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HAMILTONIAN DESCRIPTION AND TRAVELING WAVES OF THE

SPATIAL DYSTHE EQUATIONS

FRANCESCO FEDELE∗ AND DENYS DUTYKH

Abstract. The spatial version of the fourth-order Dysthe equations describe the evolu-
tion of weakly nonlinear narrowband wave trains in deep waters. For unidirectional waves,
the hidden Hamiltonian structure and new invariants are unveiled by means of a gauge
transformation to a new canonical form of the evolution equations. A highly accurate
Fourier-type spectral scheme is developed to solve for the equations and validate the new
conservation laws, which are satisfied up to machine precision. Further, traveling waves
are numerically investigated using the Petviashvili method. It is found that their collision
appears inelastic, suggesting the non-integrability of the Dysthe equations.
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1. Introduction

Mathematical models used in physics and mechanics do not always possess a canonical
Hamiltonian structure. Typically, the dynamics is governed by partial differential equa-
tions expressed in terms of physically-based variables, which are not usually canonical. A
transformation to new variables is needed in order to unveil the desired structure explicitly
(see, for example, [24]). This is the case for the equations of motion for an ideal fluid: in the
Eulerian description, they cannot be recast in a canonical form, whereas in a Lagrangian
frame the Hamiltonian structure is revealed by Clebsch potentials (see, for example, [24],

Key words and phrases. Dysthe equation; deep water; Hamiltonian; ground state; traveling wave; soli-
tary wave.
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2 F. FEDELE AND D. DUTYKH

[21]). Moreover, multiple-scale perturbations of differential equations expressed in terms
of non-canonical variables typically lead to approximate equations that do not maintain
the fundamental conserved quantities, as the hydrostatic primitive equations on the sphere
[19], where energy and angular momentum conservation are lost under the hydrostatic
approximation.

Clearly, if canonical variables can be identified, then the associated Hamiltonian struc-
ture provides a natural framework for making consistent approximations that preserve the
fundamental dynamical properties of the original system, notably its conservation laws
[23, 25]. For example, consider the equations that describe the irrotational flow of an ideal
incompressible fluid of infinite depth with a free surface. Their Hamiltonian description
was discovered by [35] in terms of the free-surface elevation η(x, t) and the velocity poten-
tial ϕ(x, t) = φ(x, z = η(x, t), t) evaluated at the free surface of the fluid. Variables η(x, t)
and ϕ(x, t) are conjugated canonical variables with respect to the Hamiltonian H given
by the total wave energy. By means of a third order expansion of H in the wave steep-
ness, [36] derived an integro-differential equation in terms of canonical conjugate Fourier
amplitudes, which is Hamiltonian and has no restrictions on the spectral bandwidth. To
derive the Zakharov equation, fast non-resonant interactions are eliminated via a canonical
transformation that preserves the Hamiltonian structure [16, 36]. Alternatively, envelope
equations for the free-surface and wave potential can be obtained via multiple-scale per-
tubation techniques that remove such terms [35, 28]. However, the Hamiltonian structure
is lost since the transformation from the Zakharov action variables to envelope ampli-
tudes is not canonical. Nevertheless, the Hamiltonian and non-Hamiltonian versions of the
Zakharov’s equation are completely equivalent from a practical view-point.

The modified Nonlinear Schrödinger (NLS) equations derived by Dysthe [7] are also non-
Hamiltonian. Using the method of multiple scales, he extended the deep-water cubic NLS
equation for the time evolution of the unidirectional narrowband envelope A of the velocity
potential with carrier wave exp(ik0x−iω0t) and that of the potential φ of the wave-induced
mean flow, to fourth order in steepness and bandwidth. Introducing dimensionless units,
t′ = ω0t, x

′ = k0x, A
′ = k0A, and dropping the primes, φ can be easily found by means of

the Fourier-transform and a single equation for A can be derived as well:

