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Titre: Sur l’estimation du sous-espace latent discriminant de l’algorithme Fisher-EM

Charles Bouveyron1 and Camille Brunet2

Abstract: The Fisher-EM algorithm has been recently proposed in [2] for the simultaneous visualization and clustering

of high-dimensional data. It is based on a discriminative latent mixture model which fits the data into a latent

discriminative subspace with an intrinsic dimension lower than the dimension of the original space. The Fisher-EM

algorithm includes an F-step which estimates the projection matrix whose columns span the discriminative latent

space. This matrix is estimated via an optimization problem which is solved using a Gram-Schmidt procedure in the

original algorithm. Unfortunately, this procedure suffers in some case from numerical instabilities which may result in

a deterioration of the visualization quality or the clustering accuracy. Two alternatives for estimating the latent subspace

are proposed to overcome this limitation. The optimization problem of the F-step is first recasted as a regression-type

problem and then reformulated such that the solution can be approximated with a SVD. Experiments on simulated and

real datasets show the improvement of the proposed alternatives for both the visualization and the clustering of data.

Résumé : L’algorithme Fisher-EM a été récemment proposé dans [2] pour simultanément visualiser et modéliser

des données de grande dimension. Il se base sur un modèle de mélange latent discriminant qui modélise les données

dans un sous-espace discriminant qui a une dimension intrinsèque plus petite que celle de l’espace des observations.

L’algorithme Fisher-EM est composé d’une étape F qui estime la matrice de projection dont les colonnes engendrent

le sous-espace latent discriminant. Cette matrice est estimée via un problème d’optimisation, lequel est résolu, dans

l’algorithme original, par une procédure de Gram-Schmidt. Malheureusement, cette procédure souffre dans certains cas

d’instabilités numériques qui peut engendrer une détérioration de la qualité de la visualisation ou de la classification

automatique des données. Pour pallier cette limitation, nous proposons deux alternatives d’estimation du sous-espace

latent. Le problème d’optimisation de l’étape F est réécrit comme un problème de régression puis reformulé de telle

manière que la solution peut être approximée par une SVD. Des expériences sur des données simulées et réelles montre

l’amélioration des alternatives proposées pour la visualisation et la classification automatique des données.

Keywords: clustering, Fisher-EM algorithm, regression problem, Fisher’s criterion, discriminative latent subspace,

dimension reduction

Mots-clés : classification automatique, algorithme Fisher-EM, problème de régression, critère de Fisher, sous-espace

latent discriminant, réduction de dimension
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1. Introduction

Nowadays, the measured observations are very often high-dimensional and clustering such data

remains a challenging problem. In particular, when considering the mixture model context, the

corresponding clustering methods show a disappointing behavior in high-dimensional spaces.
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2 Bouveyron and Brunet

They suffer from the well-known curse of dimensionality [1] which is mainly due to the fact that

model-based clustering methods are over-parametrized in high-dimensional spaces.

Hopefully, since the dimension of observed data is usually higher than their intrinsic dimension,

it is theoretically possible to reduce the dimension of the original space without loosing any

information. In the literature, a very common way to reduce the dimension is to use feature

extraction methods such as principal component analysis (PCA) or feature selection methods.

Alternatives to these methods are the subspace clustering methods [3, 13, 14, 15, 17] which avoid

dimension reduction. These techniques have been proposed in the past few years to model the data

of each group in low-dimensional subspaces. In a different approach, Raftery and Dean [19] and

Maugis et al. [12] propose a method for feature selection in the model-based clustering context by

recasting the variable selection problem as a model selection problem.

However, these approaches present certain limitations. For example, when the dimension

reduction is operated before the clustering task, the discriminative information can be lost which

is of course damageable for the classification task. In particular, Chang [4] showed that the

principal components linked to the largest eigenvalues do not necessary contain the most relevant

information about the group structure of the dataset. In the case of subspace clustering, even

though these methods turned out to be very efficient in practice, they are usually not able to

provide a global visualization of the clustered data since they model each group in a specific

subspace. Finally, the main disadvantage in the works of [12, 19] remains in the estimation

procedure which is too time-consuming in the case of high-dimensional data.

Recently, Bouveyron and Brunet [2] proposed a new statistical framework which aims to

simultaneously cluster the data and produce a low-dimensional representation of the clustered

data. To that end, the proposed model clusters the data into a common latent subspace which

both best discriminates the groups according to the current fuzzy partition of the data and has an

intrinsic dimension lower than the dimension of the observation space. Moreover, they propose an

estimation procedure called the Fisher-EM algorithm. This algorithm is based on an EM procedure

from which an additional step, named F-step, is introduced to estimate the projection matrix

whose columns span the discriminative latent space. This matrix is estimated via an optimization

problem which is solved using the concept of orthonormal discriminant vector developed by [6]

through a Gram-Schmidt procedure. However, the set of column vectors built are not guaranteed

to be optimal and such an approach remains numerically unstable because of the Gram-Schmidt

process.

In order to improve the estimation procedure of the discriminative latent space, we propose in

this paper two different alternatives. On the one hand, we reformulate the optimization problem

originally based on an eigen-decomposition problem as a regression-type problem. To do so, our

proposal is based on a result obtained in the supervised context by Qiao et al. [18]. In the other

hand, we propose an approach based on the singular value decomposition (SVD) which best

approximates the discriminative space while facilitating its estimation in practice.

