scale; this rate is expressed as the ratio Prop(a) =
p(a)

b − 1

For example, if we consider a collection L5 with L5={“very bad”; “bad”;
“average”; “good”; “very good”}, then Prop(“very bad”) = 0.

Comparing the proportions between Prop(a) and Prop(a′), we will define three
families of modifiers: weakening, reinforcing and central modifiers. The defi-
nitions of the weakening and reinforcing GSMs are given in Table 1 and EC′

and DC′ are central GSMs recalled in definitions 2 and 3 [16].

Reinforcing and weakening GSMs increase or decrease the Prop of the initial
pair while central GSMs (EC, DC, EC′ and DC′) act like a zoom on the initial
pair, keeping the Prop unchanged. There is a link between EC and DC that
erode or dilate the scale, and the 2-tuples (and the linguistic hierarchies) of
Herrera & Mart́ınez [12,13] which also offer a multigranular context when
representing the knowledge. Indeed it is possible to define EC and DC with 2-
tuples. An example of the usefulness of central GSMs becomes apparent when

5



Table 1. Definitions of weakening and reinforcing GSMs.

MODE Weakening Reinforcing

NATURE

p(a′) = p(a)

p(a′) = max(0, p(a) − ρ) b′ = max(p(a) + 1, b − ρ)
ER(ρ)

b′ = max(2, b − ρ) p(a′) = min(p(a) + ρ, b − ρ − 1)
Erosion EW(ρ)

b′ = max(1, b − ρ)
ER′(ρ)

p(a′) = p(a)

b′ = b + ρ
DW(ρ)

p(a′) = p(a) + ρ

p(a′) = max(0, p(a) − ρ) b′ = b + ρ
Dilation

b′ = b + ρ
DW′(ρ)

DR(ρ)

p(a′) = max(0, p(a) − ρ) p(a′) = min(p(a) + ρ, b − 1)
Conservation

b′ = b
CW(ρ)

b′ = b
CR(ρ)

a teacher has to switch from a certain scale of marks to another one.

Definition 2 Let (a, b) be a pair and ρ ∈ N
∗
r {1}. The GSM EC′(ρ) gives a

new pair (a′, b′), such that:

p(a′) =











































p(a)

b − 1

(

b

ρ
− 1

)

if
p(a)

b − 1

(

b

ρ
− 1

)

∈ N

or

⌊

p(a)

b − 1

(

b

ρ
− 1

)⌋

(pessimistic)
⌊

p(a)

b − 1

(

b

ρ
− 1

)⌋

+ 1 (optimistic)

otherwise

b′ =







































b

ρ
if

b

ρ
∈ N

or

⌊

b

ρ

⌋

(pessimistic)
⌊

b

ρ

⌋

+ 1 (optimistic)

otherwise

Definition 3 Let (a, b) be a pair and ρ ∈ N
∗

r {1}. The GSM DC′(ρ) gives
a new pair (a′, b′), such that:

p(a′) =











































a

(

bρ − 1

b − 1

)

if
bρ − 1

b − 1
∈ N

or

⌊

a

(

bρ − 1

b − 1

)⌋

(pessimistic)
⌊

a

(

bρ − 1

b − 1

)⌋

+ 1 (optimistic)
otherwise

b′ = bρ
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20 10864 12

7

10 5432 6

0 3819
DC′(3)

EC′(2)

Original

CR(1)

CW(1)

20 10864 12

20 10864 125

(p(a) = 6, b = 13)

Fig. 2. Examples of GSMs.

Figure 2 shows examples of GSMs. For instance, if 6 corresponds to the symbol
“interesting”, then applying a CW(1) it results in the expression “a bit less
than interesting”. Applying EC′(2) can produce “more or less interesting” and
when applying a DC′(3) we obtain “very precisely interesting”.

The proportions computed for initial and final degrees allow us for a compar-
ison between the GSMs. Let (a, b), (a′

1, b
′

1) and (a′

2, b
′

2) be an initial pair and
two modified pairs obtained using GSMs m1,ρ and m2,ρ, respectively. For a
given ρ and for any pair (a, b), if Prop(a′

1) < Prop(a′

2) then m1,ρ is weaker
than m2,ρ. The GSMs are thus ordered and a lattice can be established [16]
(cf. Figure 3).

Another interesting result concerns the composition of the GSMs [14]. For
example, composing a modifier ER with a modifier DR consists in applying
(on an initial pair) first a modifier DR and then a modifier ER. Two kinds of
compositions have to be distinguished: homogeneous and heterogeneous ones.
Homogeneous compositions are compositions of modifiers from the same fam-
ily with the same nature, same mode, same name but not necessarily the
same radius. Any other form of composition is heterogeneous, including com-
positions of GSMs from different families. These compositions can reach any
degree on any scale if necessary. Moreover, the linguistic counterpart can be
expressed as combinations of adverbs, such as “very very” corresponding to
CR(ρ) ◦ CR(ρ). The following two theorems can be then proved easily [14]:

Theorem 1 The result of the composition of generalized symbolic modifiers
is also a generalized symbolic modifier: when composing n generalized symbolic
modifiers (of any kind), a valid pair degree/scale is always obtained.

