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Convergence to equilibrium in Wasserstein distance for

Fokker-Planck equations

François Bolley∗, Ivan Gentil† and Arnaud Guillin‡

October 17, 2011

Abstract

We describe conditions on non-gradient drift diffusion Fokker-Planck equations for its solu-
tions to converge to equilibrium with a uniform exponential rate in Wasserstein distance. This
asymptotic behaviour is related to a functional inequality, which links the distance with its
dissipation and ensures a spectral gap in Wasserstein distance. We give practical criteria for
this inequality and compare it to classical ones. The key point is to quantify the contribution
of the diffusion term to the rate of convergence, which to our knowledge is a novelty.

Key words: Diffusion equations, Wasserstein distance, functional inequalities, spec-
tral gap

Introduction

In this work we consider the Fokker-Planck equation

∂tµt = ∇ · (∇µt + µtA), t > 0, x ∈ R
n (1)

where A is given vector field on R
n. The evolution preserves mass and positivity, and we are

concerned with initial data µ0 which are probability measures on R
n, so that so are the solutions

µt = µ(t, .) at any time t > 0.
We are interesting in criteria ensuring uniform bounds on the long time behaviour of solu-

tions.

To explain our main issue, let us start with the classical case when A = ∇V such that
∫

e−V dx = 1. The probability measure dµ(x) = e−V (x)dx is a stationary solution of the equation
and it is interesting to know for which V all solutions µt converge to µ as t tends to infinity, in
which sense and with a rate.
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There are various distances to measure the discrepancy between a solution of the equation
and the stationary one : total variation (as in Meyn-Tweedie’s approach), L2-norm, relative
entropy, Wasserstein distance. Perhaps, the simplest way of measuring the gap between a
solution µt and e

−V is the L2-norm of the difference, namely, the quantity

G(t) =

∫

(

µt − e−V
)2
eV dx =

∫

( µt
e−V

− 1
)2
e−V dx.

Formally, by integration by parts,

G′(t) = 2

∫

( µt
e−V

− 1
)

∂tµtdx = −2

∫

∣

∣

∣
∇
( µt
e−V

− 1
)∣

∣

∣

2
e−V dx, t > 0.

Here | · | is the Euclidean norm on R
n. In particular the quantity G(t) is non-increasing in time.

Assume now that the measure e−V satisfies a Poincaré inequality with constant C > 0,
that is,

∫
(

f −
∫

fe−V
)2

e−V dx ≤ 1

C

∫

|∇f |2e−V dx (2)

for all f . By choosing f = µt/e
−V − 1, we obtain G′(t) ≤ −2CG(t). Hence

∫

|µt − e−V |2 eV dx ≤ e−2Ct

∫

|µ0 − e−V |2 eV dx, t > 0 (3)

by integration. In particular this ensures the strong convergence of µt to e
−V in L2(eV ) for any

initial datum µ0 in L2(eV ). In fact, (3) is equivalent to (2) by time-differentiating at t = 0.
Then simple criteria are known for a measure e−V to satisfy the Poincaré inequality (2): for

instance, (2) holds with constant C > 0 if the Hessian matrix ∇2V (x) is uniformly bounded
by below by CIdn (known as the Bakry-Émery criterion, see [ABC+00] for instance); more
generally it holds for some C if V is convex, see for example [BBCG08]. The argument can also
be performed for diverse convex functionals of the quantity µt/e

−V , under the name of entropy
method (see [AMTU01] for instance).

In fact the Poincaré inequality (2) implies the following stronger contraction property be-
tween any two solutions: if µt and νt are two solutions with initial data in L2(eV ), then we can
apply (2) to f = (µt − νt)/e

−V to obtain the contraction property

∫

|µt − νt|2 eV dx ≤ e−2Ct

∫

|µ0 − ν0|2 eV dx, t > 0. (4)

It implies (3) by letting ν0 = e−V .
As a conclusion, the long time convergence estimate (3) is equivalent to the (seemingly

stronger) L2-contraction property (4) of two solutions, and to the Poincaré inequality (2).

Contraction results between solutions to (1) can also be measured in terms of Wassertein
distances. If µ1, µ2 are two probability measures on R

n, their Wasserstein distance is defined by

W2(µ1, µ2) = inf
(

E|X − Y |2
)1/2

,

where the infimum runs over all random variables X and Y with law respectively µ1 and µ2.
This distance metrizes a weak convergence (as opposed to the strong L2 convergence above),
but has the advantage of being defined on the more natural space of probability measures on R

n.
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It is adapted to (1) since, by the Itô formula, a measure solution µt to (1) can be seen as the
law at time t of the process (Xt)t>0 solution to the stochastic differential equation

dXt =
√
2 dBt −∇V (Xt)dt. (5)

Here (Bt)t>0 is a standard Brownian motion in R
n and the initial datum X0 is distributed

according to µ0.
Let now µ0 and ν0 be two probability measures on R

n, and consider (Xt)t>0 (resp. (Yt)t>0)
the solution to (5) starting from X0 of law µ0 (resp. Y0 of law ν0), both driven by the same
Brownian motion. Then

d

dt
|Xt − Yt|2 = −2 (∇V (Xt)−∇V (Yt)) · (Xt − Yt).

Now, if V satisfies ∇2V (x) > CIdn for all x ∈ R
n and for a C ∈ R, that is,

(∇V (x)−∇V (y)) · (x− y) > C |x− y|2 (6)

for all x, y ∈ R
d, then

d

dt
|Xt − Yt|2 ≤ −2C |Xt − Yt|2.

This gives
E |Xt − Yt|2 ≤ e−2Ct

E |X0 − Y0|2

by integrating in time and taking the expectation. Then

W 2
2 (µt, νt) ≤ E|Xt − Yt|2

since Xt and Yt have respective laws µt and νt. Since moreover X0 and Y0 are any variable
with respective laws µ0 and ν0 we can take the infimum over X0 and Y0 to obtain the following
contraction between any two solutions :

W2(µt, νt) ≤ e−CtW2(µ0, ν0), t > 0. (7)

Such a contraction estimate is a key estimate in the theory of gradient flows in the space of
probability measures, an instance of which is (1) when A = ∇V (see [AGS08]).

In particular, by choosing µ0 as the stationary solution e−V it implies the bound

W2(νt, e
−V ) ≤ e−CtW2(ν0, e

−V ), t > 0 (8)

for any initial condition µ0. For C > 0 it ensures that e−V is the only stationary state of (1) and
quantifies the convergence of all solutions to it; it can be seen as a spectral gap in Wasserstein
distance.

Of course (7) is a stronger statement than (8) since it enables to compare any two solutions,
and not only a solution to the stationary one. But it asks for extremely strong assumptions
on the drift: indeed, according to K.-T. Sturm and M. von Renesse, the uniform convexity
condition (6) is in fact equivalent to (7); more generally when the vector field A is not necessary
a gradient, then solutions of (1) satisfy (7) if and only if (6) holds with A instead of ∇V (see
[SvR05] and Section 4, and also [NPS11] for a duality proof of the sufficient condition).

The purpose of this work is twofold: First, to consider possibly non-gradient drifts A, which
naturally appear for example in polymeric fluid flow or Wigner-Fokker-Planck equation (see
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[JLBLO06] or [ACM10]). Such non gradient drifts forbid the gradient flow approach to (1),
which holds only in the gradient case. Then, and overall, to give weaker conditions than (6)
on the drift A for the uniform convergence estimate (8) to hold for solutions to (1). As for
the L2-norm and the Poincaré inequality, it will be described by a functional inequality called
WJ inequality, which links the Wasserstein distance with its dissipation along the flow of the
equation. As will be seen later on, an interesting fact is that it holds for potentials which are
uniformly convex only at infinity. For that purpose we will use the diffusion term to overcome
the possible degeneracy of the potential convexity in some region. We will see on examples how
an a priori polynomial rate of convergence can simply be turned into an exponential rate by this
method. To our knowledge this is the first quantitative use of the contribution of the diffusion
term in measuring the convergence to equilibrium in Wasserstein distance.

In Section 1, we introduce the objects studied in the paper. In Section 2 we derive the
Wasserstein distance dissipation along solutions to (1) when A is not necessarily a gradient.
Then we introduce the WJ inequality which governs the uniform convergence (8). Section 3
is devoted to practical conditions to the WJ inequality and to its connections with classical
functional inequalities as the Poincaré or logarithmic Sobolev inequalities. In Section 4 we
consider a more general Fokker-Planck equation involving a non constant diffusion matrix:
we formally derive a simple characterization of the contraction property (7) in terms of the
coefficients of the equation.