This paper is organized as follows. Section 2 reviews the discriminative latent mixture model

and its estimation procedure (the Fisher-EM algorithm). Section 3 presents the two proposed

alternatives for estimating the discriminative latent mixture model. Then, numerical experiments

are presented in Section 4 to highlight the improvements of the proposed alternatives. Some

concluding remarks and ideas for further works are finally given in Section 5.
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2. The DLM model and the Fisher-EM algorithm

The discriminative latent mixture (DLM) model aims to both cluster the data at hand and reduce

their dimensionality into a common latent subspace. Conversely to similar approaches such

as [3, 14, 16, 17, 21] for example, this latent subspace is assumed to be discriminative, in the sense

that it best discriminates K groups according to the current fuzzy partition of the data. Moreover,

its intrinsic dimension is strictly bounded by the number of groups.

2.1. The DLM model

Let {y1, . . . ,yn} ∈ R
p denote a dataset of n observations that one wants to cluster into K homo-

geneous groups, i.e. adjoin to each observation y j a value z j ∈ {1, . . . ,K} where zi = k indicates

that the observation yi belongs to the kth group. On the one hand, let us assume that {y1, . . . ,yn}
are independent observed realizations of a random vector Y ∈ R

p and that {z1, . . . ,zn} are also

independent realizations of a random vector Z ∈ {1, . . . ,K}. On the other hand, let E ⊂ R
p denote

a latent space assumed to be the most discriminative subspace of dimension d ≤ K −1 such that

0 ∈ E and where d is strictly lower than the dimension p of the observed space. Moreover, let

{x1, . . . ,xn} ∈ E denote the actual data, described in the latent space E of dimension d, which

are in addition presumed to be independent unobserved realizations of a random vector X ∈ E.

Finally, for each group, the observed variable Y ∈ R
p and the latent variable X ∈ E are assumed

to be linked through a linear transformation:

Y = UX + ε, (1)

where U is a p× d orthogonal matrix common to K groups and satisfying U tU = Id . The p-

dimensional random vector ε stands for the noise term and conditionally to Z, ε is assumed

to be distributed according to a centered Gaussian density function with covariance matrix Ψk

(ε|Z=k ∼ N (0,Ψk)). Besides, within the latent space, X|Z=k is N (µk,Σk) where µk ∈ R
d and

Σk ∈ R
d×d are respectively the mean vector and the covariance matrix of the kth group. Given

these distribution assumptions and according to equation (1), Y|X ,Z=k is N (UX ,Ψk) and its

marginal distribution is therefore a mixture of Gaussians:

f (y) =
K

∑
k=1

πkφ(y;mk,Sk), (2)

where πk is the mixing proportion of the class k and φ(.) denotes a multivariate Gaussian density

function parametrized by the mean vector mk = Uµk and the covariance matrix Sk = UΣkU
t +Ψk

of the kth group in the observation space. Furthermore, in the DLM model, a p× p matrix

W = [U,V ] is defined, satisfying the condition W tW = WW t = Ip, and the (p− d)× p matrix

V is the orthogonal complement of U . Finally, the noise covariance matrix Ψk needs to satisfy

the conditions V ΨkV
t = βkIp−d and UΨkU

t = 0d , such that ∆k = W tSkW = diag(Σk,βkIp−d).
These last conditions imply that the discriminative subspace and the non discriminative one are

orthogonal, which suggests in practice that all the relevant clustering information remains in the

latent subspace. This model is referred to by DLM[Σkβk] in [2] and a graphical summary is given

in Figure 1.
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FIGURE 1. Graphical summary of the DLM[Σkβk ] model.

2.2. A family of parsimonious model

A family of parsimonious models can be obtained by constraining the parameters Σk or βk to be

common. For instance, the covariance matrices Σ1, . . . ,ΣK in the latent space can be assumed to

be common across groups and this submodel is referred to by DLM[Σβk]. Similarly, in each group,

Σk can be assumed to be diagonal, i.e. Σk = diag(αk1, . . . ,αkd). This submodel is referred to by

DLM[αk jβk]. A constraint can also be applied in the parameter βk by assuming it to be common

to all classes (∀k, βk = β ). This assumption can be viewed as modeling the non discriminative

information with a unique parameter which seems natural for data obtained in a common acquisi-

tion process. A detailed description of the 12 different DLM models can be found in [2]. Such a

family yields very parsimonious models and allows, in the same time, to fit into various situations.

In particular, the complexity of the DLM[Σkβk] model mainly depends on the number of clusters K

since the dimensionality of the discriminative subspace is such that d ≤ K −1. The complexity

of the DLM[Σkβk] grows linearly with p contrary to the traditional Gaussian models in which the

complexity increases with p2. As an illustration, if we consider the case with p = 100, K = 4 and

d = 3, then the complexity of the DLM[Σkβk] is γ = 337 which is drastically less than the number

of parameters to estimate in the case of the Full-GMM (γ = 20603).