Theorem 2 If mρ1
is any weakening or reinforcing GSM with a radius ρ1,

and mρ2
is any GSM of the same family than mρ1

with a radius ρ2, . . . and
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DW(ρ)

DR(ρ)

Original

ER(ρ)

EW(ρ)

CR(ρ)

ER′(ρ)

DW′(ρ)

CW(ρ)

DC′(ρ)

DC(ρ)

EC′(ρ)
EC(ρ)

Fig. 3. Lattice for the GSMs.

mρn
is any GSM of the same family than mρ1

with a radius ρn, then mρs
=

mρ1
◦ mρ2

◦ . . . ◦ mρn
is a GSM of the same mode than mρ1

, with a radius
ρs equal to the sum of the radii.

For example, ∀ρ1, ρ2, . . . ρn ∈ N
∗, DR(ρ1) ◦ DR(ρ2) ◦ . . . ◦ DR(ρn) = DR(ρ1+

ρ2 + . . . + ρn).

4 A new aggregation operator for linguistic weighted terms

4.1 Definition

Let us consider the problem of a questionnaire with weighted answers obtained
through an opinion poll.

Definition 4 Let Lb = {a0,b−1, a1,b−1, . . . , ab−1,b−1} be a collection of b or-
dered elements ai. The collection of b weighted ordered elements is denoted
〈aw0

0,b−1, a
w1
1,b−1, . . . , a

wb−1

b−1,b−1〉 ∈ BLb (set of these collections) such that
∑

wi = 1.
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The weighted
median is here

a.3
2,2

a.3
0,2

a.4
1,2

With a
.4
1,2, S1 = S2 = .3

Fig. 4. Median: first example.

The symbolic weighted median M is defined as:

M : BLb → Lb′

〈aw0
0,b−1, a

w1
1,b−1, . . . , a

wb−1

b−1,b−1〉 7→ M(〈aw0
0,b−1, a

w1
1,b−1, . . . , a

wb−1

b−1,b−1〉)

= a′w
′

i

i,b′−1 such that:

∣

∣

∣

∣

∣

∣

i−1
∑

p=0

w′

p −
b′−1
∑

p=i+1

w′

p

∣

∣

∣

∣

∣

∣

< ε

= m(a
wj

j,b−1) with wj = 1

= m(aj,b−1)

with m(aj,b−1) a GSM applied to an element of the initial collection Lb.
∑i−1

p=0 w′

p

(resp.
∑b′−1

p=i+1 w′

p) is the sum S1 (resp. S2) of the weights of the elements that
are before — remember that the collection is ordered — (resp. after) the ele-

ment a′w
′

i

i,b′−1.

Note that M does not have any weight, as it is the case for the classical
aggregation operators.

In order to obtain a correct median (i.e. a small ε or ε = 0), a method is to
split the element (with a weight w) into w ∗ 10 “sub-elements” with a weight
of .1 if w is odd, and into w ∗ 5 “sub-elements” with a weight of w/2 if w is
even. This way, a new collection is obtained and the sums S can be computed
with this new collection. Thus the median is either an initial element (taken
directly from Lb) or a sub-element [15].

Figure 4 shows a first example. The median M is an existing element because
S1 = S2 (i.e. ε = 0).

In the second example (cf. Figure 5) when computing the sums S (for each
original element), the difference between S1 and S2 in both cases is too impor-
tant (ε would be too high). That is why the division is performed. Equality
between the sums S is obtained and the median is a sub-element. We denote
a.4

1,2 the parent element of the median a′.2
3,5.
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a.2
0,2

a.4
2,2

a.4
1,2

a′.1
0,5

a′.1
1,5

a′.2
2,5

a′.2
3,5

a′.2
4,5

a′.2
5,5

Step 1: Step 2:

Adding of 6 sub-elementsWith a
.4
1,2, S1 = .2 and S2 = .4

With a
.4
2,2, S1 = .6 and S2 = 0 With a

′.2
3,5, S1 = S2 = .4

a.2
0,2

a.4
2,2

a.4
1,2

Fig. 5. Median: second example.

The weighted
median is here

Step 1: Step 2:

Adding of a sub-element with w = 0

With a
′0
1,2, S1 = .5 and S2 = .5

a.5
1,1

a.5
0,1

a′.5
2,2

a′.5
0,2

a′0
1,2

With a
.5
1,1, S1 = .5 and S2 = 0

With a
.5
0,1, S1 = 0 and S2 = .5

Fig. 6. Median: third example.

Another situation is shown in Figure 6: when computing the sums S for each
initial element, we obtain either S1 =

∑

wi/2 = .5 (and S2 = 0) or S2 =
∑

wi/2 = .5 (and S1 = 0). In this case, the element supporting the division
is a virtuel one, not an initial element. The weights associated to these new
sub-elements are equal to zero since they don’t correspond to real answers
given by people in the opinion poll.