Let us finish by some possible extension to nonlinear models. For example, contraction
properties such as (7) also hold for nonlinear equations such as the granular media equation

∂tµt = ∇ · (∇µt + µt(∇V +∇W ∗x µt)), t > 0, x ∈ R
n

under hypothesis like (6) on the potentials V and W (see [CMV06]); here ∗x stands for the
convolution on R

n. It is then natural to hope that we can go beyond this strict convexity
assumption using our approach. In the forthcoming paper [BGG] we will precisely show that
the method is sufficiently robust to extend this results to non-uniformly convex potentials.

1 Framework

We consider the Fokker-Planck equation starting from a probability measure µ0,

∂tµt = ∇ · (∇µt + µtA) = ∇ · (µt(∇ log µt +A)), t > 0, x ∈ R
n (9)

where A is a C1 function on R
n and ∇ ·G is the divergence of a vector field G.

The existence of a non-explosive solution can be proven under simple conditions on A. For
instance, if there exist a and b such that

x ·A(x) > −a|x|2 − b

for all x, then for any initial datum µ0 in the space P2(R
n) of probability measures ρ on

R
n such that

∫

|x|2dρ(x) < ∞ there exists a continuous curve (µt)t>0 of probability mea-
sures such that (9) holds in the sense of distributions. One can also classically prove that for
any t > 0 a solution µt has a smooth positive density with respect to the Lebesgue measure.
See [Str08], [NPS11] and the references therein for instance.
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Itô’s formula implies that the law (µt)t>0 of the Markov process

dXt =
√
2dBt −A(Xt)dt, (10)

where X0 has law µ0 and (Bt)t>0 is a Brownian motion on R
n, is a solution to (9). Equation (9)

is also called the Kolmogorov forward equation.

We assume that there exists a positive and smooth stationary solution e−V of (9), which is
a probability measure and where V is a C2 map on R

n. Letting F = A − ∇V , equation (9)
reads

∂tµt = ∇ · (µt(∇ log µt +∇V + F )). (11)

Here the vector field F satisfies ∇ · (e−V F ) = 0, which is a necessary and sufficient condition
for e−V to be a stationary solution.

The generator L∗ defined by L∗f = ∆f +∇· (f(∇V +F )) for f a C2 map on R
n is the dual

operator in L2(dx) of L defined by Lf = ∆f −∇f · (∇V + F ). Moreover L is the infinitesimal
generator of the Markov semigroup (Pt)t>0 defined by

Ptf(x) = Ex(f(Xt))

for any smooth function f ; here (Xt)t>0 is the Markov process, solution of the stochastic dif-
ferential equation (10), such that X0 = x. In other words, the function Ptf solves the partial
differential equation

∂tu = Lu, (12)

with initial datum f .

If µt is a solution to (11) then ϕt = eV µt satisfies the PDE

∂tϕt = ∆ϕt −∇ϕt · (∇V − F ). (13)

Conversely, if ϕt is a smooth positive solution to (13) with initial datum ϕ0 such that
∫

ϕ0e
−V dx =

1, then

µt = e−V ϕt

for t > 0 is a positive probability density which solves (11) with the initial datum ϕ0e
−V . The

diffusion operator L⊤f = ∆f − ∇f · (∇V − F ) can now be seen as the infinitesimal generator
of a Markov semigroup denoted (P⊤

t )t>0. It is the dual of L in L2(dµ), where dµ = e−V dx, that
is, for smooth functions f and g

∫

fLg dµ =

∫

gL⊤f dµ.

Moreover, the measure dµ = e−V dx is an invariant measure for both generators L and L⊤,
that is, for any f

∫

L⊤fdµ =

∫

Lfdµ = 0.

When A = ∇V (or equivalently F = 0), then (11) is the usual Fokker-Planck equation
whereas the dual form (12) is the general Ornstein-Uhlenbeck equation. In that case L⊤ = L
and L is symmetric in L2(dµ). We say that µ is reversible and when

∫

e−V dx < +∞, up to a
normalization constant it gives an explicit invariant probability measure.
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The discrepancy between probability measures will mainly be estimated in terms of the
Wasserstein distance: for two measures µ and ν in P2(R

n) it is defined by

W2(µ, ν) = inf
(

∫

R2n

|x− y|2dπ(x, y)
)1/2

,

where the infimum runs over all probability measures π on R
n ×R

n with marges µ and ν, that
is, for any bounded functions f and g on R

n

∫

R2n

(f(x) + g(y)) dπ(x, y) =

∫

Rn

fdµ+

∫

Rn

gdν

(see [AGS08] or [Vil09] for example). This definition is of course the same as the one given in
the introduction in terms of random variables.

Brenier’s Theorem gives an explicit expression of the Wasserstein distance: if µ is absolutely
continuous with respect to the Lebesgue measure then there exists a convex function ϕ such
that ∇ϕ#µ = ν, that is,

∫

Rn

g dν =

∫

Rn

g(∇ϕ) dµ

for every bounded test function g; moreover

W 2
2 (µ, ν) =

∫

Rn

|x−∇ϕ(x)|2 dµ(x).

The Legendre transform will be useful for the next sections: for a map ϕ : Rn 7→ R ∪ {∞}
it is the map ϕ∗ : Rn 7→ R ∪ {∞} defined by

ϕ∗(q) = sup
x∈Rn

{q · x− ϕ(x)}.

If µ and ν are probability densities in P2(R
n) such that ∇ϕ#µ = ν, then ∇ϕ∗#ν = µ.

2 Convergence in Wasserstein distance

Convergence in Wasserstein distance is related to its time-derivative, which was studied by
L. Ambrosio, N. Gigli and G. Savaré in [AGS08, Th. 8.4.7] (see also [Vil09, Th. 23.9]).

If F is a C1 map from R
n to R

n then we let ∇F be its Jacobian matrix and ∇SF =
(∇F +∇F T )/2 its symmetric part.

For a probability measure µ and a probability density h with respect to µ we let

H(ν|µ) =
∫

h log hdµ, I(ν|µ) =
∫ |∇h|2

h
dµ (14)

respectively be the entropy and the Fisher information of ν = hρ with respect to µ.

Theorem 2.1 ([AGS08]) Assume that V, F are such that
∫

|F |4dµ <∞.
Let νt be a measure solution of (11) with initial condition having a smooth density ν0 such

that
∫

ν20e
V dx <∞, H(ν0|µ) <∞. (15)
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Then the map t 7→ W2(νt, µ) is absolutely continuous and for almost every t > 0

1

2

d

dt
W 2

2 (νt, µ) =

∫

(∇ψt − x) · (∇ log νt +A)dνt (16)

where for every t > 0, ∇ψt#νt = µ.

Let us first give a direct and formal proof of this result. Brenier’s Theorem implies that

W 2
2 (νt, µ) =

∫

|∇ϕt(x)− x|2dµ(x)

for all t > 0, where ∇ϕt#µ = νt. Then by formal time-differentiation

1

2

d

dt
W 2

2 (νt, µ) =

∫

(∇ϕt(x)− x) · ∂t∇ϕtdµ.

Now for all g the time-derivative of
∫

g(∇ϕt)dµ =
∫

gdνt is

∫

∇g(∇ϕt) · ∂t∇ϕt dµ =

∫

g ∂tνt.

For g(x) = |x|2

2 − ϕ∗
t (x), which satisfies ∇g(∇ϕt(x)) = ∇ϕt(x) − x by Legendre transform

properties, this gives
1

2

d

dt
W 2

2 (νt, µ) =

∫
( |x|2

2
− ϕ∗

t

)

∂tνt.

An integration by parts implies (16) with ψt = ϕ∗
t .

Observe moreover that µ is an invariant measure with respect to the generator L, so

1

2

d

dt
W 2

2 (νt, µ) =

∫
[

L

( |x|2
2

− ψ∗
t

)

+ L

( |x|2
2

− ψt

)

(∇ψ∗
t )

]

dµ. (17)

This form will be useful for the rest of the paper.

Proof

⊳ It is a direct application of [Vil09, Theorem 23.9] and we now check its assumptions.