2.3. The Fisher-EM algorithm

An estimation procedure, called the Fisher-EM algorithm, is proposed in [2] in order to both

estimate the discriminative space and the parameters of the mixture model. This algorithm is

based on the EM algorithm from which an additional step is introduced, between the E and the

M-step. This additional step, named F-step, aims to compute the projection matrix whose columns

span the discriminative latent space. The Fisher-EM algorithm has therefore the following form,

at iteration q:
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5

The E-step This step computes the posterior probabilities t
(q)
ik that the observations belong to

the K groups, at iteration q, using the following update formula:

t
(q)
ik = π̂

(q−1)
k φ(yi, θ̂

(q−1)
k )/

K

∑
ℓ=1

π̂
(q−1)
ℓ φ(yi, θ̂

(q−1)
ℓ ), (3)

with θ̂k = {µ̂k, Σ̂k, β̂k,Û}.

The F-step This step estimates, conditionally to the posterior probabilities, the orientation

matrix U (q) of the discriminative latent space by maximizing the Fisher’s criterion [5, 7] under

orthonormality constraints:

Û (q) = max
U (q)

trace
(

(U (q)tSU (q))−1U (q)tS
(q)
B U (q)

)

,

w.r.t. U (q)tU (q) = Id . (4)

where S stands for the covariance matrix and:

SB =
1

n

K

∑
k=1

n
(q)
k (m

(q)
k − ȳ)(m

(q)
k − ȳ)t , (5)

denotes the soft within covariance matrix with n
(q)
k = 1/n∑

n
i=1 tik, m

(q)
k = 1/n∑

n
i=1 t

(q)
ik yi and

ȳ = 1/n∑
n
i=1 yi. This optimization problem is solved in [2] using the concept of orthonormal

discriminant vector developed by [6] through a Gram-Schmidt procedure. Such a process enables

to fit a discriminative and low-dimensional subspace while providing orthonormal discriminative

axes conditionally to the current soft partition of the data. In addition, according to the optimization

criterion defined in (4), the dimensionality of the discriminative space d is strictly bounded by the

number of clusters K.

The M-step This final step estimates the parameters of the mixture model in the latent subspace
by maximizing the conditional expectation of the complete log-likelihood:

Q(θ)=
-1

2

K

∑
k=1

n
(q)
k

[

-2 log(πk)+tr(Σ−1
k Û (q)tCkÛ

(q))+log(|Σk|)+(p-d) log(βk)+
tr(Ck)-∑

d
j=1 û

(q)t
j Ckû

(q)
j

βk

+γ
]

.

(6)

where Ck is the empirical covariance matrix of the kth group, û
(q)
j is the jth column vector of Û (q),

n
(q)
k = ∑

n
i=1 t

(q)
ik and γ = p log(2π) is a constant term. Hence, maximizing Q conditionally to Û (q)

leads to the following update formula for the mixture parameters of the model DLM[Σkβk]:

π̂
(q)
k =

n
(q)
k

n
, (7)

µ̂
(q)
k =

1

n
(q)
k

n

∑
i=1

t
(q)
ik Û (q)tyi, (8)

Σ̂
(q)
k = Û (q)tCkÛ

(q), (9)

β̂
(q)
k =

tr(Ck)-∑
d
j=1 û

(q)t
j Ckû

(q)
j

p−d
. (10)
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6 Bouveyron and Brunet

The Fisher-EM procedure iteratively updates the parameters until convergence of the likelihood.

The convergence of the algorithm is guaranteed under certain conditions. Finally, since the latent

subspace has a low dimension and is also common to all groups, the clustered data can be easily

visualized.

3. Two alternatives for estimating the discriminative subspace

In [2], the estimation of the projection matrix U in the F-step is executed following the orthonormal

discriminant vector (ODV) procedure. The main purpose of the ODV process is to build a set

of column vectors which are both orthogonal and discriminative. However, the resulting set of

vectors is not guaranteed to be optimal [9] and such an estimation remains numerically unstable

because of the use of a Gram-Schmidt process. We therefore propose in this paper two different

ways to efficiently solve the optimization problem (4).

3.1. Fisher’s criterion as a regression criterion

In this first approach, we propose to reformulate the optimization problem as a regression-type

problem in an unsupervised context by leaning on a result of Qiao et al. [18].

3.1.1. Related work in the supervised context

Fisher discriminant analysis [5, 7] is a supervised dimension reduction method looking for a

linear transformation U which projects the observations in a discriminative and low dimensional

subspace of dimension d. The p×d matrix U is chosen such as it maximizes a criterion which

is large when the between-class covariance matrix SB is large and when the within-covariance

matrix SW is small such that:

Û = argmax
U

trace
(

(U tSWU)−1U tSBU
)

, (11)

where SB = 1/n∑
K
k=1 nk(mk − ȳ)(mk − ȳ)t and mk denotes the mean vector of the class k; SW =

1/n∑
K
k=1 nkCk where Ck and nk stand respectively for the covariance matrix and the number of

observations of the class k. The classical solution of this optimization problem is the eigenvectors

associated to the d largest eigenvalues of the matrix S−1
W SB. Qiao et al. [18] have reformulated

the optimization problem expressed in (11) as a ridge regression-type problem. The following

theorem introduces such a reformulation as it was originally defined by Qiao et al.. Let us first

consider the matrices HW and HB, defined by:

HW =
1

n

[

Y1 −m11t
n1

, . . . ,YK −mK1t
nK

]

∈ R
p×n, (12)

HB =
1

n
[
√

n1 (m1 − ȳ) , . . . ,
√

nK (mK − ȳ)] ∈ R
p×K , (13)

such that HW Ht
W = SW and HBHt

B = SB. Then, Qiao et al. state the following theorem in the

supervised classification context:
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Theorem 1. Consider the Cholesky decomposition of the within covariance matrix SW = Rt
W RW

where RW ∈ R
p×p is a upper triangular matrix. Let HB ∈ R

p×K be defined as in equation (13).

