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Abstract

We prove optimal constant over root n upper bounds for the maximal probabilities of

nth convolution powers of discrete uniform distributions.

Key words and phrases: Concentration functions, discrete B-spline, lattice distributions,

Littlewood-Offord inequalities, Wallis product.

MSC 2000 Subject Classification: Primary 60E15, 60G50; secondary 26D15.

For `, n ∈ N := {1, 2, 3, . . .}, let U∗n
` denote the nth convolution power of the discrete

uniform distribution U` := 1
` (δ0 + . . . + δ`−1). Let u∗n` denote the density of U∗n

` with respect

to counting measure. Thus, writing 1A(x) := 1 if x ∈ A and 1A(x) := 0 otherwise, we have for

` ∈ N and k ∈ Z

u∗1` (k) =
1
`
1{0,...,`−1}(k), u∗2` (k) =

`− |`− 1− k|
`2

1{0,...,2 (`−1)}(k) (1)

and the general formula

u∗n` (k) =
1
`n

bk/`c∑
j=0

(−1)j

(
n

j

)(
n + k − `j − 1

n− 1

)
(`, n ∈ N, k ∈ Z)

where
∑b

j=a := 0 if a > b and where no indicator 1{0,...,n(`−1)}(k) is necessary on the right-hand

side, for which we refer to de Moivre (1756, pp. 39–43) or Hald (1998, pp. 34–35). The purpose

of this note is to provide a sharp upper bound for the maximal probabilities or concentrations

c`,n := max
k∈Z

u∗n` (k) (2)
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mail: mattner@math.uni-luebeck.de
†Corresponding author. Postal address: Department of Mathematics, University of Leicester, University

Road, Leicester, LE1 7RH, United Kingdom. E-mail: b.roos@leicester.ac.uk

1



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
2 Lutz Mattner and Bero Roos

of U∗n
` , see Remarks (d) and (h) below for possible applications. From (1), we obviously get

c`,1 = c`,2 =
1
`

(` ∈ N) (3)

In what follows, we exclude the trivial case of U∗n
1 = δ0 and hence always assume that ` ≥ 2.

Theorem. Let `, n ∈ N with ` ≥ 2 and let c`,n be defined by (2). If n 6= 2 or ` ∈ {2, 3, 4},
then

c`,n <

√
6

π(`2 − 1)n
(4)

holds. If n = 2 and ` ≥ 5, then inequality (4) has to be reversed.

Remarks. (a) Let us fix ` ≥ 2 and denote by µ := (` − 1)/2 and σ2 := (`2 − 1)/12

the mean and the variance of U` and let ϕ(x) := (1/
√

2π) exp(−x2/2) for x ∈ R. By the local

central limit theorem, see e.g. Durrett (2005, p. 130), we then have limn→∞ supk∈Z |
√

n u∗n` (k)−
1
σϕ

(
(k − nµ)/(σ

√
n)

)
| = 0. Since the function ϕ is maximal and continuous at zero, we easily

get limn→∞
√

n c`,n = 1
σϕ(0) =

√
6/(π(`2 − 1)). Hence (4) is sharp for n →∞ and every `, in

the sense that the quotient of both sides of the inequality converges to one.

(b) A corollary to the theorem is the simpler bound

c`,n <
2

√
2/π

`
√

n
(`, n ∈ N, ` ≥ 2) (5)

obtained by using `2 − 1 ≥ 3`2/4 in inequality (4) if n 6= 2, and (3) for n = 2. By the previous

Remark (a) and by comparison with (4), it is obvious that (5) is sharp for n →∞ only if ` = 2.

Inequality (5) is contained in Bretagnolle (2004): His Lemme 33.4.4 a) states, in our notation,

c`,n ≤ 2
`
c2,n (`, n ∈ N, ` ≥ 2) (6)

which, by the standard Wallis product inequality recalled in Remark (f) below, implies (5).

Further, inequality (5) results if Bretagnolle’s Théorème 33.1.1 is applied to random variables

each with distribution U`.

(c) The existence of some constant A < ∞ with

c`,n <
A

`
√

n
(`, n ∈ N, ` ≥ 2) (7)

already follows from Kesten’s (1969) concentration inequality for sums of independent real-

valued random variables and, alternatively, from Gamkrelidze’s (1973) sharper result for the

special case of identically distributed symmetric unimodal lattice random variables. In the case

considered here, Gamkrelidze’s result yields our inequality (4) with an additional O(n−1)-term

on the right-hand side. For a general introduction to concentration inequalities and further

results, see Petrov (1995, sections 1.5 and 2.4).
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(d) Bretagnolle (2004), Rogozin (1987), and Leader and Radcliffe (1994, in particular The-

orem 10 and the unproved remark on p. 97) state upper bounds for concentrations of sums

of independent real-valued random variables Xj in terms of concentrations of sums of certain

independent Yj with distributions U`j
. (Both Bretagnolle and Rogozin refer to an unpublished

preprint of Bretagnolle from 1982. Leader and Radcliffe fail to give appropriate references to

the probabilistic literature.) Of these authors only Bretagnolle goes on to deduce an analyti-

cally convenient and still rather sharp bound, using in particular inequality (6). Possibly the

present asymptotically sharper inequality (4) could serve to improve Bretagnolle’s result.