First, the vector field ξt = ∇ log νt +∇V + F is locally Lipschitz since the solution νt has a
smooth and positive density on (0,∞). Let us now check that

∫ t2

t1

∫

|ξt|2dνt dt <∞

for every 0 < t1 < t2. Indeed

∫

|ξt|2dνt =
∫

∣

∣

∣
∇ log

νt
µ

+ F
∣

∣

∣

2
dνt ≤ 2 I(νt|µ) + 2

∫

|F |2dνt.

On the one hand, since ∇ · (Fe−V ) = 0,

∫ t2

t1

I(νt|µ) dt ≤
∫ t2

0
I(νt|µ) dt = H(ν0|µ)−H(νt2 |µ) ≤ H(ν0|µ).
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As for the other term, by the Cauchy-Schwarz inequality,

∫

|F |2dνt =
∫

|F |2 νt
µ
dµ ≤

(
∫

|F |4dµ
)1/2

(

∫
(

νt
µ

)2

dµ

)1/2

≤
(
∫

|F |4dµ
)1/2

(

∫
(

ν0
µ

)2

dµ

)1/2

.

The last two bounds imply

∫ t2

t1

∫

|ξt|2dνtdt ≤ 2H(ν0|µ) + 2(t2 − t1)

(
∫

|F |4dµ
∫

ν20e
V dx

)1/2

<∞.

⊲

Remark 2.2 In the gradient flow case when F = 0, then (15) can be replaced by the sole
condition H(ν0|µ) < ∞, which is the classical assumption (see [AGS08]). Let us also notice
that the coupled conditions

∫

|F |4dµ < ∞,
∫

ν20e
V < ∞ can be modified by using the Hölder or

the Young inequality instead of the Cauchy-Schwarz inequality, and for instance be replaced by
∫

eF
2

dµ <∞,H(ν0|µ) <∞.

Corollary 2.3 Assume that dµ = e−V dx is a probability measure with ∇ · (e−V F ) = 0 and
make the same hypotheses as in Theorem 2.1. Assume moreover that

W 2
2 (ν, µ) ≤

1

C

∫

(x−∇ψ) · (∇ log ν +A) dν (18)

for all ν, where ∇ψ#ν = µ. Then

W2(νt, µ) ≤ e−CtW2(ν0, µ), t > 0

for any solution (νt)t to (11) starting from a probability density ν0 satisfying (15).

Proof

⊳ It is a consequence of Theorem 2.1 since the map t 7→ W2(νt, µ) is absolutely continuous. ⊲

If ψ is a C2 function then by (17) the inequality (18) becomes

W 2
2 (ν, µ) ≤

1

C

∫

[

∆ϕ+∆ϕ∗(∇ϕ)− 2n+ (A(∇ϕ)−A) · (∇ϕ− x)
]

dµ (19)

where ϕ = ψ∗ and ∇ϕ#µ = ν. This motivates the following definition:

Definition 2.4 We say that the couple (µ,A), where µ is a probability measure and A is a
vector field, satisfies a WJ inequality with constant C > 0 if

W2(ν, µ) ≤
√

1

C
J(ν|(µ,A)) (20)

for every probability measure ν; here

J(ν|(µ,A)) =
∫

[

∆ϕ+∆ϕ∗(∇ϕ)− 2n+ (A(∇ϕ)−A) · (∇ϕ− x)
]

dµ

8



where ∇ϕ#µ = ν. We implicitly assume in the definition that J(ν|(µ,A)) is well defined and
non-negative.

For simplicity, if dµ = e−V dx and A = ∇V , or equivalently F = 0, then J(ν|(µ,A)) is
denoted J(ν|µ) and we say that the probability measure µ satisfies a WJ inequality.

As pointed out above one can write

J(ν|(µ,A)) =
∫

(x−∇ψ) · (∇ log ν +A)dν

where ∇ψ#ν = µ; this will be a useful formulation.

This definition is general, and by Corollary 2.3 the WJ inequality governs the uniform
exponential convergence of solutions to (9) towards the equilibrium e−V in the case when
∇ · (e−V F )) = 0. In this case the quantity J(νt|(e−V , A)) is the dissipation of the squared
Wasserstein distance W 2

2 (νt, e
−V ) between a solution νt and the equilibrium e−V .

A simple but key observation is the following

Lemma 2.5 If ϕ is a C2 strictly convex function on R
n then for all x

∆ϕ(x) + ∆ϕ∗(∇ϕ(x)) − 2n > 0,

and is 0 if and only if the Hessian matrix ∇2ϕ(x) at x is the identity matrix.

Proof

⊳ Given x ∈ R
n we write ∇2ϕ(x) as ODO∗ where O is orthonormal, D = diag(d1, .., dn) and

di are the positive eigenvalues of ∇2ϕ(x).
Observe that ∇ϕ∗(∇ϕ(x)) = x, and then

∇2ϕ∗(∇ϕ(x))∇2ϕ(x) = Idn.

This leads to
∇2ϕ∗(∇ϕ(x)) = (∇2ϕ(x))−1 = OD−1O∗.

Then

∆ϕ(x) + ∆ϕ∗(∇ϕ(x))− 2n =
n
∑

i=1

di +
n
∑

i=1

1

di
− 2n =

n
∑

i=1

(

√

di −
1√
di

)2

> 0,

with equality if and only if the di are all equal to 1. ⊲

If A is monotone, that is, if

(A(x) −A(y)) · (x− y) > 0

for all x, y, then by Lemma 2.5 the quantity J(ν|(µ,A)) is non-negative for all ν = ∇ϕ#µ.
We do not know whether this is also the case in the general case. Observe that along the

evolution of the Fokker-Planck equation, the dissipation of the relative entropy to the steady
state, and more generally of relative ϕ-entropies with ϕ convex, is non-negative; this is however
not always the case for the Fisher information, as pointed out by B. Helffer (see [ABC+00]).
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Remark 2.6 In this work we focus on the estimate (8) in the Euclidean Wasserstein distance
and give simple necessary and sufficient conditions (weaker than strictly positive curvature) on
the drift for (8) to hold for any initial condition µ0.

Let us stress that in our study, it is important that there is no (larger than 1) multiplicative
constant on the right-hand side of (8). Indeed, there are various ways to get convergence result
of the form

W2(µt, µ) ≤ K e−CtW2(µ0, µ) (21)

for a constant K larger than 1. Let us mention two different approaches.

i. Suppose that µ satisfies a logarithmic Sobolev inequality with constant C, that is

H(fµ|µ) ≤ 1

2C
I(fµ|µ) (22)

for all probability densities f with respect to µ. This inequality can be proved in infinite
negative curvature cases and is equivalent to the exponential decay of the entropy

H(µt|µ) ≤ e−2C(t−t0)H(µt0 |µ).

Recall then that such a logarithmic Sobolev inequality implies a Talagrand inequality with
constant C, that is,

W2(ν, µ) ≤
√

2

C
H(ν|µ) (23)

for all ν (see for example [OV00]). Hence

W2(µt, µ) ≤ K(C, t0) e
−Ct

√

Entµ(µt0) ≤ K̃(V,C, t0) e
−CtW2(µ, µ0)

for all t. The last inequality follows from a regularization argument derived from a Harnack
type inequality under regularity assumptions on V (see [Wan04]).

ii. Another approach relies on the study of the contraction in a Wasserstein distance for a
twisted metric, equivalent to the Euclidean one, so that such a contraction result will lead to
convergence in the Euclidean Wasserstein distance as in (21), with a K > 1. This has been
successfully done for the kinetic Fokker-Planck equation in a perturbation of the Gaussian
case (infinite curvature case) in [BGM10] using the simplest of coupling (same Brownian
motion for the two different dynamics, as in the introduction). Recently, A. Eberle [Ebe11]
has used reflection coupling to establish contraction results in a twisted metric for a re-
versible Fokker-Planck equation under lower negative curvature and sufficient quadratic
growth condition at infinity.

3 The WJ inequality

3.1 Sufficient conditions

We first begin with the following straightforward consequence of Lemma 2.5:

Proposition 3.1 If µ is a probablity measure on R
n and A such that

∇SA > C Idn (24)

with C > 0, uniformly on R
n, then (µ,A) satisfies a WJ(C) inequality.