Let U1, . . . ,Ud be d column vectors of dimension p and denote the eigenvectors linked to the

d ≤ min(p,K − 1) largest values of the eigen decomposition of S−1
W SB. Let consider the p× d

matrices A = [α1, . . . ,αd ] and B = [β1, . . . ,βd ]. For ρ > 0, let Â and B̂ be the solutions of the

following problem:

min
A,V

K

∑
k=1

∥

∥R−t
W HB,k −ABtHB,k

∥

∥

2

F
+ρ

d

∑
j=1

β t
jSW β j w.r.t. AtA = Id , (14)

where HB,k =
√

nk/n(mk − ȳ) is the kth column of HB, ‖.‖F stands for the Frobenius norm and ρ

is a constant and positive term. Then:

Â = EP, (15)

with P is an arbitrary d×d orthogonal matrix and E, respectively Λ, denotes the matrix containing

the eigenvectors, respectively the eigenvalues, of R−t
W SBR−1

W satisfying R−t
W SBR−1

W = EΛEt . The

optimal loadings matrix B̂ is therefore:

B̂ = R−1
W E(Λ+ρI)−1ΛP,

which implies that the d column vectors of the fitted matrix B̂ span the same linear subspace as

the column vectors of U, solution of the eigen-decomposition problem.

3.1.2. Reformulation in the unsupervised context

We now propose to reformulate the eigen-decomposition problem associated with the estimation

of the discriminative latent space in the F-step as a regression-type problem. To that end, we lean

on the Qiao’s result [18] defined previously and adapt their result to the unsupervised classification

context. In their work, the matrices HW and HB are defined according to the class membership and

this is not possible in our case since they are not observed. An additional problem occurs in our

case: the DLM model assumes that the discriminative latent subspace has an orthonormal basis

and this constraint is not taken into account in the Qiao’s work.

Let us introduce the soft matrices H
(q)
W and H

(q)
B which are computed at each iteration q of the

F-step and conditionally to the E-step:

Definition 1. The soft matrices H
(q)
W ∈ R

p×n and H
(q)
B ∈ R

p×K are defined, conditionally to the

posterior probabilities t
(q)
ik computed in the E-step at iteration q, as follows:

H
(q)
W =

1

n

[

Y −
K

∑
k=1

t
(q)
1k m

(q)
k , . . . ,Y −

K

∑
k=1

t
(q)
nk m

(q)
k

]

∈ R
p×n (16)

H
(q)
B =

1

n

[
√

n
(q)
1 (m

(q)
1 − ȳ), . . . ,

√

n
(q)
K (m

(q)
K − ȳ)

]

∈ R
p×K , (17)

where n
(q)
k = 1

n ∑
n
i=1 t

(q)
ik and m

(q)
k = 1

n ∑
n
i=1 t

(q)
ik yi is the soft mean vector of the cluster k.
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8 Bouveyron and Brunet

According to these definitions, the matrices satisfy the conditions:

H
(q)
W H

(q)t
W = S

(q)
W and H

(q)
B H

(q)t
B = S

(q)
B , (18)

where S
(q)
W = 1/n∑

K
k=1 n

(q)
k Ck stands for the soft within covariance matrix computed at iteration

q and S
(q)
B denotes the soft between covariance matrix defined in equation (5). According to the

Qiao’s theorem [18], the optimization problem (4) can be alternatively solved, at iteration q, by

considering:

(Â(q), B̂(q)) = arg min
A(q)B(q)

K

∑
k=1

∥

∥

∥
R

(q)−t

W H
(q)
B,k −A(q)B(q)tH

(q)
B,k

∥

∥

∥

2

F
+ρ

d

∑
j=1

β
(q)t
j S

(q)
W β

(q)
j

w.r.t. A(q)tA(q) = Id , (19)

where S
(q)
W = R

(q)t
W R

(q)
W with R

(q)
W ∈ R

p×p is an upper triangular matrix, H
(q)
B,k is the kth column of

the matrix H
(q)
B defined from Equation (18), ρ is an hyper parameter to calibrate and finally, the

norm ‖.‖F denotes the Frobenius norm. By letting B̂(q) = [β̂
(q)
1 , . . . , β̂

(q)
d ] and according to the

Qiao’s results, the column vectors of the matrix B̂ ∈ R
p×d span the same linear space as those of

the projection matrix U.

