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For , n ∈ N := {1, 2, 3, . . .}, let U * n denote the nth convolution power of the discrete uniform distribution U := 1 (δ 0 + . . . + δ -1 ). Let u * n denote the density of U * n with respect to counting measure. Thus, writing 1 A (x) := 1 if x ∈ A and 1 A (x) := 0 otherwise, we have for

∈ N and k ∈ Z u * 1 (k) = 1 1 {0,..., -1} (k), u * 2 (k) = -| -1 -k| 2 1 {0,...,2 ( -1)} (k) (1) 
and the general formula

u * n (k) = 1 n k/ j=0 (-1) j n j n + k -j -1 n -1 ( , n ∈ N, k ∈ Z)
where b j=a := 0 if a > b and where no indicator 1 {0,...,n( -1)} (k) is necessary on the right-hand side, for which we refer to de Moivre (1756, pp. 39-43) or Hald (1998, pp. 34-35). The purpose of this note is to provide a sharp upper bound for the maximal probabilities or concentrations

c ,n := max k∈Z u * n (k)
(2) Lutz Mattner and Bero Roos of U * n , see Remarks (d) and (h) below for possible applications. From (1), we obviously get

c ,1 = c ,2 = 1 ( ∈ N) (3) 
In what follows, we exclude the trivial case of U * n 1 = δ 0 and hence always assume that ≥ 2.

Theorem. Let , n ∈ N with ≥ 2 and let c ,n be defined by (2).

If n = 2 or ∈ {2, 3, 4}, then c ,n < 6 π( 2 -1)n (4)
holds. If n = 2 and ≥ 5, then inequality (4) has to be reversed.

Remarks. (a)

Let us fix ≥ 2 and denote by µ := ( -1)/2 and σ 2 := ( 2 -1)/12 the mean and the variance of U and let ϕ(x) := (1/ √ 2π) exp(-x 2 /2) for x ∈ R. By the local central limit theorem, see e.g. Durrett (2005, p. 130), we then have lim

n→∞ sup k∈Z | √ n u * n (k)- 1 σ ϕ (k -nµ)/(σ √ n) | = 0.
Since the function ϕ is maximal and continuous at zero, we easily get lim n→∞ √ n c ,n = 1 σ ϕ(0) = 6/(π( 2 -1)). Hence ( 4) is sharp for n → ∞ and every , in the sense that the quotient of both sides of the inequality converges to one.

(b) A corollary to the theorem is the simpler bound

c ,n < 2 2/π √ n ( , n ∈ N, ≥ 2) (5)
obtained by using 2 -1 ≥ 3 2 /4 in inequality (4) if n = 2, and (3) for n = 2. By the previous Remark (a) and by comparison with (4), it is obvious that (5) is sharp for n → ∞ only if = 2.

Inequality (5) is contained in [START_REF] Bretagnolle | Parametric and Semiparametric Models with Applications to Reliability, Survival Analysis, and Quality[END_REF]: His Lemme 33.4.4 a) states, in our notation,

c ,n ≤ 2 c 2,n ( , n ∈ N, ≥ 2) (6)
which, by the standard Wallis product inequality recalled in Remark (f) below, implies (5).

Further, inequality (5) results if Bretagnolle's Théorème 33.1.1 is applied to random variables each with distribution U .

(c) The existence of some constant A < ∞ with

c ,n < A √ n ( , n ∈ N, ≥ 2) (7)
already follows from [START_REF] Kesten | A sharper form of the Doeblin-Lévy-Kolmogorov-Rogozin inequality for concentration functions[END_REF] concentration inequality for sums of independent realvalued random variables and, alternatively, from [START_REF] Gamkrelidze | Estimation of the maximum probability for sums of lattice random variables[END_REF] sharper result for the special case of identically distributed symmetric unimodal lattice random variables. In the case considered here, Gamkrelidze's result yields our inequality (4) with an additional O(n -1 )-term on the right-hand side. For a general introduction to concentration inequalities and further results, see Petrov (1995, sections 1.5 and 2.4).