At +
1

2
Ax +

1

8
iAxx −

1

16
Axxx +

i

2
|A|2A +

3

2
|A|Ax + βA2A∗

x +
1

2
iAH(|A|2)x = 0, (1.1)

where β = 1/4, the subscripts At = ∂tA and Ax = ∂xA denote partial derivatives with
respect to x and t respectively, H(f) is the Hilbert Transform of a function f(x), and A∗

denotes complex conjugation (see also [14]). The form of the equation for the envelope B
of the free surface is similar to (1.1), but the term βA2A∗

x becomes −βB2B∗
x [12, 13]. As

noted by [12] such terms do not play any role in the linear stability of unifrom wave trains
within the order of truncation of the perturbation analysis leading to the Dysthe equation.
However, in three dimensions the β-term yields a better confinement of the instability
region for the Stokes wave and the associated Dysthe equations are less susceptible to
numerical instability and energy leakage [31]. Moreover, [13] noted that the two equations
for A and B are so similar ’because of some deeper structure in the problem which is as
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yet unresolved ’. This may well be a Hamiltonian structure that the temporal Dysthe
equations lack because (1.1) is expressed in terms of envelope variables, which are not
canonical. Recently, the associated canonical form (which do not contain the β term) has
been derived by [11] starting from the Hamiltonian Zakharov equation with the Krasitskii
kernel [16]. We also point out that [37], starting from a conformal-mapping formulation
of the Euler equations derived another version of the temporal Dysthe equation, which is
similar to (1.1) but also non-Hamiltonian.

On the other hand, to model wave propagation in wave basins a change to a coordinate
system moving at the group velocity can be used by introducing the dimensionless variables

A = εv, τ = ε(2x− t), ξ = ε2x,

with ε = k0a being the wave steepness of the carrier wave and a the associated amplitude
[18]. As such, the temporal Dysthe equation (1.1) transforms, up to the fourth order in ε,
to

vξ + ivττ + i |v|2 v + 8ε |v|2 vτ + 2εivH(|v|2)τ = 0. (1.2)

hereafter referred to as the spatial Dysthe of the envelope v of the wave potential. On the
other hand, the associated envelope B = εu of the free surface satisfies (see also [31])

uξ + iuττ + i |u|2 u+ 8ε |u|2 uτ + 2εu2u∗τ + 2εiuH(|u|2)τ = 0, (1.3)

Both (1.2) and (1.3) can also be derived directly from the Zakharov equation [15].
In this paper, we will unveil the hidden canonical structure of (1.2) and that of (1.3).

Following our previous letter [8], we first review the properties of Hamiltonian systems and
then introduce a gauge transformation that yields a canonical form for the spatial Dysthe
(1.3), and new invariants for it. As a corollary, we will also show that equation (1.2) for the
wave potential envelope v is already Hamiltonian, as expected since (1.2) is a special case
of the more general result obtained for two horizontal dimensions by [4]. Further, a highly
accurate pseudo spectral scheme is exploited to validate the new conservation laws up to
machine precision. Then, ground states and traveling waves are numerically investigated
using the Petviashvili method ([22]; see also [17], and [34]). Their collision is numerically
investigated in order to provide new insights on the integrability of the spatial Dysthe
equations.

2. Hamiltonian description

For the spatial evolution of canonical systems, the Hamilton’s equations take the form
(see, for example, [3, 21])

uiξ = J ijc
δH
δuj

, (2.1)

where ui(ξ, τ) is the ith variable of the dynamical vector u, uiξ = ∂ξu
i denotes space

derivative, H(u, ξ) is the Hamiltonian, and J ijc is a skew-symmetric (symplectic) matrix.
The Einstein’s notation for repeated index summation is adopted, and δ denotes variational
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differentation. If H does not depend explicitly on ξ, the flow generated in the phase-space
of u conserves H. This follows from (2.1)

dH
dξ

= ∂ξH +
δH
δuj

∂ξu
j =

δH
δuj

J ijc
δH
δuj

= 0,

since ∂ξH = 0 and J ijc = −J jic . If one considers a general transformation

wi = wi(u), (2.2)

the Hamilton equations (2.1) in the new variables become

∂ξw
i = J im(w)

δH
δwm

, (2.3)

where

J ij(w) =
∂wi

∂un
Jnmc

∂wj

∂um
(2.4)

is the cosymplectic form (see, for example, [21]). The transformation (2.2) is canonical if

J ijc =
∂wi

∂un
Jnmc

∂wj

∂um
, (2.5)

then the Hamilton’s equations (2.1) are invariant, otherwise (2.3) is in a noncanonical
form and J ij may be singular. However, if it satisfies certain algebraic properties, i.e.
skew symmetry and the Jacobi identity, then a generalization of the Darboux theorem
garanties the existence of a transformation from J ij to J ijc (see, for example, [21]) for
a more comprehensive discussion on canonical and noncanonical forms). Obviously, by
switching ξ with τ the above description also holds for the time evolution of Hamiltonian
systems.