However, the orthogonality constraint on the column vectors of the matrix U spanning the Fisher

space is not guaranteed. To that end, we use a well-known result formulated in [8] which concerns

the best approximation of a given matrix by an orthogonal matrix. In particular, it is stated that:

Obtaining the best approximation of a matrix X ∈ R
d×p by an orthonormal matrix with the same

dimensionality is equivalent to an orthogonal Procrustes problem: min{‖X −Q‖F : QtQ = Ip} ,
then Q = uvt is the solution of such a problem where u and v are respectively the left and right

singular vectors of the SVD of X. In our case, this result becomes:

Proposition 1. By considering Â(q) and B̂(q) solutions of Problem (19), the best approximation

of the projection matrix U (q) by an orthonormal matrix is solution of the following problem:

Û (q) = argmin
U (q)

∥

∥

∥
B̂(q)−U

(q)
∥

∥

∥

F

w.r.t. U
(q)t

U
(q) = Id,

where ‖.‖F refers to the Frobenius norm. By considering the SVD of B̂(q) = u′(q)Λ′(q)v′(q)t , then

Û (q) = u′(q)v′(q)t .

Proof. At iteration q, in the F-step and conditionally to the E-step, the following optimization

problem is considered:

(

Â(q), B̂(q)
)

= arg min
A(q),B(q)

K

∑
k=1

∥

∥

∥

∥

(

R
(q)t
W

)−1

H
(q)t
B,k −A(q)B(q)tH

(q)t
B,k

∥

∥

∥

∥

+ρ
d

∑
j=1

β
(q)t
j S

(q)
W β

(q)
j

w.r.t. A(q)tA(q) = Id

and is solved from the Qiao’s theorem developed in Section 1 of [18]. Therefore, the column

vectors of B̂(q) span the same space as the solution of the eigendecomposition of S
(q)−1
W S

(q)
B and
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the estimation of Â(q) is obtained by equation (15). Moreover, as we search the best approximation

of the matrix B̂(q) to an orthogonal matrix, then the optimization problem is equivalent to the

following one:

Û (q) = argmin
U (q)

∥

∥

∥
B̂(q)−U

(q)
∥

∥

∥

F

w.r.t. U
(q)t

U
(q) = Id,

where ‖.‖F refers to the Frobenius norm. This problem is a nearest orthogonal Procrustes problem

which can be solved by a singular value decomposition [8, 10]. The singular value decomposition

of B̂(q) = u′(q)Λ′(q)v′(q)t allows to write Û (q) = u′(q)v′(q)t . According to Qiao’s theorem, since B̂(q)

spans the same subspace as those obtained by the standard Fisher’s criterion and according to the

nearest Procrustes problem, Û (q) is the orthogonal matrix which best approximates the projection

matrix U whose column vectors span the orthogonal and discriminative latent subspace.

3.1.3. Algorithm

From an algorithmic point of view, the optimization problem can be solved by alternatively

optimizing over B(q) with A(q) fixed and over A(q) with B(q) fixed. This leads to the following

algorithm:

Algorithm 1

1. At iteration q, compute the matrices H
(q)
B and H

(q)
W from Equations (17) and (16). Let S

(q)
W = H

(q)
W H

(q)t
W

and S
(q)
B = H

(q)
B H

(q)t
B .

2. Compute R
(q)
W by using a Cholesky decomposition such that R

(q)
W R

(q)t
W = H

(q)
W H

(q)t
W .

3. Initialization:

Let B(q) = Q the eigenvectors of S−1S
(q)
B .

Compute the SVD R
(q)−t

W S
(q)
B B(q) = u(q)d(q)v(q)t and let A(q) = u(q)v(q)t .

4. Solve d independent regression problems:

β̂
(q)
j = argmin

β j

(

β
(q)
j W (q)tW (q)β

(q)t
j −2Ỹ (q)tW (q)β

(q)
j

)

,

where W (q) =

(

H
(q)t
B√

ρRW

)

and Ỹ (q) =

(

H
(q)t
B R

(q)−1
W α

(q)
j

Op

)

.

5. Let B̂(q) = [β̂1, . . . , β̂d ]. Compute the SVD R
(q)−t

W S
(q)
B B̂(q) = u(q)d(q)v(q)t and let A(q) = u(q)v(q)t .

6. Repeat steps 3 and 4 several times until convergence.

7. Compute the SVD of B̂(q) = u′(q)Λ′(q)v′(q)t and let Û (q) = u′(q)v′(q)t .

3.2. A modified Fisher criterion

In this second approach, we propose a modified Fisher’s criterion which aims to efficiently

approximate the discriminative latent subspace.
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10 Bouveyron and Brunet

3.2.1. Optimization problem

Instead of considering the constrained Fisher’s criterion (4) considered in the original algorithm,

we look here for a p×d projection matrix U with orthogonal columns such as the associated latent

subspace has a discrimination power as close as possible than the one of the whole observation

space, i.e. such that the matrix UU tS−1S
(q)
B best approximates the matrix S−1S

(q)
B . This leads to

consider the following optimization problem, in the F-step of the Fisher-EM algorithm, at iteration

q:

Û (q) = argmin
U

∥

∥

∥
S−1S

(q)
B −UU tS−1S

(q)
B

∥

∥

∥

F

w.r.t. U tU = Id, (20)

where U is a p×d orthogonal projection matrix, S stands for the covariance matrix of the input

data, S
(q)
B is the fuzzy between covariance matrix computed at iteration q and ‖.‖F is the Frobenius

norm. The solution of this new optimization problem is given by the following propostion:

Proposition 2. At iteration q, the best approximation of the matrix S−1S
(q)
B onto an orthogo-

nal subspace through a p× d projection matrix (d < K − 1) is the solution of the following

optimization problem:

Û (q) = argmax
U

trace
(

U t(S−1S
(q)
B )(S−1S

(q)
B )tU

)

,

w.r.t. U tU = Id . (21)

and the columns of Û are the d first left eigenvectors of the singular value decomposition of

S−1S
(q)
B .