10



In particular the standard Gaussian measure γ on R
n satisfies a WJ inequality with constant 1

and the constant 1 is optimal. Observe indeed that

J(ν|γ) =
∫

(∆ϕ(x) + ∆ϕ∗(∇ϕ(x))− 2n)dγ(x) +W 2
2 (ν, γ)

for all ν = ∇ϕ#γ. Hence it is always larger than W 2
2 (ν, γ) by Lemma 2.5; moreover it is equal

to W 2
2 (ν, γ) if and only if the non-negative term ∆ϕ(x)+∆ϕ∗(∇ϕ(x))−2n is 0 for almost every

x, that is, if and only if ∇2ϕ(x) = 0, by Lemma 2.5, that is, if and only if ν is a translation of γ.

For uniformly convex potentials V , or more generally under (24), the WJ inequality for
(µ,A) is obtained without using the non-negative contribution ∆ϕ(x)+∆ϕ∗(∇ϕ(x))− 2n in J ,
which stems from the diffusion term. Let us now see how the diffusion term enables to obtain
a WJ inequality in non-uniformly convex cases and even non-convex cases.

A first idea is to use the entropy H. It is related to W2 and J as follows.

Lemma 3.2 Let dµ = e−V dx be a probability measure and F a vector field such that ∇ · (e−V F ) =
0. If ∇2V > λ1Idn and ∇SF > λ2Idn for some λ1, λ2 ∈ R, uniformly in R

n, then

H(ν|µ) +
(λ1
2

+ λ2
)

W 2
2 (ν, µ) ≤ J(ν|(µ,A)) (25)

for every probability measure ν.

Proof

⊳ We follow the proof of Theorem 1 in [CE02]. Let ν be a probability on R
n with a smooth

positive density f with respect to µ. If ∇ψ#ν = µ then, by change of variables,

fe−V = e−V (∇ψ) det(∇2ψ).

Then
∫

f log fdµ =

∫

[V − V (∇ψ) + log det(∇2ψ)]fdµ ≤
∫

[V − V (∇ψ) + ∆(ψ − |x|2
2

)]fdµ

=

∫

[V − V (∇ψ) +∇V · (∇ψ − x)]fdµ−
∫

(∇ψ − x) · ∇fdµ

by convexity and integration by parts. Moreover

J(ν|(µ,A)) =
∫

(x−∇ψ) · ∇f dµ+

∫

(x−∇ψ) · F f dµ

and
∫

(x−∇ψ) · F (∇ψ) dν =

∫

(∇ψ∗ − x) · F dµ = −
∫

(ψ∗ − |x|2
2

)∇ · (e−V F ) = 0

since ∇ψ#ν = µ and ∇ · (e−V F ) = 0. Hence

H(ν|µ) =
∫

f log fdµ ≤
∫

[V −V (∇ψ)+∇V ·(∇ψ−x)−(F−F (∇ψ))·(x−∇ψ)]dν+J(ν, (A,µ)).

Now, by a Taylor expansion,

V−V (∇ψ)+∇V ·(∇ψ−x) = −
∫ 1

0
(1−t)(∇ψ−x)·[∇2V (x+t(∇ψ−x))(∇ψ−x)]dt ≤ −λ1

2
|∇ψ−x|2

11



and

−(F −F (∇ψ)) · (x−∇ψ) = −
∫ 1

0
(∇ψ−x) · [∇SF (x+ t(∇ψ−x))(∇ψ−x)]dt ≤ −λ2|∇ψ−x|2.

This concludes the argument by combining the two expressions. ⊲

Remark 3.3 When F = 0, then inequality (25) has been derived in [OV00] in the proof of the
HWI inequality

H(ν|µ) ≤W2(ν, µ)
√

I(ν|µ)− λ1
2
W 2

2 (ν, µ),

where I(ν|µ) is the Fisher information of ν with respect to µ, defined in (14). It implies the
HWI inequality since

J(ν|µ) =
∫

(x−∇ψ) · ∇ log
ν

µ
dν ≤

√

∫

|x−∇ψ|2 dν
√

∫
∣

∣

∣

∣

∇ log
ν

µ

∣

∣

∣

∣

2

dν =W2(ν, µ)
√

I(ν|µ)

by the Cauchy-Schwarz inequality; here ∇ψ#ν = µ.

Moreover, again for F = 0, inequality (25) appears in [AGS08] as a fundamental inequality
in the general theory of gradient flows, see [AGS08, Th. 4.0.4] for instance.

As in (23), a measure µ is said to satisfy a (transportation) Talagrand inequality with
constant C > 0, denoted WH(C), if

W2(ν, µ) ≤
√

2

C
H(ν|µ)

for all measure ν absolutely continuous with respect to µ.

Proposition 3.4 Assume that the measure µ = e−V satisfies a WH(C) inequality and that
∇2V (x) > λ1Idn, ∇SA(x) > λ2Idn with λ1, λ2 ∈ R and all x. Then it satisfies a WJ

(

(C+λ1+
2λ2)/2

)

inequality if C > −λ1 − 2λ2.

For instance, when A = ∇V and λ1 = C > 0, this result includes the uniformly convex case
as in Proposition 3.1, with the right constant C. Larger classes of measures µ satisfying a WH
inequality are described in [GL10], including for example potentials V which are the sum of a
uniformly convex and of a bounded function.

Proof

⊳ By Lemma 3.2 and assumptions,

−J(ν|(µ,A)) +
(λ1
2

+ λ2

)

W 2
2 (ν, µ) ≤ −H(ν|µ) ≤ −C

2
W 2

2 (ν, µ)

for any measure ν. This concludes the argument. ⊲

For a non-gradient drift, there is a strong assumption on the measure µ in Proposition 3.4,
which is not always easy to be checked since µ may not be explicit. We can replace it by another
criterium, which asks for weaker assumptions on µ, for instance:

12



Proposition 3.5 Let A be a C1 monotone map from R
n to R

n for which there exist two con-
stants R > 0 and K > 0 such that

∇SA(x) > K

for all |x| > R, and let dµ = e−V be a probability measure on R
n, with V continuous.

Then (µ,A) satisfies a WJ inequality with constant C = C(V,R,K).

Remark 3.6 The constant C given by the proof depends on V only through its minima and
maxima on the ball of center 0 and radius 3R. Observe that the proof requires only V to be
bounded on this ball, and that any ball of center 0 and radius > R would work.

The proof consists in overcoming the lack of convexity near the origin by using the diffusion
term. It will be given in Section 5.

Let us see the influence of the diffusion term on the rate of convergence to equilibrium on a
simple example, for instance for the potential V (x) = x4 on R and F = 0. By Proposition 3.4
or 3.5, the measure e−V satisfies a WJ(C) inequality, whence solutions µt to the Fokker-Planck
equation (9) converge exponentially fast to it, according toW 2

2 (µt, e
−V ) ≤ e−CtW 2

2 (µt, e
−V ). On

the other hand, without diffusion, the solution at time t to ∂tµt = ∇· (µt∇V ) is the distribution
of the points x(t) initially at x(0) drawn according to µ0 and evolving according to x′(t) = −x3.
This solves into x(t)2 = x(0)2/(1 + 2tx(0)2), so that the solution µt converges to the unique
steady state δ0 according to

W 2
2 (µt, δ0) =

∫

x2

1 + 2tx2
dµ0(x) ∼

1

t

for large t.

3.2 Tensorization and perturbation

Fundamental properties of functional inequalities lie in the range of stability: non dependence
on the dimension, which enables to consider problems in infinite dimension, and stability by
perturbation, which enables to reach more general potentials.

The following two results are important to extend the practical conditions we just derived.
The first one concerns the tenzorization : namely, the product of measures satisfying a WJ
inequality also satisfies a WJ inequality.

Proposition 3.7 (Tensorization) Suppose that the measures and drifts (µi, Ai)1≤i≤n satisfy
a WJ(Ci) inequality on R

ni respectively. Then (⊗n
i=1µi, A) with A(x) = (Ai(xi))1≤i≤n for

x = (xi)i on the product space satisfies a WJ inequality with constant miniCi.

Proof

⊳ Let us assume for simplicity of notation that ni = 1 for all i, and let us denote dµn(x) =
⊗n
i=1dµi(xi) dxi. For x ∈ R

n we let x̂i ∈ R
n−1 have the same coordinate than x, but the i-th

coordinate xi, which is removed.