As an example, consider the finite dimensional system of an harmonic oscillator in the
classical canonical variables q(t) (coordinate) and p(t) (momentum). This admits the
canonical form

q̇ =
∂H
∂p

= p, ṗ = −∂H
∂q

= −q, (2.6)

where ṗ denotes time derivative, and H = (q2 + p2)/2. The flow in the phase-space is
’incompressible’ since the divergence vanishes:

∂q̇

∂q
+
∂ṗ

∂p
= 0.

The transformation z = q + ip is canonical and (2.6) transforms to

ż = −i∂H
∂z∗

= −iz, ż∗ = i
∂H
∂z

= iz∗, (2.7)

where H = |z|2 /2, and z∗ is the complex conjugate of z. It is straightforward to prove
that the gauge transformation

z = weiα|w|
2

,
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with α as a free parameter, is also canonical, and (2.7) remains unchanged in the new
variables w and w∗. On the other hand, if one considers the coordinate change

Q =
q

√

1 + αq2
, P = p, (2.8)

then (2.6) transforms to the noncanonical form

Ṗ = −Q
(√

1 + αP 2 − 2αP 2
)

, Q̇ =
P√

1 + αP 2
. (2.9)

This flow does not preserve volume as (2.6) does, nonetheless equations (2.9) are those
of a disguised harmonic oscillator obtained via the noncanonical change of variables (2.8)
(see also [21]). The Dysthe equation (1.3) shares the same roots as (2.9). They both come
from a noncanonical transformation of a Hamiltonian system. In the following, canonical
variables for the spatial Dysthe are unveiled.

3. Canonical form of the spatial Dysthe equations

Hereafter, we will consider the generic nonlinear equation

uξ = −iauττ − ih |u|2 u− cε |u|2 uτ − εeu2u∗τ − fiεuH(|u|2)τ , (3.1)

with (a, h, c, e, f) as a quintuplet of arbitrary real coefficients. In particular, the spatial
Dysthe for the wave and potential envelopes follow from (3.1) with parameters (1, 1, 8, 2, 2)
and (1, 1, 8, 0, 2) respectively. The wave action

A =

∫

|u|2 dτ (3.2)

is conserved by (3.1) since

∂ξ |u|2 + ∂τR = 0, (3.3)

where

R = ia(uτu
∗ − u∗τu) +

c+ e

2
ε |u|4 .

Up to date, no other conservation laws are known for u. Drawing from [6] (see also [33]),
the invariance of A suggests the following variable change via the gauge transformation

w = G(u) = u exp(ikψ), (3.4)

where k is a free parameter, and the ’stream function’ ψ is defined as

∂τψ = ψτ = |u|2 .
Note that |u|2 = |w|2 and the wave action A is preserved in the transformation. Further,

from (3.3) the spatial evolution of ψξ is governed by

∂ξτψ = −∂τR,
so that ∂ξψ = ψξ = −R. The spatial evolution equation for w follows from (3.4) as

wξ = uξ exp(ikψ) + ikwψξ = uξ exp(ikψ)− ikwR. (3.5)
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From (3.1), uξ can be given in terms of time derivatives of u, which by means of (3.4) can
be expressed in terms of w and ψ as

uτ = exp(−ikψ) (wτ − ikwψτ ) ,

uττ = exp(−ikψ)
(

wττ − ikwψττ − 2ikwτψτ − k2wψ2
τ

)

.