Proof. In order to ease the reading of the proof, the index q is omitted. Let us first notice that:

∥

∥S−1SB −UU tS−1SB

∥

∥

2

F
= trace

(

(S−1SB −UU tS−1SB)t(S−1SB −UU tS−1SB)
)

,

= −2trace((S−1SB)tUU tS−1SB)+ trace((S−1SB)tS−1SB)

+trace((S−1SB)tUU tUU tS−1SB),

=
∥

∥S−1SB

∥

∥

2

F
− trace((S−1SB)tUU tUU tS−1SB),

=
∥

∥S−1SB

∥

∥

2

F
−
∥

∥UU tS−1SB

∥

∥

2

F
.

It implies that minimizing the quantity
∥

∥S−1SB −UU tS−1SB

∥

∥

2

F
is equivalent to maximize

∥

∥UU tS−1SB

∥

∥

2

F
.

Furthermore, since U tU = Id , the following equalities hold:

∥

∥UU tS−1SB

∥

∥

2

F
= trace

(

(UU tS−1SB)(UU tS−1SB)t
)

= trace
(

U t(S−1SB)(S−1SB)tU(U tU)
)

= trace
(

U t(S−1SB)(S−1SB)tU
)

.

where ‖.‖F denotes the Frobenius norm.
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Let us now consider the SVD of the n× p matrix S−1S
(q)
B = uΛvt where u and v stands for

respectively the left and right singular vectors of S−1S
(q)
B and Λ is a diagonal matrix containing

its associated singular values. As the matrix S
(q)
B has a rank d at most equal to K −1 < p, with K

the number of clusters, then the matrix S−1S
(q)
B is also of rank d = rank(S−1S

(q)
B ) at most equal to

K −1 < p. Consequently, only the d singular values of the matrix S−1S
(q)
B are non zeros, which

enables us to write S−1S
(q)
B = uΛdvt , where Λd = diag(λ1, . . . ,λd ,0, . . . ,0). Moreover, by letting

U = ud the d first left eigenvectors of S−1SB, then:

trace
(

U t(S−1SB)(S−1SB)tU
)

= trace
(

U t(uΛdvt)(uΛdvt)tU
)

,

= trace
(

U tuΛdΛt
dutU

)

,

=
d

∑
j=1

λ 2
j .

Consequently, the p×d orthogonal matrix U such that
∥

∥S−1SB −UU tS−1SB

∥

∥

2

F
is minimal is the

matrix made of the d first left eigenvectors of S−1SB.

Besides, let us consider Ũ , the solution of the optimization problem (21). We can notice that,

without loss of generality, in the case S = Ip, the proposed modified Fisher’s criterion becomes:

∥

∥UU tS−1SB

∥

∥

2

F
= trace

(

U tSBSt
BU
)

,

= trace
(

U tS2
BU
)

.

In this case and according to Proposition 2, Ũ stands for the right left eigenvectors of the SVD

of S2
B. Since SB is symmetric and semi-definite positive, the matrix Ũ contains the eigenvectors

associated with the d largest eigenvalues of S2
B and also to the ones of SB. Therefore, in this case,

Ũ is as well solution of the original optimization problem (4).

3.2.2. Algorithm

Algorithmically saying, one only needs to decompose by a singular value decomposition the

matrix S−1S
(q)
B at iteration q. The projection matrix whose its columns span the discriminative

latent subspace is fitted by the d first left singular vectors of S−1S
(q)
B .

Algorithm 2

1. At iteration q, compute the matrix S
(q)
B defined in Equation (5) and the covariance matrix S of the

data.

2. Compute the singular value decomposition of S−1S
(q)
B = u(q)∆

(q)
d v(q)t with d = rank(S−1S

(q)
B ).

3. Let Û
(q)
d = u

(q)
d where u

(q)
d stands for the d first left eigenvectors of u(q).

4. Experiments

The following experiments allows to compare the Gram-Schmidt orthogonalization procedure

originally used in [2] with the two alternatives proposed in this paper. For all the experiments, we
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FIGURE 2. Evolution of the fitted discriminative space according to the original Fisher-EM algorithm.

refer to by FisherEM-GS the original procedure, by FisherEM-REG the algorithm associated with

the regression criterion and finally by FisherEM-SVD the one corresponding to the approximation

of the Fisher’s criterion.