(e) Since U∗n
` is a convolution of distributions unimodal on Z and with some centers of

symmetry, it follows from the well-known discrete Wintner theorem, see Dharmadhikari and

Joag-Dev (1988, page 109, Theorem 4.7) or, more precisely, Mattner (2006, Lemma 3.3), that

the density u∗n` is maximized at the one or two central points of its support {0, . . . , n(`− 1)},
so that we have

c`,n = u∗n` (
⌊n(`− 1)

2

⌋
) = u∗n` (

⌈n(`− 1)
2

⌉
) (8)

(f) For ` = 2, the theorem reduces to the familiar Wallis product inequality for the maximal

probabilities of symmetric binomial distributions,(
2k

k

)
2−2k <

1√
πk

(k ∈ N) (9)

since c2,2k−1 =
(
2k−1

k

)
2−(2k−1) =

(
2k
k

)
2−2k = c2,2k, and since the right-hand side of (4) for ` = 2

and n = 2k or n = 2k − 1 is, respectively, equal to or greater than the right-hand side of (9).

(g) A concentration bound related to the present theorem is given in Kanter (1976) and in

Mattner and Roos (2007). Theorem 2.1 of the latter paper specialized to pj = 2/3 for every j

and the formulas (15) and (8) there yield the inequalities, sharp for n →∞,

max
k∈Z

U∗n
3 ({k, k + 1}) < G(2n/3) <

√
3

πn
(n ∈ N) (10)

where G(λ) := e−λ(I0(λ) + I1(λ)) for λ ∈ [0,∞[ and I0, I1 denote the usual modified Bessel

functions. Since the left-hand side of (10) is ≤ 2c3,n, the inequality between the extreme

members of (10) also follows from the special case ` = 3 of the present theorem.

(h) A recent application of upper bounds for c`,n occurred in the construction of a two-

dimensional transient but polygonally recurrent random walk by Siegmund-Schultze and von

Weizsäcker (2006), who proved and used (7), see their Lemmas 6 and 1.

We will need two standard lemmas for the proof of the theorem. In what follows, we use

the adjectives “positive”, “increasing” etc. in the wide sense. Thus, e.g., a function f with

0 ≤ f(x) ≤ f(y) for x < y is called positive and increasing.
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Lemma 1 Let a ∈ ]0,∞[ and let f, g : [−a, a] → R be functions with f even, f decreasing on

[0, a], and g convex. Then∫ a

−a
f(x) g(x) dx ≤ 1

2a

∫ a

−a
f(x) dx

∫ a

−a
g(x) dx

Proof. The function h defined by h(x) := g(x) + g(−x) for x ∈ [−a, a] is even and convex.

Hence on [0, a], h is increasing and f is decreasing, so that the Chebyshev inequality obtained

by integrating (f(x) − f(y))(h(x) − h(y)) ≤ 0 over [0, a] × [0, a], see Mitrinović et al. (1993,

Chapter IX) for references, yields
∫ a
−a fg =

∫ a
0 fh ≤ 1

a

∫ a
0 f

∫ a
0 h = 1

2a

∫ a
−a f

∫ a
−a g. �

Lemma 2 For λ ∈ ]0,∞[, we have
∫ π/2
0 sinλ(t) dt =

∫ π/2
0 cosλ(t) dt <

√
π/(2λ).

Proof. For t ∈ ]0, π/2[, we have cos(t) = exp
(
−

∫ t
0 tan(u) du

)
< exp(−t2/2), since tan(u) > u,

so that the second integral in the claim is <
∫∞
0 exp(−λt2/2) dt. �

Proof of the theorem. Since the characteristic function Û` of U` is given by

Û`(t) =
1
`

`−1∑
k=0

eikt =
ei`t − 1

` (eit − 1)
=

sin(`t/2)
` sin(t/2)

ei(`−1)t/2 (t ∈ R)

we get by Fourier inversion for k ∈ Z

u∗n` (k) =
1
2π

∫ π

−π

(
Û`(t)

)ne−ikt dt

=
1
2π

∫ π

−π

( sin(`t/2)
` sin(t/2)

)n
exp

(
i
(n(`− 1)

2
− k

)
t
)

dt

=
2
π

∫ π/2

0

(sin(`t)
` sin t

)n
cos((n(`− 1)− 2k)t) dt

Using equality (8), we get

c`,n =
2
π

∫ π/2

0

(sin(`t)
` sin t

)n
cos(αt) dt =

2
π

∫ π/`

0
+

2
π

∫ π/2

π/`
=: I1 + I2

with

α := n(`− 1)− 2
⌊n(`− 1)