Explicitly, the evolution equation for w is given by

wξ = −iawττ − ih |w|2w + ikε2
c− 3e− 2ak

2
|w|4w

−(c+ 2ak)ε |w|wτ − (e + 2ak)εw2w∗
τ − ifεwH(|w|2)τ . (3.6)

If the free parameter k∗ is chosen as

k∗ = − e

2a
ε,

equation (3.6) simplifies to

wξ = −iawττ − ih |w|2w − i
ce− 2e2

4a
ε2 |w|4w − (c− e)ε |w|2wτ − ifεwH(|w|2)τ , (3.7)

which admits the Hamiltonian structure
(

wξ
w∗
ξ

)

= i

(

0 1
−1 0

)(

δHw

δw
δHw

δw∗

)

, (3.8)

where the Hamiltonian is given by

Hw =

∫

(

a |wτ |2 −
h

2
|w|4 − ce− 2e2

12a
ε2 |w|6

−ic− e

4
ε |w|2 (w∗

τw − wτw
∗)− f

2
ε |w|2H(|w|2)τ

)

dτ. (3.9)

Here, Hw is also an invariant together with the momentum

Mw =

∫

i(w∗
τw − wτw

∗)dτ. (3.10)

Note that in the Appendix of [31] it was shown that Eq. 1.1 admits the same invariant
(3.10) if β = 0. Since Hw is an invariant for w, from (3.4) and (3.10)

E(u) = Hw(G−1(w)) =

∫

(

a |uτ |2 −
h

2
|u|4 + ce+ e2

6a
ε2 |u|6 (3.11)

−ic + e

4
ε |u|2 (u∗τu− uτu

∗)− f

2
ε |u|2H(|u|2)τ

)

dτ,

M(u) = Mw(G−1(w)) =

∫

[

i(u∗τu− uτu
∗)− e

a
ε |u|4

]

dτ,

are both invariants of the original spatial Dysthe equation (3.1). Unfortunately, E is not
the associated Hamiltonian. In section 5 we present a highly accurate Fourier-type pseudo-
spectral method that has been used to solve for the envelope dynamics and validate the
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invariance of the Hamiltonian (3.9) of w and the new invariants (3.11) of u. In our numerical
investigations, it is found that they are all conserved up to machine precision.

Note the appearance of terms of O(ε2) in the invariants E and Hw. They both vanish if e
is null; as a result u = w and E(u) = Hw becomes the Hamiltonian for u. As a consequence,
the spatial Dysthe (1.2) for the wave envelope B is non Hamiltonian since e = 2, whereas
that for the wave potential A is (cf. Eq. 1.3)).

To the leading order, the free-surface η is related to the wave envelope A = εu as

k0η ∼ εuei(k0x−ω0t),

where from (3.4), u can be expressed in terms of the canonical w as

k0η ∼ εwei(k0x−ω0t−iεk∗|ψ|). (3.12)

Thus, via the gauge transformation (3.4) the wavenumber shift due to self-resonant interac-
tions naturally arises, and the envelopes |u| and |w| are identical. This may suggest (3.12)
as a canonical ansatz for multiple scale perturbations of the Euler equations. Further, w
satisfies the canonical equation (3.7), viz.

wξ = −iwττ − i |w|2w − 2iε2|w|4w − 6ε|w|2wτ − 2iεwH(|w|2)τ , (3.13)

with the Hamiltonian given by

Hw =

∫

(

|wτ |2 −
1

2
|w|4 − i

3

2
ε|w|2(w∗

τw − wτw
∗)

−ε|w|2H(|w|2)τ −
2

3
ε2|w|6

)

dτ, (3.14)

which is invariant together with the action (3.2) and momentum (3.10). Note that the
corresponding O(ε2) terms in (3.13) and (3.14) can be legitimately neglected and the
Hamiltonian properties are preserved [23, 25].

The noncanonical envelope u satisfies, besides the action (3.2), the two new invariants

E(u) =
∫

(

|uτ |2 −
1

2
|u|4 − i

5

2
ε |u|2 (u∗τu− uτu

∗) +
10

3
ε2 |u|6 − ε |u|2H(|u|2)τ

)

dτ,

M(u) =

∫

[

i(u∗τu− uτu
∗)− 2ε |u|4

]

dτ,

Practically, terms of O(ε2) can be neglected and the invariants are approximately satisfied.
The spatial Dysthe (1.3) of the wave potential A = εv is already Hamiltonian with

Hv =

∫
(

|vτ |2 −
1

2
|v|4 − 2iε|v|2(v∗τv − vτv

∗)− ε|v|2H(|v|2)τ
)

dτ,

since the term e = 0. Besides Hv, it also conserves the action (3.2) and momentum (3.10)
written in terms of v.
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4. Ground states and Traveling waves

Insights into the underlying dynamics of the Dysthe equations are to be gained if we
construct some special families of solutions in the form of ground states and traveling
waves, often just called solitons or solitary waves. Hereafter, we do so for the equation
(3.1) for the envelope u, and the associated Hamiltonian form (3.7) in w can be treated in
a similar way. However, owing to the gauge transformation (3.4) the envelope |w| = |u|.