(d) [START_REF] Bretagnolle | Parametric and Semiparametric Models with Applications to Reliability, Survival Analysis, and Quality[END_REF], [START_REF] Rogozin | Inequalities for concentration functions of convolutions of arithmetic distributions and distributions with bounded densities[END_REF], and Leader and Radcliffe (1994, in particular Theorem 10 and the unproved remark on p. 97) state upper bounds for concentrations of sums 

c ,n = u * n ( n( -1) 2 ) = u * n ( n( -1) 2 ) ( 8 
)
(f ) For = 2, the theorem reduces to the familiar Wallis product inequality for the maximal probabilities of symmetric binomial distributions,

2k k 2 -2k < 1 √ πk (k ∈ N) (9) since c 2,2k-1 = 2k-1 k 2 -(2k-1) = 2k k 2 -2k = c 2,2k
, and since the right-hand side of (4) for = 2 and n = 2k or n = 2k -1 is, respectively, equal to or greater than the right-hand side of (9).

(g) A concentration bound related to the present theorem is given in [START_REF] Kanter | Probability inequalities for convex sets and multidimensional concentration functions[END_REF] and in [START_REF] Mattner | A shorter proof of Kanter's Bessel function concentration bound[END_REF]. Theorem 2.1 of the latter paper specialized to p j = 2/3 for every j and the formulas ( 15) and ( 8) there yield the inequalities, sharp for n → ∞,

max k∈Z U * n 3 ({k, k + 1}) < G(2n/3) < 3 πn (n ∈ N) (10) 
where G(λ) := e -λ (I 0 (λ) + I 1 (λ)) for λ ∈ [0, ∞[ and I 0 , I 1 denote the usual modified Bessel functions. Since the left-hand side of ( 10) is ≤ 2c 3,n , the inequality between the extreme members of (10) also follows from the special case = 3 of the present theorem.

(h) A recent application of upper bounds for c ,n occurred in the construction of a twodimensional transient but polygonally recurrent random walk by Siegmund-Schultze and von [START_REF] Siegmund-Schultze | Level crossing probabilities II: Polygonal recurrence of multidimensional random walks[END_REF], who proved and used (7), see their Lemmas 6 and 1.

We will need two standard lemmas for the proof of the theorem. In what follows, we use the adjectives "positive", "increasing" etc. in the wide sense. Thus, e.g., a function f with 0 ≤ f (x) ≤ f (y) for x < y is called positive and increasing. Lutz Mattner and Bero Roos Lemma 1 Let a ∈ ]0, ∞[ and let f, g : [-a, a] → R be functions with f even, f decreasing on [0, a], and g convex. Then

a -a f (x) g(x) dx ≤ 1 2a a -a f (x) dx a -a g(x) dx
Proof. The function h defined by h(x) := g(x) + g(-x) for x ∈ [-a, a] is even and convex.

Hence on [0, a], h is increasing and f is decreasing, so that the Chebyshev inequality obtained by integrating Mitrinović et al. (1993, Chapter IX) for references, yields

(f (x) -f (y))(h(x) -h(y)) ≤ 0 over [0, a] × [0, a], see
a -a f g = a 0 f h ≤ 1 a a 0 f a 0 h = 1 2a a -a f a -a g. Lemma 2 For λ ∈ ]0, ∞[, we have π/2 0 sin λ (t) dt = π/2 0 cos λ (t) dt < π/(2λ). Proof. For t ∈ ]0, π/2[, we have cos(t) = exp - t 0 tan(u) du < exp(-t 2 /2), since tan(u) > u, so that the second integral in the claim is < ∞ 0 exp(-λt 2 /2) dt.
Proof of the theorem. Since the characteristic function U of U is given by

U (t) = 1 -1 k=0 e ikt = e i t -1 (e it -1) = sin( t/2) sin(t/2) e i( -1)t/2 (t ∈ R)
we get by Fourier inversion for k ∈ Z

u * n (k) = 1 2π π -π U (t) n e -ikt dt = 1 2π π -π sin( t/2) sin(t/2) n exp i n( -1) 2 -k t dt = 2 π π/2 0 sin( t) sin t n cos((n( -1) -2k)t) dt
Using equality (8), we get

c ,n = 2 π π/2 0 sin( t) sin t n cos(αt) dt = 2 π π/ 0 + 2 π π/2 π/ =: I 1 + I 2 with α := n( -1) -2 n( -1) 2 ∈ {0, 1}
To bound I 1 , we recall the power series expansion x/ tan(x) = 1 -∞ k=1 a k x 2k for |x| < π with a k > 0 for k ∈ N, a 1 = 1/3, and a 2 = 1/45, see e.g. Burckel (1979, pp. 75-77). With b k := a k /(2k) we get by a termwise integration 