4.1. An introductory example: the Fisher’s irises

This introductory example aims to highlight the main asset of the Fisher-EM algorithm based

on the visualization of clustered data in a low and discriminative subspace. We first apply the

original FisherEM algorithm to the iris dataset that Fisher used in [5] which is made of 3 groups

corresponding to different species of iris (setosa, versicolor and virginica) among which the groups

versicolor and virginica are difficult to discriminate. The dataset consists of 50 samples from each

of 3 species and four features were measured from each sample. The four measurements are the

length and the width of the sepal and the petal. As the FisherEM algorithm is an unsupervised

procedure, the labels have been used only for performance evaluation and not for building the

discriminative axes. The results have been obtained with a random initialization on the DLM[αkβ ]

model where the number of classes has been fixed to 3. For this experiment, the clustering accuracy

has reached 98% with FisherEM-GS.

Figure 2 shows, at each iteration, the estimated projection and the clustering of the the data

with the Fisher-EM algorithm and, on each axis, the corresponding empirical group densities have
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FIGURE 3. Projection of clustered Fisher’s irises in the discriminative space fitted respectively by (a) FisherEM-GS,

(b) FisherEM-SVD and (c) FisherEM-REG procedures.

been drawn. As indicated by Panel (a), the initialization partition was randomly drawn. From

the second iteration until the third one, the discrimination between 2 groups begins. From the

fourth iteration (see Panel (d)), a structure of 3 different classes appears and the group densities

begin to separate distinctly. In particular, the first Fisher’s axis well-discriminates the 3 clusters.

Finally, the last iterations enable to refine the estimations of the means and the covariance matrices

of 3 clusters until convergence. Figure 3 illustrates the final partition obtained at convergence

with the FisherEM-GS, FisherEM-SVD and FisherEM-REG procedures from the same random

initialization on the DLM[αkβ ] model. As we can observe, the visualization of the clustered

irises obtained by the 3 algorithms are relatively similar. As expected, the clustering accuracy

of each method also remains very similar since the clustering accuracy has reached 98% for the

FisherEM-GS procedure and 97.3% for the FisherEM-SVD and FisherEM-REG algorithms.

However, it appears that, for some datasets and in particular for high-dimensional data, the

FisherEM-GS could fail in the visualization of clustered data while the clustering task remains

performing. The experiment which will be presented in Paragraph 4.3 illustrates such a limitation

and highlights the interest of the FisherEM-SVD and FisherEM-REG algorithms.

4.2. Comparison between the 3 F-steps

This second experiment aims to compare on simulations the three estimation procedures of the

projection matrix in the F-step of the Fisher-EM algorithm. The three procedures will be compared

on the basis of the produced latent subspace, the classification performance and the computing

time.

On the one hand, we compare the produced latent subspaces and to that end, we consider the

supervised context with d < K −1. For this comparison, 750 observations have been simulated

following the DLM[Σβ ] model with the parameters Σ = 2Id , d = 8 and β = 15. The difference

between clusters happens to be entirely on the means vectors. The simulated dataset is made of 15

groups of 50 observations and each group is modeled by a Gaussian density in a 8-dimensional

space completed by 7 orthogonal dimensions of Gaussian noise. The transformation matrix W has

been randomly simulated such as W tW = WW t = Ip and, for this experience, the dimension of
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14 Bouveyron and Brunet

the observed space is fixed to 30. In order to ease the comparison, we consider in this experiment

the supervised context. The true labels are used to initialize the Fisher-EM algorithm which

is consequently iterated only once, i.e. only one F-step and M-step are considered before re-

classifying the data with an E-step.

We first focus on the estimation of the discriminative latent subspace. Since the intrinsic

dimension of the latent subspace is theoretically at most equal to d = K−1, then the cosines of 14

potential discriminative axes have been computed. Figure 4.2 stands for cosine values computed

between the discriminative axes estimated by the 3 procedures. Figure 4.2 illustrates the scree

plot of the eigenvalues associated to the eigen-decomposition of the matrix s−1sB, where s and sB

stands for respectively the empirical covariance and the between covariance matrices in the fitted

latent subspace. First of all, in Figure 4.2, it can be observed that the cosines computed on the

8 first are close to 1, whatever the procedures are, which implies that the 3 procedures seems to

estimate the same discriminative subspace. Nevertheless, from the 8th axis, we can observe a gap

between the axes estimated by the FisherEM-GS and those estimated by FisherEM-SVD or by

FisherEM-REG. However, these last axes are no significance since they have no discriminative

power. Indeed, since rank(sB) = 8, we know the intrinsic dimension of the latent space is d = 8.

This is confirmed by Figure 4.2 which shows that the discriminative power of the estimated axes

is almost equal to 0 after the 8th dimension. Consequently, since the main difference between the

3 procedures remains in the axes which have no discriminative power, the 3 procedures used in

the F-step can be considered as equivalent for estimating the latent subspace.

On the other hand, we compare the clustering accuracy and the computational of the 3 al-

gorithms. To do this, we consider a traditional clustering situation from which the data are

high-dimensional since the dimension of the input space is p = 100. For this simulation, 600

observations have been simulated following the DLM[αk jβk] model and they are made of 3 bal-

anced groups for which each group is modeled by a Gaussian density in a 2-dimensional space

completed by orthogonal dimensions of Gaussian noise. The transformation matrix W has been

randomly simulated such as W tW = WW t = Ip. The experimental process has been repeated 25

times for each dimension of the observed space in order to see both the average performances and

the variances of the 3 algorithms. Regarding the classification performance, Figure 5 stands for the

boxplots of clustering accuracy rate obtained on 25 trials for each procedure. The average correct

classification rates of both the FisherEM-SVD (94.5%) and FisherEM-REG (92.2%) procedures

are better compared to those obtained by the original algorithm (92.6%). In the same manner, one

can also notice that FisherEM-SVD seems more stable than the nominal procedure whereas the

FisherEM-REG is slightly less.