First, consider the special case of (3.1) with parameters (1, h, 0, 0, 0). This is the classical
NLS equation, which is well known to admit a family of localized traveling waves of the
form ([38]; see also [1, 29])

u(ξ, τ) = A

√

2

h

eisτ/2

cosh
(

A(τ − sξ)
)e−iµξ, µ = A2 − s2

4
, (4.1)

where A is a free parameter. This solitary wave travels along the space ξ with speed 1/s
while pulsating in time. Due to the integrability of the NLS equation the interaction of
solitary waves is elastic and so after the collision their shape is unchanged, but a phase
shift occurs (see, for example, Figure 5). At infinite speed, i.e. s = 0, (4.1) yields the
so-called ground state solutions (see, for example, [34]).

In the following, we wish to find traveling waves of the Dysthe equation (3.1) in u. To
do so, we consider a generalization of (4.1) via the ansatz

u(ξ, τ) = v(τ − sξ)eiµξ, (4.2)

where µ and s are generic parameters and the function v(·) is in general complex. Substi-
tuting (4.2) into (3.1) and separating the real and imaginary parts v = Φ + iΨ yield

µΦ− aΦττ + sΨτ = hΦ(Φ2 +Ψ2) + cΨτ (Φ
2 +Ψ2)

+e
(

2ΦΦτΨ− Φ2Ψτ +Ψ2Ψτ

)

+ fΦH
(

(Φ2 +Ψ2)τ
)

, (4.3)

µΨ− aΨττ − sΦτ = hΨ(Φ2 +Ψ2)− cΦτ (Φ
2 +Ψ2)

−e
(

Φ2Φτ − ΦτΨ
2 + 2ΦΨΨτ

)

+ fΨH
(

(Φ2 +Ψ2)τ
)

. (4.4)

These equations can be solved analytically if the c, e and f terms can be assumed as small
perturbations of the NLS equation. In this particular case direct soliton perturbation
theory can be applied (see, for example, [2] and [34]). We prefer to deal with the general
case, and thus numerically solve for (4.3) and (4.4) using the Petviashvili method ([22], see
also [17, 34]). This numerical approach has been successfully applied by [37] to compute
ground states of their version of the temporal Dysthe equation.

To shorten the notation we rewrite the differential equations (4.3) and (4.4) in the
operator form separating linear and nonlinear terms:

L
(

Φ
Ψ

)

= N (Φ,Ψ),
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where N (Φ,Ψ) denotes the right-hand side of equations (4.3), (4.4) and the matrix L is
defined as

L =

(

µ− a∂ττ s∂τ
−s∂τ µ− a∂ττ

)

, L̂ =

(

µ+ ak2 isk
−isk µ+ ak2

)

,

where L̂ is the symbol of the operator L and k is the Fourier transform parameter. Then
the Petviashvili iteration takes the following form:

(

Φn+1

Ψn+1

)

= L−1 · N (Φn,Ψn) ·









〈(

Φn
Ψn

)

, L ·
(

Φn
Ψn

)〉

〈(

Φn
Ψn

)

, N (Φn,Ψn)

〉









γ

,

where the exponent γ is usually defined as a function of the degree of nonlinearity p (p = 3
for the Dysthe equation (3.1), and p = 5 for (3.7)). The rule of thumb prescribes the
following formula γ = p

p−1
. The scalar product is defined in the L2 space. The inverse

operator L−1 in the Fourier space is given by the following matrix:

L̂−1 =
1

(µ+ ak2)2 − (sk)2

(

µ+ ak2 −isk
isk µ+ ak2

)

.

To initialize the iterative process, one can use the analytical solution to the NLS (4.1)
for the real part Φ0 and taking the imaginary part Ψ0 ≡ 0. This iterative procedure
is continued until the L∞ norm between two successive iteration is of the order of the
machine precision. We would like to underline the fact that this method can be very
efficiently implemented using the Fast Fourier Transform (FFT) (see, for example, [9]).