Let now ϕ be a C2 strictly convex function on R
n. Noticing that all its restrictions xi 7→

ϕ(x̂i, xi) are also C2 strictly convex functions on R, and using the WJ inequality for each µi we

13



get

∫

Rn

|∇ϕ(x) − x|2dµn(x) =
n
∑

i=1

∫

Rn−1

⊗j 6=idµj(x̂i)

∫

R

|∂iϕ(x)− xi|2dµi(xi)

≤ 1

miniCi

n
∑

i=1

∫

⊗j 6=idµi(x̂i)

∫

(Ai(∂iϕ(x))−Ai(xi))(∂iϕ(x) − xi)dµi(xi)

+
1

miniCi

n
∑

i=1

∫

⊗j 6=idµj(x̂i)

∫
(

∂2iiϕ(x) +
1

∂2iiϕ(x)
− 2

)

dµi(xi)

≤ 1

mini Ci

∫

Rn

n
∑

i=1

(Ai(∂iϕ(x)) −Ai(xi))(∂iϕ(x)− xi)dµ
n(x)

+
1

miniCi

∫

Rn

n
∑

i=1

(

∂2iiϕ(x) +
1

∂2iiϕ(x)
− 2

)

dµn(x).

Now, in the first term,

n
∑

i=1

(Ai(∂iϕ(x)) −Ai(xi))(∂iϕ(x)− xi) = (A(∇ϕ(x)) −A(x)).(∇ϕ(x) − x).

In the second term we fix x ∈ R
n and, in the notation of Lemma 2.5, we write ∇2ϕ(x) =

ODO∗ where O is orthonormal and D = diag(d1, . . . , dn). Then

n
∑

i=1

∂2iiϕ(x) = tr(∇2ϕ(x)) =

n
∑

i=1

di.

Moreover ∂iiϕ(x) =
∑n

j=1O
2
ijdj with

∑n
i=1O

2
ij = 1, and x 7→ x−1 is convex on {x > 0}, so by

the Jensen inequality

n
∑

i=1

1

∂2iiϕ(x)
=

n
∑

i=1

1
∑n

j=1O
2
ijdj

≤
n
∑

i=1

n
∑

j=1

O2
ij

1

dj
=

n
∑

j=1

n
∑

i=1

O2
ij

1

dj
=

n
∑

j=1

1

dj

since also
∑n

j=1O
2
ji = 1. Hence

n
∑

i=1

(

∂2iiϕ(x) +
1

∂2iiϕ(x)
− 2

)

≤
n
∑

i=1

(

di +
1

di
− 2

)

= ∆ϕ(x) + ∆ϕ∗(∇ϕ(x)) − 2n

as in the proof of Lemma 2.5. This concludes the proof. ⊲

Let us come back to the PDE motivation of the WJ inequality : letting dµi(xi) = e−Vi(xi)dxi
for each i, then ∇ · ((A − ∇V )(x)e−V (x)) = 0 on the product space with V (x) =

∑n
i=1 Vi(xi)

for x = (xi)i as soon as ∇ · ((Ai − ∇Vi)(xi)e−Vi(xi)) = 0 on R
ni for each i. Hence e−V dx =

⊗n
i=1e

−Vi(xi)dxi is indeed a stationary measure of the corresponding PDE on the product space
if so is each e−Vi(xi)dxi on R

ni .

The second result is about the perturbation of the measure µ. For classical functional
inequalities, such as Poincaré inequality, WH or logarithmic Sobolev inequality, perturbations
by bounded potentials are allowed (see for example [ABC+00, GL10]). Here we have to be more
restrictive, not only on the perturbation term but also on the initial measure satisfying a WJ
inequality.
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Proposition 3.8 (Perturbation) Suppose that the measure and drift (µ,A) satisfy a WJ(C)
inequality and that for an α ≤ 0

i. (A(y)−A(x)) · (y − x) > α|y − x|2 for all x, y.

Consider a map T on R
n such that e−Tdµ is a probability measure and for a K > 0

ii. |T (x)| ≤ K for all x,

and a map B from R
n to R

n such that for a β ∈ R

iii. (B(y)−B(x)) · (y − x) > β|x− y|2 for all x, y.

If −βe2K−α(e2K−1) < C, then (e−Tµ,A+B) satisfies a WJ inequality with constant Ce−2K+
β + α(1− e−2K).

Note that

Proof

⊳ Let µ̃ = e−Tµ, and let ϕ be a C2 strictly convex map on R
n. Then

∫

|∇ϕ(x)− x|2dµ̃(x)
ii.
≤ eK

∫

|∇ϕ(x)− x|2dµ

WJ
≤ eK

C

∫

(A(∇ϕ) −A) · (∇ϕ− x)dµ

+
eK

C

∫

(∆ϕ+∆ϕ∗(∇ϕ) − 2n)dµ. (26)

Since ∆ϕ(x) +∆ϕ∗(∇ϕ(x))− 2n ≥ 0 by Lemma 2.5, the second integral on the right-hand side
of (26) is bounded by

e2K

C

∫

(∆ϕ+∆ϕ∗(∇ϕ)− 2n)dµ̃

by ii. Moreover, by i. and ii., we write the first integral on the right-hand side of (26) as

∫

[

(A(∇ϕ) −A) · (∇ϕ− x)− α|∇ϕ− x|2
]

dµ+ α

∫

|∇ϕ− x|2dµ

≤ eK
∫

(A(∇ϕ) −A) · (∇ϕ− x) dµ̃− α(eK − e−K)

∫

|∇ϕ− x|2 dµ̃.

Then, by iii., we bound the first integral on the above right-hand side by

∫

((A+B)(∇ϕ)− (A+B)(x)).(∇ϕ − x)dµ̃ − β

∫

|∇ϕ− x|2 dµ̃.

This concludes the proof by collecting all terms and using the positivity conditions on the
coefficients. ⊲

Typically A = ∇V with µ = e−V and the bounded perturbation is given by B = ∇T . Note
also that one can adapt the proof above to give a variant of this result for α > 0.
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3.3 Necessary conditions

We conclude this section by comparing the WJ inequality for a measure µ = e−V and a drift A
with more classical inequalities.

We first prove that a WJ inequality implies a Poincaré inequality:

Proposition 3.9 If (µ,A) satisfies a WJ(C) inequality then µ satisfies a Poincaré inequality
with the same constant C, that is, for every smooth function f

∫
(

f −
∫

fdµ

)2

dµ ≤ 1

C

∫

|∇f |2dµ.

Proof

⊳ Let f be a smooth map on R
n and ϕ be defined by

ϕ(x) =
|x|2
2

+ εf(x)

for small ε. Then for all x the Hessian matrices of ϕ and f and their respective eigenvalues di
and fi for 1 ≤ i ≤ n satisfy

∇2ϕ(x) = Idn + ε∇2f(x), di = 1 + ε fi.

Hence, as in Lemma 2.5,

∆ϕ∗(∇ϕ(x)) + ∆ϕ(x)− 2n =

n
∑

i=1

(

1

di
+ di − 2

)

=

n
∑

i=1

(

1

1 + εfi
+ 1 + εfi − 2

)

= ε2
n
∑

i=1

f2i + o(ε2) = ε2‖∇2f‖HS + o(ε2).

Moreover
∇V (∇ϕ(x)) −∇V (x) = ε∇2V (x)∇f(x) + o(ε).

Hence, for this map ϕ, the WJ inequality now reads

ε2
∫

[

‖∇2f(x)‖HS +∇f(x) · ∇2V (x)∇f(x)
]

dµ(x) + o(ε2) ≥ ε2 C

∫

|∇f(x)|2dµ

where ‖M‖HS is the Hilbert-Schmidt norm of a matrix M . Letting ε → 0, we recover the
well-known integral Γ2 criterion (see for example [ABC+00, Prop. 5.5.4]), which is equivalent
to the Poincaré inequality with constant C. ⊲

We now turn to the WI inequality in the particular case A = ∇V .
An inequality looking like WJ has been introduced in [OV00] and studied in [GLWY09,

GLWW09] for its equivalence to deviation inequalities for integral functional of Markov pro-
cesses: thus it has high practical interest. We say that a probability measure µ satisfies a WI
inequality with constant C > 0 (called LSI + T (C) in [OV00]) if for every probability measure
ν absolutely continuous with respect to µ

W2(ν, µ) ≤
1

C

√

I(ν|µ).
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Here I(ν|µ) is the Fisher information of ν with respect to µ defined in (14).
If µ satisfies a WJ(C) inequality then

W 2
2 (ν, µ) ≤

1

C
J(ν|µ) ≤ 1

C
W2(ν, µ)

√

I(ν|µ)

by the Cauchy-Schwarz inequality, as in Remark 3.3:

Proposition 3.10 A WJ inequality implies a WI inequality with the same constant.