In all cases (except in Figure 4) we can consider that the elements are presented
as a tree — an initial tree — and the median is presented as an element coming
from another tree — a derived tree.

The accuracy of the median depends on the value of ε. A compromise has to
be made between computation time and accuracy.

4.2 Properties of the symbolic weighted median

The symbolic weighted median satisfies the following properties that were
proved in [14]:
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reinforcing

central
GSM

symbolic weighted median

GSM

Fig. 7. From the symbolic weighted median towards the GSMs.

• Identity, monotonicity, idempotence, compensation.
• Boundary conditions: this property means that p times the aggregation of

the lowest element of the tree is the element itself. Similarly, p times the
aggregation of the highest element of the tree is the element itself.

• Continuity (adapted in this case to discrete elements): when the elements
of the tree change slightly, the aggregation operator gives a result slightly
different from the original one.

• Counterbalancing: adding weights on leaves placed above the symbolic weighted
median on the tree, will decrease the final result. And, conversely, adding
weights on leaves below the symbolic weighted median on the tree, will
increase the final result.

4.3 Linguistic counterpart of the symbolic weighted median

After we have provided the definition and the algorithm to compute the me-
dian, we have to express a linguistic counterpart of the median. Looking care-
fully at what is done during the computation, we notice that it looks like
applying modifiers to one of the initial elements (cf. Figure 7). In the example
a central modifier is used, followed by a reinforcing one.

We propose to define which modifier(s) is (are) applied to the initial value
when the symbolic weighted median is computed. To do this, two proportions
will be considered: proportion PM of the element corresponding to the median
and proportion PPM of the element corresponding to the parent element of
the median. We denote PM = Prop(a′

i′,j′) and PPM = Prop(ai,j) where a′
i′,j′

is an element of Lb′ representing the weighted symbolic median and where ai,j

is an element of Lb representing the parent element of a′
i′,j′.

In the example shown in Figure 7, PM = 5/8 and PPM = 1/2. In some other
cases, the computation of PPM is not that easy: in Figure 6, for instance, the
parent element is either a′.5

0,2 (pessimistic case) or a′.5
2,2 (optimistic case).

By using the sign of the difference PM−PPM , the correspondence between the

11



Table 2. Correspondence between the sign of PM − PPM and GSMs.

Sign of PM−PPM GSM(s) to apply

< 0 CW(ρ1)◦DC′(ρ2)

= 0 DC′(ρ)

> 0 CR(ρ1)◦DC′(ρ2)

modifiers and the symbolic weighted median can be carried out (cf. Table 2).
The radii are computed using PM and PPM .

In the example shown in Figure 7, PM − PPM = 1/8, so the GSMs to apply
are CR(1) ◦ DC′(3).

The last step is to find an adequate linguistic equivalence of the symbolic
weighted median.

The idea is to use the GSMs since they can be associated to words, given an
dictionary [16]. For example, and according to the context, the GSM DC′(2)
can be associated to the word “precisely” (remember that ρ = 1 is not valid
for DC′) and DC′(3) to “very precisely”, CR(1) to “a little more than”, CR(2)
to “rather more than”, CR(3) to “more than” and CR(4) to “much more
than”, CW(1) to “a little less than”, CW(2) to “rather less than”, CW(3) to
“more less” and CW(4) to “much less than”. As the GSMs, words can also
be composed with each other: this depends on the application context, on the
language, etc. Given the above dictionary, in Figure 5, the median will be a
CR(ρ1) ◦ DC′(ρ2) composition, with ρ1 = 1 and ρ2 = 2. Linguistically, the
answer will be “precisely a little more than a.4

1,2”.

Figure 8 summarizes the construction of the symbolic weighted median.

Linguistic

element a
′

j,n′
−1

(ai,n−1+ word)

Ordered

elements
computation

Weighted

median

a
w0

0,n−1

a
w

n−1

n−1,n−1

. . .
Correspondence

with the GSMs

CW, CR, DC′

Fig. 8. General diagram of our aggregation operator.

5 Conclusions

In this paper we have introduced a new aggregation operator such as the sym-
bolic weighted median. This operator deals with linguistic information mod-
elled by means of linguistic terms. The only assumption required to compute
the weighted median is to consider a total order defined on the linguistic term
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set used to assess the linguistic information. It receives, as an input, several
weighted linguistic terms from a linguistic term set and, as the output, the
expression of the result is a modified linguistic term, taken from the initial set.
Thus the aggregated answer is always equal to one of the initial symbols (as it
is the case with a usual median), but the symbol may have been weakened or
reinforced. The weights will determine the strength with which the element is
weakened or reinforced. The expression of the aggregation is done with the use
of weakening and reinforcing modifiers applied to the corresponding element.
The result given by the median is more or less accurate, depending on the
computation time.

In further works it could be interesting to use the GSMs, or other linguis-
tic tools, for the construction of operators such as means, for example, or
new kinds of aggregation operators, in order to offer a large set of linguistic
statement aggregation operators.
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