As an application, consider the non-Hamiltonian Dysthe (1.2), particular case of (3.1)
with parameters (1, 1, 8, 2, 2). Figure 1 shows the action A of the ground state (s = 0) for
u (and so w due to the gauge transformation (3.4)) as function of µ, computed for different
values of the steepness ε, and Figure 2 reports the associated envelopes |u| = |w| for µ = 3.
As one can see, as ε increases they tend to reduce in size in agreement with the asymptotic
analysis carried out by [2] in the limit of ε → 0.

Furthermore, Figure 3 illustrates a typical basin of attraction of the Petviashvili scheme
in the phase space (s, µ) for ε = 0.15. Each gray dot corresponds to a well converged
solution up to machine precision, whereas white spots are associated to either divergent or
converged-to-zero solutions. In particular, we noted that the numerical scheme converged
to localized traveling waves below the black boundary curve Γ shown in Figure 3. On the
other hand, the convergence to simple periodic waves occurred for points above Γ. An
analytical form of such curve can be derived from the nonlinear dispersion relation A – ω
of periodic waves of the form

u(ξ, τ) = Aeiω(τ−sξ)e−iµξ.

Indeed, using this ansatz in (3.1) yields

aω2 + (s+ (e− c)A2)ω + µ− hA2 = 0. (4.5)
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Figure 1. Action A of the ground state of the spatial Dysthe equation (1.2)
for u as function of µ, for different values of the steepness ε.

The boundary Γ of the periodic waves region in the phase space (s, µ) follows from the
condition that the discriminant of the quadratic equation in ω is null, viz.

s = (c− e)A2 + 2
√

a(µ− hA2). (4.6)

The analytical separatix (4.6) is practically identical to the boundary Γ that we have
identified numerically, confirming the validity and correctness of our numerical solver.
Thus, localized traveling waves bifurcate from Γ. This is clearly illustrated in Figure 4,
which reports the change in shape of the envelope |u| as s varies while keeping µ constant,
say µ = 0.27 as a particular case. Clearly, as the point (s, µ = 0.27) reaches the boundary
Γ from below (see Figure 3), the soliton envelope tends to flatten to that of a periodic
wave. Similar results also hold for the Hamiltonian w due to the gauge transformation
(3.4).

5. Traveling wave interactions

We further investigate the dynamics of the Dysthe equations by means of a highly ac-
curate Fourier-type pseudo-spectral method, which is needed in order validate the newly
derived conservation laws and investigate nonlinear phenomena such as elastic/inelastic
traveling waves interactions. Spectral methods have been already proven to be sufficiently
accurate and robust for studying the dynamics of gravity waves [20, 5, 34]. As in the previ-
ous section, we first illustrate the numerical method for equation (3.1), but the associated
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Figure 2. Envelopes |u| of ground states of the spatial Dysthe equation
(1.2) for different values of the steepness ε (µ = 3). The associated canonical
envelope |w| = |u| because of the gauge transformation (3.4).

Hamiltonian form (3.7) can be treated in a similar way. Then we present some results of
the interactions among traveling waves.

5.1. Numerical method description. Equation (3.1) can be written in the following
operator form:

uξ + L · u = N (u), (5.1)

where the operators L and N are defined as

L = ia∂ττ , N (u) = −ih|u|2u− cε|u|2uτ − εeu2u∗τ − ifεuH(|u|2τ).
Equation (5.1) will be solved numerically by applying the Fourier transform in the time
variable τ . The transformed variable will be denoted by û = F{u}. We recall that the
symbol of the last term H(∂τ ) is equal to |k|, and that of L is −iak2, k being the Fourier
transform parameter. The nonlinear terms are computed in the physical space, while time
derivatives and the Hilbert transform are computed in the Fourier space. For example, the
term |u|2uτ is discretized as:

F{|u|2uτ} = F{|F−1(û)|2 · F−1{ikû}}.
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Figure 3. Numerical basin of attraction of the Petviashvili scheme in the
phase space (s, µ) for ε = 0.15. Each gray dot corresponds to a well con-
verged solution up to machine precision, whereas white spots are associated
to divergent or converged-to-zero solutions. Solitary waves (localized trav-
eling waves) occur below the black boundary curve Γ, which separates the
region of periodic waves.