Let us now examine the link with the Talagrand (23) and logarithmic Sobolev (22) inequal-
ities.

Corollary 3.11 1) A WJ inequality implies a WH inequality with the same constant.
2) Assume that the probability measure µ = e−V dx satisfies a WJ(C) inequality and ∇2V >

ρIdn, for some ρ ∈ R. Then µ satisfies a logarithmic Sobolev with constant C
(

1 + max(0,−ρ)
2C

)−2
.

Proof

⊳ 1) By [GLWW09, Theorem 2.4], a WI inequality implies a WH inequality with the same
constant, so that the result comes from Proposition 3.10.

2) By [OV00, Theorem 2], the following HWI inequality holds: for all ν

H(ν|µ) ≤
√

I(ν|µ)W2(ν, µ) +
ρ−
2
W 2

2 (ν, µ) =W2(ν, µ) (
√

I(ν|µ) + ρ−
2
W2(ν, µ)).

Here ρ− = max(0,−ρ). As a WJ(C) inequality implies both WH(C) and WI(C) inequalities,
we get

H(ν|µ) ≤
√

2

C
H(ν|µ)(1 + ρ−

2C
)
√

I(ν|µ)

which ends the proof.
⊲

Observe that in the uniformly convex case when ρ > 0, then µ classically satisfies all WJ, WI,
WH and logarithmic Sobolev inequalities with constant C. Moreover, under the assumption 2)
with C > max(ρ, 0), then [OV00, Corollary 3.2] ensures a log Sobolev inequality with constant
C(2− ρ/C)−1: for instance for ρ ≤ 0 it is worse than our constant (since then C > |ρ|/2).

Remark also, by [GLWY09] and [OV00], that a WI(C) or a WH(C) inequality imply a
Poincaré inequality with the same constant, hence providing an alternative proof to Proposi-
tion 3.9.

Observe finally that the general bound

W2(ν0, µ)−W2(νt, µ) ≤ t1/2H(ν0|µ)1/2

was obtained in [CG06, Remark 4.9] for all t and solutions (νt)t to (1) , hence directly proving
that a uniform decay of the Wasserstein distance as in (8) implies aWH inequality with constant

sup
t>0

2
(1 − e−Ct)2

t
= 2C sup

x>0

(1− e−x)2

x
∼ 0.8C instead of C, which is optimal.

We do not know whether a logarithmic Sobolev inequality, which implies a WI inequality,
also implies a WJ inequality, or whether the converse holds without the curvature condition of
Corollary 3.11.

17



4 Contraction in Wasserstein distance

We saw in the introduction that the condition

(A(y)−A(x)) · (y − x) > C|y − x|2

for all x, y is a sufficient condition for measure solutions (µt)t and (νt)t to (9) to satisfy the
contraction property

W2(µt, νt) ≤ e−CtW2(µ0, ν0), t > 0. (27)

In fact it is a necessary condition. Indeed K.-T. Sturm and M. von Renesse have proven
in [SvR05] that a Riemannian manifold has Ricci curvature bounded from below by C ∈ R if
and only if solutions to the heat equation satisfy (27), where W2 is defined by means of the
Riemannian distance. This result has been extended by F.-Y. Wang to include an additional
drift, and our case in particular (see [Wan04, Theorem 5.6.1]) :

Theorem 4.1 ([SvR05]) The following assertions are equivalent :
1) For all initial conditions µ0 and ν0 in P2(R

n), for all t > 0,

W2(µt, νt) ≤ e−CtW2(µ0, ν0),

where µt (resp. νt) are solutions of (9) starting from µ0 (resp. ν0).
1’) For all x, y ∈ R

n and all t > 0,

W2(µt, νt) ≤ e−Ct|x− y|,

where µt (resp. νt) are solutions of (9) starting from δx (resp. δy).
2) For all x, y ∈ R

n the vector field A satisfies

(A(y) −A(x)) · (y − x) > C|y − x|2.

Consider now a general Fokker-Planck equation

∂tµt = ∇ · (∇(µtD(x)) + µtA(x)), t > 0, x ∈ R
n. (28)

whereD(x) is a positive symmetric matrix. Then one can equip R
n with a metric, given byD(x),

and for which (28) reads as (9) (for another A), and then use Wang’s result to characterize (27),
for the distance W2 associated with this metric, in terms of D and A.

We now use tools introduced in Section 2 and formally derive a simple characterization in
terms of D and A of the contraction property (27) between solutions to (28), now for the usual
distance W2 associated with the Euclidean norm on R

n. As a particular case, it gives a formal
proof of Theorem 4.1.

Here D(x) will be a non-negative symmetric matrix and, if M(x) = (Mij(x)) is an (n, n)

matrix, then ∇M is the vector in R
n with j-th coordinate equal to

n
∑

i=1

∂iMij(x).

In the whole section matrices are meant to have size (n, n). IfM = (Mij) and N = (Nij) are

two matrices we let M : N =

n
∑

i,j=1

MijNij , ‖M‖2HS = M : M be the squared Hilbert-Schmidt

norm of M and M∗ be its transposed matrix.
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Proposition 4.2 Formally, in the above notation, if

(A(x)−A(y)) ·(x−y) > C|x−y|2+inf
{

‖σ(x)−σ(y)‖2HS ;σ(x)σ(x)∗ = D(x), σ(y)σ(y)∗ = D(y)
}

(29)
for all x, y, then

W2(µt, νt) ≤ e−CtW2(µ0, ν0) (30)

for all solutions (µt)t and (νt)t to (28).

It is a necessary condition as soon as moreover D(x) is a positive matrix for all x.

The infimum is in fact a minimum as will be seen in the proof. The condition (29) is natural
in view of the following interpretation of (28):

Let µ0 and ν0 be given in P2(R
n). For each x choose any matrix σ(x) such that σ(x)σ(x)∗ =

D(x) and assume that the stochastic differential equation

dXt =
√
2σ(Xt) dBt −A(Xt) dt

has a global solution (Xt)t>0 (resp. (Yt)t>0), for a Brownian motion (Bt)t>0 and an initial datum
X0 (resp. Y0) with law µ0 (resp. ν0), such that E |X0 − Y0|2 =W 2

2 (µ0, ν0).

Assuming that

(A(x)−A(y)) · (x− y) > C|x− y|2 + ‖σ(x)− σ(y)‖2HS

for all x, y and this choice of σ(x), one can adapt the coupling argument given in the introduction
to prove that

E |Xt − Yt|2 ≤ e−2Ct
E |X0 − Y0|2 = e−2CtW 2

2 (µ0, ν0).

Then, by the Itô formula and since σ(x)σ(x)∗ = D(x), the law µt of Xt is a solution to (28)
with initial datum µ0, and analogously for the law νt of Yt. Hence they satisfy

W 2
2 (µt, νt) ≤ E |Xt − Yt|2 ≤ e−2CtW 2

2 (µ0, ν0).

Then we can repeat the argument for any choice of σ(x) and, under uniqueness of solutions
to (28), conclude that (29) is a sufficient condition to the contraction property (30).

The proof of Proposition 4.2 goes in several steps:

1. Time derivative of the Wasserstein distance between solutions.

Lemma 4.3 In the above notation, if (µt)t and (νt)t are two solutions to (28), then for t > 0

1

2

d

dt
W 2

2 (µt, νt) = −J(νt|µt)

where

J(ν|µ)=
∫

[

D(x) :(∇2ϕ(x)−I)+D(∇ϕ(x)) :((∇2ϕ(x))−1−I)+(A(∇ϕ(x))−A(x))·(∇ϕ(x)−x)
]

dµ(x)

if ν = ∇ϕ#µ.
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Proof

⊳ The operator L∗ defined by L∗µ = ∇ · (∇(µD) + µA) is the dual in L2(dx) of L defined by
Lf = D : ∇2f −A · ∇f . Hence, by adapting the derivation of (17) to any two solutions,

1

2

d

dt
W 2

2 (νt, µt) =

∫

L

( |x|2
2

− ϕt

)

dµt +

∫

L

( |x|2
2

− ϕ∗
t

)

dνt

if ∇ϕt#µt = νt. This leads to the lemma by observing that

L

( |x|2
2

− ϕt

)

= D : (I −∇2ϕt)−A · (x−∇ϕt)

and ∇2ϕ∗(∇ϕ(x)) = (∇2ϕ(x))−1. ⊲

2. If for all x the matrix σ(x) is such that σ(x)σ(x)∗ = D(x), then

J(ν|µ) =

∫

[

σ(x)σ(x)∗ : (∇2ϕ(x) − I) + σ(∇ϕ(x))σ(∇ϕ(x))∗ : ((∇2ϕ(x))−1 − I)

+‖σ(x)− σ(y)‖2HS
]

dµ(x)

+

∫

[

(A(∇ϕ(x)) −A(x)) · (∇ϕ(x)− x)− ‖σ(x)− σ(y)‖2HS
]

dµ(x)

if ν = ∇ϕ#µ.
With this decomposition, the following lemma ensures the sufficient part of Proposition 4.2:

Lemma 4.4 If m,n and S are matrices with S symmetric and non-negative, then

mm∗ : (S − I) + nn∗ : (S−1 − I) + ‖m− n‖2HS > 0,

and is 0 if and only if n = Sm.