2

⌋
∈ {0, 1}

To bound I1, we recall the power series expansion x/ tan(x) = 1−
∑∞

k=1 akx
2k for |x| < π

with ak > 0 for k ∈ N, a1 = 1/3, and a2 = 1/45, see e.g. Burckel (1979, pp. 75–77). With

bk := ak/(2k) we get by a termwise integration

− log
(sinx

x

)
=

∫ x

0

(1
y
− 1

tan(y)
)
dy =

∞∑
k=1

bkx
2k (|x| < π)
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with bk > 0 for k ∈ N, b1 = 1/6, and b2 = 1/180. Hence, for t ∈ ]0, π/`[ and with x :=√
(`2 − 1)n/3 t, we have

(sin(`t)
` sin t

)n
= exp

(
n

(
log

(sin(`t)
`t

)
− log

(sin t

t

)))
= exp

(
− n

∞∑
k=1

bk(`2k − 1) t2k
)

≤ exp
(
− n

6
(`2 − 1)t2 − n

180
(`4 − 1)t4

)
≤ e−x2/2 exp

(
− x4

20n

)
[by `4 − 1 ≥ (`2 − 1)2]

so that, using also cos(αt) ≤ 1 and e−y ≤ 1− y + y2/2 for y ∈ [0, ∞[,

√
π(`2 − 1)n

6
I1 ≤

√
2(`2 − 1)n

3π

∫ π/`

0

(sin(`t)
` sin t

)n
dt (11)

≤
∫ π`−1

√
(`2−1)n/3

0

2e−x2/2

√
2π

exp
(
− x4

20 n

)
dx

≤
∫ ∞

0

2e−x2/2

√
2π

(
1− x4

20 n
+

x8

800 n2

)
dx

= 1− 3
20 n

+
21

160 n2

Now let us bound

I2 =
2
π

∫ π/2

π/`

(sin(`t)
` sin t

)n
cos(αt) dt =

∫ `π/2

π
sinn(t) h(t) dt

where

h(t) :=
2 cos(αt/`)

π`
(
` sin(t/`)

)n (t ∈ ]0, `π[ )

If n is odd, then with m := `/2 if ` is even, m := (`−1)/2 if ` ≡ 3 (mod 4), and m := (`+1)/2

if ` ≡ 5 (mod 4), we get

I2 ≤
∫ mπ

π
sinn(t) h(t) dt =

∫ π

0
sinn(t)

m−1∑
j=1

(−1)jh(t + jπ) dt ≤ 0 (12)

since h is positive and decreasing. If n is even, then we use cos x ≤ 1 and sin x ≥ 2x/π for
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x ∈ [0, π/2] to get h(t) ≤ 1
` (π/2)n−1/tn and hence

I2 ≤ 1
`

(π

2

)n−1
∞∑

k=1

∫ (k+1)π

kπ
sinn(t)

1
tn

dt (13)

≤ 1
`

(π

2

)n−1
∞∑

k=1

1
π

(k+1)π∫
kπ

sinn(t) dt

(k+1)π∫
kπ

dt

tn

[Lemma 1, t = x + (k +
1
2
)π]

=
1

π ` (n− 1) 2n−1

∫ π

0
sinn(t) dt

≤ 1
` (n− 1) 2n−1

√
2

πn
[by Lemma 2]

Combining our estimates from (11), (12), (13) and using
√

`2 − 1 < `, we obtain√
π(`2 − 1)n

6
c`,n ≤ 1− 3

20 n
+

21
160 n2

+
12N(n)√

3 (n− 1) 2n−1
=: dn (14)

for all `, n ∈ N with ` ≥ 2. For n odd, we use n2 ≥ n to get dn − 1 ≤ 1
n(− 3

20 + 21
160) < 0. For n

even with n 6= 2, we use n2 ≥ 4n and (n− 1) 2n−1 ≥ 6n in (14) to get

dn − 1 ≤ 1
n

(
− 3

20
+

21
160

· 1
4

+
1

6
√

3

)
=

1
2n

( 1
3
√

3
− 15

64

)
< 0

Thus for n 6= 2, we have dn < 1, and hence inequality (4). For n = 2, the claim of the theorem

follows from (3). �
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concentration functions. Math. Scand. 25, 133–144.

Leader, I. and A.J. Radcliffe (1994). Littlewood-Offord inequalities for random variables.

SIAM J. Discrete Math. 7, 90–101.

Mattner, L. (2006). Lower bounds for tails of sums of independent symmetric random vari-

ables. Preprint, http://arxiv.org/abs/math/0609200. To appear in Theory Probab. Appl.

Mattner, L. and B. Roos (2006 online, 2007 print). A shorter proof of Kanter’s Bessel

function concentration bound. Probab. Theory Related Fields 139, 191–205.
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Siegmund-Schultze, R. and H. von Weizsäcker (2006 online, 2007 print). Level crossing

probabilities II: Polygonal recurrence of multidimensional random walks. Adv. Math. 208,

680–698.