The other nonlinear terms are treated in a similar way. We note that the usual 4-half rule
is applied for anti-aliasing [30, 5, 10].

In order to improve the stability of the space discretization procedure, we can integrate
exactly the linear terms. This is achieved by making a change of variables [20, 10]:

v̂ξ = e(ξ−ξ0)L · N
{

e−(ξ−ξ0)L · v̂
}

, v̂(ξ) ≡ e(ξ−ξ0)L · û(ξ), v̂(ξ0) = û(ξ0).

Finally, the resulting system of ODEs is discretized in space by the Verner’s embedded
adaptive 9(8) Runge–Kutta scheme [32]. The step size is chosen adaptively using the so-
called H211b digital filter [26, 27] to meet the prescribed error tolerance, set as of the order
of machine precision.

5.2. Numerical results. As an application, consider the interaction between two solitary
waves of the NLS equation traveling in opposing directions with the same speed s = 2, for
µ = 2 (ε = 0). The shape of the two solitons is identical because of the NLS reflection
symmetry, i.e. u(ξ, τ) = (ξ,−τ). The left plot of Figure 5 shows that the two solitons
emerge out of the collision with the same shape, but a phase shift. The interaction is
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Figure 4. Localized traveling waves bifurcating from the boundary Γ of
Figure 3. Change in shape of the envelope |u| as s varies while keeping
µ = 0.27. In particular, with reference to Figure 3, the point (s, µ = 0.27)
reaches the boundary Γ from below.

elastic as it should be since the NLS equation is integrable. This is clearly seen from
the right plot of the same figure, which reports the initial and final shapes of one of the
two solitary waves. We point out that the Hamiltonian and the other two NLS invariants
are conserved up to machine precision. For the same parameters, Figure 6 reports the
interaction of the associated solitary waves of the Dysthe equation (1.2) for ε = 0.15. The
reflection symmetry is lost and the two solitons have different shape and amplitude. The
interaction is clearly inelastic, since after the collision radiation is shed and the initial and
final soliton shapes are different as seen in the right plot of Figure 6. The interaction of
four solitons has similar inelastic characteristics as shown in Figure 7. This suggests the
non-integrability of the Dysthe equation (1.2). Similar dynamics is also observed for the
associated Hamiltonian form (3.7).
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Figure 5. (Left) elastic collision of two NLS solitary waves traveling at the
same speed s = 2, for µ = 2, and (right) initial (−−) and final (—) shapes
of one of the two solitons.

6. Conclusions

A canonical variable for the spatial Dysthe equation for the wave envelope u has been
identified by means of the gauge transformation (3.4), and the hidden Hamiltonian struc-
ture is unveiled. Further, the associated equation for the wave potential v is shown to be
already Hamiltonian. Exploiting the gauge invariance allowed to derive two new invariants
for the noncanonical u. Clearly (3.4) is also applicable to the temporal Dysthe equation
(1.1), but it leads to a cumbersome equation in w that contains nonlinear terms with
derivatives higher than the first order, which cannot be eliminated by a proper choice of
the free parameter k. The transformed equation may well be Hamiltonian, but we could
not identify such functional due to the complexity of the equation. In any case, the gauge
transformation (3.4) does not yield the Hamiltonian form derived by [11] for the temporal
case.

Moreover, the existence of localized traveling waves that bifurcate from periodic waves
has been investigated numerically by means of a highly accurate Petviashvili scheme. In
particular, ground state solutions are found to be in agreement with the asymptotic analysis
of [2]. A Fourier-type pseudo-spectral method has been developed to solve for the envelope
dynamics and test the new conservation laws, which are validated up to machine precision.
Solitary waves are found to interact inelastically, suggesting the non-integrability of both
the Hamiltonian and non-Hamiltonian version of the spatial Dysthe equations.
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Figure 6. (Left) inelastic collision of two Dysthe solitary waves traveling
at the same speed s = 2, for µ = 2, and (right) initial (−−) and final (—)
shapes of one of the two solitons.
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Figure 7. Inelastic collision of four Dysthe solitary waves.
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