Proof

⊳ With the usual convention of repeated indexes,

mm∗ : (S − I) + nn∗ : (S−1 − I) + ‖m− n‖2HS = mijmkjSik + nijnkjS
−1
ik − 2mijnij.

Now the symmetric matrix S can be written as ODO∗ where O is orthogonal and D =
diag(s1, . . . , sn) with all si > 0. Then

mijmkjSik = mijmkjOipspO
∗
pk = O∗

pimijO
∗
pkmkjsp = (O∗m)2pjsp

and analogously with n and S−1 = OD−1O∗. Moreover

mijnij = δikmijnkj = OipO
∗pkmijnkj = O∗

pimijO
∗
pknkj = (O∗m)pj(O

∗n)pj,

so collecting the three terms we are left with the quantity

(O∗m)2pjsp + (O∗n)2pj(sp)
−1 − 2(O∗m)pj(O

∗n)pj =
(

(O∗m)pj(sp)
1/2 − (O∗n)pj(sp)

−1/2
)2

(31)

which is non-negative. This proves the first part of the lemma.
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If now this quantity is 0, then Rpj := (O∗n)pj − (O∗m)pjsp is 0 for all p, j, so that

nij − (Sm)ij =
∑

qp

OipO
∗
pqnqj −

∑

p,r

OipspO
∗
prmrj =

∑

p

Oip
[

(O∗n)pj − (O∗m)pjsp
]

= 0

for all i, j. Hence n = Sm.
Conversely, if n = Sm, then (OR)ij =

∑

pOipRpj = 0 for all i, j, that is, OR = 0, whence

Rpj = 0 for all p, j. Finally mm∗ : (S − I) + nn∗ : (S−1 − I) + ‖m− n‖2HS = 0 by (31). ⊲

3. We now give a second general result on symmetric matrices:

Lemma 4.5 Let M and N be non-negative symmetric matrices. Then there exist matrices m
and n such that mm∗ =M , nn∗ = N and

‖m− n‖2HS = inf
{

‖m′ − n′‖2HS ;m′m′∗ =M,n′n′∗ = N
}

.

If moreover M is invertible, then any minimizer (m,n) is such that nm−1 is symmetric.

Proof

⊳ Let us first observe that the set of admissible (m′, n′) is closed, and bounded since for such m′

∑

i,j

m′2
ij =

∑

i

Mii,

and similarly for n′. Moreover the map (m′, n′) 7→ ‖m′−n′‖HS is continuous, which ensures the
existence of a minimizer.

Let now (m,n) be such a minimizer. First observe that

(mO)(mO)∗ = mOO∗m∗ =M

for all orthogonal matrix O. Hence

‖m− n‖2HS ≤ ‖mO − n‖2HS ,

that is
‖m‖2HS + ‖n‖2HS − 2m : n ≤ ‖mO‖2HS + ‖n‖2HS − 2 (mO) : n

or
m : n > (m0) : n (32)

since ‖mO‖2HS = ‖m‖2HS for an orthogonal matrix O, as can be seen by direct computation.

Let now 1 ≤ a, b ≤ n be fixed, and let O be the orthogonal matrix with coefficients Oii = 1
for i 6= a, b, Oaa = Obb = cos ε and Oba = −Oab = sin ε. For this matrix O, the relation (32)
reads

sin ε
∑

i

(niamib − nibmia) ≤ (cos ε− 1)
∑

i

(niamia − nibmib)

Letting ε tend to 0+ and 0−, we obtain

∑

i

niamib =
∑

i

nibmia.
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Now fix 1 ≤ c, d ≤ n, multiply this identity by (m−1)bc(m
−1)ad and sum over a and b to

obtain (nm−1)cd = (nm−1)dc. This ensures that nm
−1 is symmetric. ⊲

4. We can now prove the necessary part in Proposition 4.2. Let a, b ∈ R
n be fixed, and

µ0 = δa. By Lemma 4.5 withM = D(a) and N = D(b), there exist m,n such that mm∗ = D(a),
nn∗ = D(b) and nm−1 is symmetric. Observe moreover that

‖m− n‖2HS = inf
{

‖σ(a)− σ(b)‖2HS ;σ(a)σ(a)∗ = D(a), σ(b)σ(b)∗ = D(b)
}

.

Then we let ϕ be the map defined on R
n by

ϕ(x) =
1

2
(nm−1x) · x+ (b− nm−1a) · x.

It is a C2 map, and strictly convex since ∇2ϕ(x) is for all x the positive symmetric matrix
nm−1. Moreover ∇ϕ(a) = b, so ∇ϕ#µ0 = δb which we take as the second initial datum ν0.

For these initial data µ0 and ν0, the contraction property

W2(µt, νt) ≤ e−CtW2(µ0, ν0)

gives
CW2(µ0, ν0)

2 ≤ J(ν0|µ0)
by time-differentiation at t = 0 and Lemma 4.3, that is, here,

C|b−a|2 ≤
[

mm∗ : (∇2ϕ(a)−I)+nn∗ : ((∇2ϕ(a))−1−I)+‖m−n‖2HS
]

+(A(b)−A(a))·(b−a)−‖m−n‖2HS .

Since ∇2ϕ(a) = nm−1, the term in square brackets is 0 by Lemma 4.4, and we finally obtain

(A(b)−A(a)) · (b−a) > C|b−a|2+inf
{

‖σ(a)−σ(b)‖2HS ;σ(a)σ(a)∗ = D(a), σ(b)σ(b)∗ = D(b)
}

.

This concludes the proof of Proposition 4.2.

5 Proof of Proposition 3.5

We first state a general result on the map A:

Lemma 5.1 Let A be a C1 monotone map on R
n for which there exist two constants R and

K > 0 such that ∇SA(x) > K for all |x| > R. Then

(A(x)−A(y)) · (x− y) >
K

3
|x− y|2

if |x| > 2R or |y| > 2R.

Proof

⊳ Let x and y be fixed in R
n with |y| > 2R, and let us first write

(A(x) −A(y)) · (x− y) =

∫ 1

0
∇SA(y + t(x− y)) (x− y) · (x− y) dt

= r

∫ r

0
∇SA(y + sθ) θ · θ ds
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for x = y + rθ with r(= |x− y|) > 0 and θ ∈ S
n−1.

1. If {y + t(x− y); 0 ≤ t ≤ 1} ∩ {z ∈ R
n; |z| ≤ R} = ∅, then

∫ 1

0
∇SA(y + t(x− y)) (x− y) · (x− y) dt > K|x− y|2 > K

|x− y|2
3

·

2. If {y + t(x− y); 0 ≤ t ≤ 1} ∩ {z ∈ R
n; |z| ≤ R} 6= ∅, then let 0 ≤ r− ≤ r+ such that

{y + sθ; s > 0} ∩ {z ∈ R
d; |z| ≤ R} = [r−θ, r+θ].