-log sin x x = x 0 1 y - 1 tan(y) dy = ∞ k=1 b k x 2k (|x| < π) with b k > 0 for k ∈ N, b 1 = 1/
= exp -n ∞ k=1 b k ( 2k -1) t 2k ≤ exp - n 6 ( 2 -1)t 2 - n 180 ( 4 -1)t 4 ≤ e -x 2 /2 exp - x 4 20n [by 4 -1 ≥ ( 2 -1) 2 ]
so that, using also cos(αt) ≤ 1 and e -y ≤ 1 -y + y 2 /2 for y ∈ [0, ∞[,

π( 2 -1)n 6 I 1 ≤ 2( 2 -1)n 3π π/ 0 sin( t) sin t n dt (11) ≤ π -1 √ ( 2 -1)n/3 0 2e -x 2 /2 √ 2π exp - x 4 20 n dx ≤ ∞ 0 2e -x 2 /2 √ 2π 1 - x 4 20 n + x 8 800 n 2 dx = 1 - 3 20 n + 21 160 n 2 Now let us bound I 2 = 2 π π/2 π/ sin( t) sin t n cos(αt) dt = π/2 π sin n (t) h(t) dt where h(t) := 2 cos(αt/ ) π sin(t/ ) n (t ∈ ]0, π[ ) If n is odd, then with m := /2 if is even, m := ( -1)/2 if ≡ 3 (mod 4
), and m := ( + 1)/2 if ≡ 5 (mod 4), we get

I 2 ≤ mπ π sin n (t) h(t) dt = π 0 sin n (t) m-1 j=1 (-1) j h(t + jπ) dt ≤ 0 ( 12 
)
since h is positive and decreasing. If n is even, then we use cos x ≤ 1 and sin x ≥ 2x/π for Lutz Mattner and Bero Roos

x ∈ [0, π/2] to get h(t) ≤ 1 (π/2) n-1 /t n and hence Combining our estimates from ( 11), ( 12), ( 13) and using √ 2 -1 < , we obtain

I 2 ≤ 1 π 2 n-1 ∞ k=1 ( 
π( 2 -1)n 6 c ,n ≤ 1 - 3 20 n + 21 160 n 2 + 1 2N (n) √ 3 (n -1) 2 n-1 =: d n (14)
for all , n ∈ N with ≥ 2. For n odd, we use n 2 ≥ n to get d n -1 ≤ 1 n (-3 20 + 21 160 ) < 0. For n even with n = 2, we use n 2 ≥ 4n and (n -1) 2 n-1 ≥ 6n in ( 14) to get

d n -1 ≤ 1 n - 3 20 + 21 160 • 1 4 + 1 6 √ 3 = 1 2n 1 3 √ 3 - 15 64 < 0 
Thus for n = 2, we have d n < 1, and hence inequality (4). For n = 2, the claim of the theorem follows from (3).

  of independent real-valued random variables X j in terms of concentrations of sums of certain independent Y j with distributions U j . (Both Bretagnolle and Rogozin refer to an unpublished preprint of Bretagnolle from 1982. Leader and Radcliffe fail to give appropriate references to the probabilistic literature.) Of these authors only Bretagnolle goes on to deduce an analytically convenient and still rather sharp bound, using in particular inequality (6). Possibly the present asymptotically sharper inequality (4) could serve to improve Bretagnolle's result.(e) Since U * n is a convolution of distributions unimodal on Z and with some centers of symmetry, it follows from the well-known discrete Wintner theorem, seeDharmadhikari and Joag-Dev (1988, page 109, Theorem 4.7) or, more precisely,Mattner (2006, Lemma 3.3), that the density u * n is maximized at the one or two central points of its support {0, . . .

, n( -1)}, so that we have

  6, and b 2 = 1/180. Hence, for t ∈ ]0, π/ [ and with x :=

	( 2 -1)n/3 t, we have				
	sin( t) sin t	n	= exp n log	sin( t) t	-log	sin t t
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