Finally, the elapsed real time for each procedure has been computed and Table 1 presents the

computation time for the 3 procedures (FisherEM-GS, FisherEM-SVD, FisherEM-REG). We

can observe that the F-step computed by SVD is faster than those obtained by the two other

procedures. To summarize, the performances between these 3 procedures are comparable in terms

of estimation of the latent subsapce and classification performance but the SVD procedure remains

the quickest one.
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Procedures:
Computational time

FisherEM-GS 111.3±8.2
FisherEM-SVD 107.5±11.7
FisherEM-REG 109.8±8.8

TABLE 1. Elapsed real time and CPU time computed for the 3 procedures of the F-step in the Fisher-EM algorithm.
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16 Bouveyron and Brunet

FIGURE 6. Samples from the USPS358 dataset.

4.3. The USPS358 dataset

In this last experiment, the Fisher-EM algorithm is executed on a high-dimensional real-world

dataset. The data come from a sample of the USPS handwritten image data [11] collected by

the Center of Excellence in Document Analysis and Recognition (CEDAR) at SUNY Buffalo.

The overall dataset consists of 7291 digital numbers from 0,1,2, . . . ,9 scanned and stretched in a

rectangular box 16×16 in a gray scale of 256 values from around 80 persons. In this experiment,

only the classes which are difficult to discriminate are considered. Consequently, the studied

dataset consists of 1756 records (rows) and 256 attributes (columns) divided in three classes:

the numbers 3, 5 and 8. Figure 6 presents a sample from the USPS358. For this example, the

DLM[αk jβk] model is used, from which the Fisher-EM algorithm originally proposed by its authors

is executed (FisherEM-GS). Figures 7 stand for the corresponding group means obtained from the

group memberships estimated in the USPS358. Besides, the FisherEM-SVD and FisherEM-REG

algorithms have also been executed from the same random initialization.

Figure 8 presents the projections of the USPS358 dataset into the latent discriminative subspace

estimated by the 3 procedures. As previously, the empirical density of fitted clusters is in addition

drawn on each axis. First of all, we can observe that the visualization of the group structure is

really improved in the case of the FisherEM-SVD and FisherEM-REG algorithms compared to

the original procedure. Indeed, the FisherEM-GS procedure can barely differentiate two different

classes whereas the discrimination between the three groups is clear in the cases of the FisherEM-

SVD and FisherEM-REG. The poor performance of FisherEM-GS is linked to the estimation of

the second discriminative axis. Indeed, whereas the first axis enables to distinct the cluster 3 from

the clusters 5 and 8 for the three procedures, the second axis discriminates the groups 5 and 8

from the group 3. It seems that only FisherEM-SVD and FisherEM-REG succeeded in estimating

this second discriminative axis for this high-dimensional dataset. This difference is also illustrated

in Figure 9 which stands for the loadings (in absolute value) of the 2 discriminative axes fitted

respectively by the FisherEM-GS, FisherEM-SVD and FisherEM-REG algorithms.

Finally, even though the visualization of the clustered data is less satisfying for FisherEM-GS

than for its two alternatives, the clustering accuracy remains nevertheless almost similar for

FisherEM-GS (81.3%), FisherEM-SVD (82.2%) and FisherEM-REG (82.4%).

5. Conclusion

This work has presented two alternatives for estimating the projection matrix whose column

vectors span the discriminative latent subspace of the DLM model. On the one hand, we have

recasted the optimization problem originally defined in [2] as a ridge regression problem. On

the other hand, we have proposed a modified Fisher’s criterion in order to find the orthogonal

discriminative space which best approximates the solution of the original optimization problem.
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FIGURE 7. Group means estimated by the original Fisher-EM algorithm (FisherEM-GS) which corresponds to 81.3%

of miclassification rate.
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(a) FisherEM-GS (b) FisherEM-SVD (c) FisherEM-REG

FIGURE 8. Projection of the usps358 in their discriminative latent space fitted respectively by (a) the FisherEM-GS,

(b) the FisherEM-SVD and (c) the FisherEM-REG procedures.
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FIGURE 9. Absolute value of loadings of two discriminative axes estimated by (a) the FisherEM-GS, (b) the FisherEM-

SVD and (c) the FisherEM-REG procedures.
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18 Bouveyron and Brunet

Experiments on real-world datasets showed that the proposed alternatives enable to improve the

visualization of clustered data particularly in the case of high-dimensional data while reducing

the computing time.

The reformulation of the optimization problem into a regression-type one enables to extend

this work in a sparse case. Indeed, the addition of an ℓ1-penalty term into the regression problem

could introduce sparsity into the loadings of the projection matrix and consequently could

stress discriminative variables. According to a recent work of [20] based on a penalized matrix

decomposition, we could also consider to penalize the modified Fisher’s criterion in order to select

discriminative variables.
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