Observe that

r− = |y − (y + r−θ θ)| > inf{|y − z|; |z| ≤ R} = |y| −R

and
r+ ≤ sup{|y − z|; |z| ≤ R} = |y|+R

with |y| > 2R, so that

r− >
r+
3
·

2.1. If r− ≤ r ≤ r+, then

∫ r

0
∇SA(y + sθ) θ · θ ds >

∫ r
−

0
∇SA(y + sθ) θ · θ ds > Kr− > K

r+
3

> K
r

3
·

2.2. If r+ ≤ r, then

∫ r

0
∇SA(y + sθ) θ · θ ds >

∫ r
−

0
∇SA(y + sθ) θ · θ ds+

∫ r

r+

∇SA(y + sθ) θ · θ ds

> Kr− +K(r − r+) > K
(r+
3

+ r − r+
)

= K
(r

3
+

2(r − r+)

3

)

> K
r

3
·

This concludes the argument, all cases being covered. ⊲

We now turn to the proof of Proposition 3.5. Let ϕ be a given strictly convex function
on R

n. Let us recall that for the Hessian operator

∇2ϕ∗ (∇ϕ(x)) = (∇2ϕ(x))−1

and in particular
∆ϕ∗ (∇ϕ(x)) = trace(∇2ϕ(x))−1

Let X be the subset of Rn defined by

X = {x ∈ R
n, |x| ≤ 2R, |∇ϕ(x)| ≤ 2R}.

1. First of all, by monotonicity of A and Lemma 5.1,

∫

Rn

(A(∇ϕ(x)) −A(x)) · (∇ϕ(x)− x) e−V (x) dx

>

∫

Rn\X
(A(∇ϕ(x)) −A(x)) · (∇ϕ(x) − x) e−V (x) dx >

K

3

∫

Rn\X
|∇ϕ(x) − x|2 e−V (x) dx.
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2. On the other hand, for θ ∈ S
n−1 we let Rθ = sup{r > 0, rθ ∈ X}. In particular Rθ θ ∈ X

and Rθ ≤ 2R. Then we let rθ ∈ [Rθ, 3R] such that

|∇ϕ(rθ θ)− rθ θ| = inf{|∇ϕ(r θ)− r θ|, Rθ ≤ r ≤ 3R}.

In particular

|∇ϕ(rθ θ)| ≤ |∇ϕ(rθ θ)− rθ θ|+ |rθ θ| ≤ |∇ϕ(Rθ θ)−Rθ θ|+ |rθ θ| ≤ 2R+ 2R+ 3R = 7R

since |∇ϕ(Rθ θ)| ≤ 2R and |Rθ θ| ≤ 2R for Rθ θ ∈ X.
Then, for r θ ∈ X with 0 ≤ r ≤ Rθ ≤ rθ, let us write

∇ϕ(rθ)− rθ = ∇ϕ(rθθ)− rθ θ +

∫ r

rθ

[∇2ϕ (sθ)− I] θ ds.

Letting H = ∇2ϕ(sθ) for notational convenience, we decompose as

[H − I] θ = [H
1

2 −H− 1

2 ]H
1

2 θ

so that

∣

∣

∣

∫ rθ

r
[H − I]θ dt

∣

∣

∣

2
≤

(

∫ rθ

r
|H 1

2 −H− 1

2 ||H 1

2 θ| ds
)2

≤
∫ rθ

r
|H 1

2 −H− 1

2 |2 e−V (sθ) ds

∫ rθ

r
|H 1

2 θ|2e+V (sθ) ds.

by the Hölder inequality. But

|H 1

2 −H− 1

2 |2 = sup
x

|[H 1

2 −H− 1

2 ]x|2
|x|2 = sup

x

([H − 2I +H−1]x) · x
|x|2

≤ trace(H − 2I +H−1) = ∆ϕ(sθ)− 2n+ (∆ϕ∗)(∇ϕ((sθ)).

since the eigenvalues of H − 2I +H−1 are non-negative. Moreover

|H 1

2 θ|2 = (H
1

2 θ) · (H 1

2 θ) = H θ · θ.

Hence

|∇ϕ(r θ)− r θ|2 ≤ 2 |∇ϕ(rθ θ)− rθ θ|2

+ 2

∫ rθ

r
(∆ϕ(s θ)− 2n +∆ϕ∗(∇ϕ(s θ)) e−V (s θ) ds

∫ rθ

r
(H θ) · θ e+V (sθ) ds

where
∫ rθ

r
(H θ) · θ ds = (∇ϕ(rθ θ)−∇ϕ(r θ)) · θ ≤ |∇ϕ(rθθ)|+ |∇ϕ(r θ)| ≤ 9R

for r θ ∈ X. Hence

∫

X,|x|≤2R
|∇ϕ(x)− x|2e−V (x) dx =

∫

Sn−1

∫ Rθ

0
rn−1|∇ϕ(r θ)− rθ|2 e−V (rθ) dr dθ

≤ 2

∫

Sn−1

∫ Rθ

0
rn−1|∇ϕ(rθ θ)− rθθ|2 e−V (rθ) dr dθ
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+18R esup{V (x); |x|≤2R}

∫

Sn−1

∫ Rθ

0
rn−1

∫ rθ

r
(∆ϕ(sθ)− 2n+∆ϕ∗(∇ϕ(sθ)) e−V (sθ) ds dr dθ.

But
∫

Sn−1

∫ Rθ

0
rn−1

∫ rθ

r
(∆ϕ(sθ)− 2n+∆ϕ∗(∇ϕ(sθ)) e−V (sθ) ds dr dθ

≤
∫

Sn−1

∫ Rθ

0

∫ rθ

r
sn−1(∆ϕ(sθ)− 2n +∆ϕ∗(∇ϕ(sθ)) e−V (sθ) ds dr dθ

≤ 2R

∫

Sn−1

∫ 3R

0
sn−1(∆ϕ(sθ)− 2n+∆ϕ∗(∇ϕ(sθ)) e−V (sθ) ds dθ

= 2R

∫

|x|≤3R
(∆ϕ(x)− 2n+∆ϕ∗(∇ϕ(x))) e−V (x) dx.

Hence
∫

X,|x|≤2R
|∇ϕ(x) − x|2e−V (x) dx

≤ 2 e− inf{V (x); |x|≤2R} (2R)
n

n

∫

Sn−1

|∇ϕ(rθ θ)− rθθ|2 dθ

+18R esup{V (x); |x|≤2R} 2R

∫

|x|≤3R
(∆ϕ(x) − 2n +∆ϕ∗(∇ϕ(x))) e−V (x) dx. (33)

Moreover, by Lemma 5.1 and the definition of rθ,
∫

|x|≤3R
(A(∇ϕ(x)) −A(x)) · (∇ϕ(x) − x) e−V (x) dx

>

∫

2R≤|x|≤3R
(A(∇ϕ(x)) −A(x)) · (∇ϕ(x) − x) e−V (x) dx

>
K

3

∫

2R≤|x|≤3R
|∇ϕ(x)− x|2e−V (x) dx >

K

3
e− sup{V (x); |x|≤3R}

∫

2R≤|x|≤3R
|∇ϕ(x)− x|2 dx

=
K

3
e− sup{V (x); |x|≤3R}

∫ 3R

2R
rn−1

∫

Sn−1

|∇ϕ(r θ)− r θ|2 dr dθ

>
K

3
e− sup{V (x); |x|≤3R}

∫ 3R

2R
rn−1

∫

Sn−1

|∇ϕ(rθ θ)− rθ θ|2 dr dθ.

Hence there exists a constant C such that

C

∫

Sn−1

|∇ϕ(rθθ)− rθ θ|2 dθ ≤
∫

|x|≤3R
(A(∇ϕ(x)) −A(x)) · (∇ϕ(x) − x) e−V (x) dx. (34)

It follows from (33) and (34) that

C

∫

X,|x|≤2R
|∇ϕ(x) − x|2 e−V (x) dx ≤

∫

|x|≤3R
(A(∇ϕ(x) −A(x)) · (∇ϕ(x)− x) e−V (x) dx

+

∫

|x|≤3R
(∆ϕ(x)− 2n+∆ϕ∗(∇ϕ(x)) e−V (x) dx.

Moreover
∫

|x|≤3R
(A(∇ϕ(x)) −A(x)) · (∇ϕ(x) − x) e−V (x) dx >

K

3

∫

2R≤|x|≤3R
|∇ϕ(x)− x|2e−V (x) dx,
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so that

C

∫

X
|∇ϕ(x) − x|2 e−V (x) dx ≤

∫

|x|≤3R
(A(∇ϕ(x) −A(x)) · (∇ϕ(x) − x) e−V (x) dx

+

∫

|x|≤3R
(∆ϕ(x) − 2n+∆ϕ∗(∇ϕ(x)) e−V (x) dx.

Finally the last two integrands are non-negative maps, so we can bound from above these
last two integrals on the set {|x| ≤ 3R} by the corresponding integrals on the whole R

n.

3. We conclude the proof of Proposition 3.5 by adding the estimates in 1. and 2.
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