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ARGUMENTWISE INVARIANT KERNELS FOR THE

APPROXIMATION OF INVARIANT FUNCTIONS

DAVID GINSBOURGER, XAVIER BAY, OLIVIER ROUSTANT,
AND LAURENT CARRARO

Abstract. Modeling a deterministic function using gaussian processes
and Kriging relies on the selection of an adapted covariance kernel. Sim-
ilarly, the use of approximation methods from the theory of reproducing
kernel Hilbert spaces bases on the choice of a positive definite kernel.
When some prior information is available concerning symmetries or ar-
bitrary algebraic invariances of the function to be approximated, it is
clearly unreasonable not trying to use it at the stage of kernel selec-
tion. We propose a characterization of kernels which associated square-
integrable processes have their paths invariant under the action of a
finite group. We then give examples of such pathwise invariant pro-
cesses, built on the basis of stationary and unstationary gaussian pro-
cesses. The approximation of a function from the structural reliability
literature, invariant under the action of a group of order 4, finally al-
lows comparing several Kriging approaches, with different symmetrized
kernels. The obtained results confirm the practical interest of the pro-
posed method, at the same time in terms of improved prediction and of
conditional simulations respecting prescribed invariances.

Résumé La modélisation d’une fonction déterministe par un processus
gaussien nécessite de sélectionner un noyau de covariance. De même,
l’utilisation de méthodes d’approximation de la théorie des espaces de
Hilbert à noyau reproduisant repose sur le choix d’un noyau défini po-
sitif. Lorsque l’on dispose a priori d’informations sur les symétries de
la fonction que l’on souhaite approximer, il est fort dommageable de
ne pas les utiliser à l’étape du choix du noyau. Nous proposons une
caractérisation des noyaux de covariance dont les processus associés
possèdent des réalisations invariantes par l’action d’un groupe fini. Nous
donnons ensuite des exemples de tels processus, et discutons des pro-
priétés du Krigeage lorsque de tels noyaux sont utilisés. L’approximation
d’une fonction issue de la litérature en fiabilité des structures, invariante
sous l’action d’un groupe d’ordre 4, permet finalement de comparer plu-
sieurs approches incluant des symmétrisation de noyaux ou de plans. Les
résultats obtenus confirment l’intŕt pratique de la méthode proposée,
aussi bien en termes de prediction que de simulations conditionnelles.
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1. Introduction

Positive definite 1 (p.d.) kernels play a central role in several contempo-
rary functional approximation methods, ranging from regularization tech-
niques within the theory of Reproducing Kernel Hilbert Spaces (RKHS) to
Gaussian Process Regression (GPR) in machine learning. One of the reason
for that is presumably the following particularly elegant predictor, com-
mon solution to approximation in both framworks. Indeed, if scalar re-
sponses y := (y1, . . . , yn) ∈ R (n ∈ N − {0}) are observed for n instances
x1, . . . ,xn ∈ D of a d-dimensional input variable (D is here assumed to be
a compact subset of Rd, d ∈ N− {0}), the function

m : x ∈ D −→ m(x) = k(x)′K−1y, (1)

is at the same time the best approximation of any function f in the RKHS of
kernel k subject to f(xi) = yi (1 ≤ i ≤ n), and the GPR (”Simple Kriging”)
predictor of any squared-integrable centered random field (Yx∈D)x∈D of co-
variance kernel k subject to Yxi

= yi (1 ≤ i ≤ n). k : D ×D −→ R stands
here for an aribitrary p.d. kernel, with k(x) := (k(x,x1), . . . , k(x,xn)) and
K := (k(xi,xj))1,i≤j≤n (assumed invertible here and in the sequel).

In practical situations (e.g., when the yi’s steem from the output of an
expensive-to-evaluate deterministic numerical simulator, say y : D → R),
the choice of k is generally far from being trivial. Unless there is a strong
prior in favour of a specific kernel of parametric family of kernel, the usual
modus operandi to choose k in GPR (when d is too high and/or n too low
for a geostatistical variogram estimation) is to rely on well-known families of
kernels, and to perform a classical (Maximum Likelihood, Cross-Validation)

1. We use here the term p.d. for what some authors also call ”non-negative definite”.
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or bayesian inference of the underlying parameters based on data. For ex-
ample, most GPR of Kriging softwares offer different options for the under-
lying kernel, often restricted to stationary but anisotropic correlations like
the Matérn or generalized exponential kernels, allowing the user to choose
between different levels of regularity. This is in fact based on solid math-
ematical results concerning the link between the regularity of covariance
kernels and the mean square properties of squared integrable random fields
(or even a.s. properties in the case of Gaussian Random Fields [2]).

A weak point of such an approach, however, is that not all phenomena
can reasonably be approximated by stationary random fields, even with a
well-chosen level of regularity and a successful estimation of the kernel pa-
rameters. In order to circumvent that limitation, several non-stationary ap-
proaches have been proposed in the recent literature, including convolution
kernels (see [28] or [23]), kernels incorporating non-linear transformations of
the input space ([19, 4, 43]), or treed gaussian processes ([18]), to cite an
excerpt of some of the most popular approaches.

Our intent here is to address a specific question related to the choice of
k: assuming a known geometric or algebraic invariance of the phenomenon
under study, is it possible to incorporate it directly in a kernel-based approx-
imation method like GPR or RKHS regularization? More precisely, given a
function y invariant under a measurable action Φ of some finite group G on
D, is it possible to construct a metamodel respecting that invariance?

Here we investigate classes of kernels leading to metamodels m inheriting
the invariances of y. In the particular case of a GPR interpretation, the
proposed kernels enable a deeper embedding of the prescribed invariance in
the metamodel since the obtained random fields have invariant paths (up to
a modification). Note that the proposed approach is rather complementary
to the non-stationary kernels evocated above than in concurrence with them.
Our main goals are indeed to understand to what extent kernel methods are
compatible with invariance assumptions, what kind of kernels are suitable
to model invariant functions, and how to construct such kernels based on
existing (stationary or already non-stationary) kernels.

The paper is organized as follows. In section 2, we recall some fundamental
algebraic definitions (2.1) and random fields technical notions useful in the
sequel (2.2), followed by an overview with discussion on the existing work
concerning invariant kernels and random fields. The main results are give in
section 3. A characterization of positive definite kernels leading to invariant
random fields is given (3.1), and several properties of the corresponding
metamodels are discussed (3.2). 3.3 is dedicated to the RKHS interpretation
of such kernels. Application results are then presented in section 4, first
with illustrations on toy examples (4.1), and then with a test case from the
reliability literature. Finally, a few concluding remarks and a discussion on
perspectives and forthcoming research questions are given in section 5.
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2. Definitions and classical results

2.1. Group actions and invariant functions. Let (G, ∗) be a group and
D a set. We denote by e the neutral element of G.

Definition 1. A (left) action of the group G on D is a map Φ : (g, x) ∈
D × E −→ g.x := Φ(g, x) ∈ D such that

– x ∈ D 7−→ Φ(e, x) is the identitity of D, i.e. ∀x ∈ D, Φ(e, x) = x,
– ∀x ∈ D, ∀g, g′ ∈ G, Φ(gg′, x) = Φ(g,Φ(g′, x)).

Definition 2. The orbit of a points x ∈ D under the action Φ is the set

O(x) := {g.x, g ∈ G}, (2)

constituted of images of x by the action of G. x is a fixed point of the
action when ∀g ∈ G, g.x = x. The fixator of A ⊂ D in G is defined
by FixΦ(x) := {g ∈ G | ∀a ∈ A, g.a = a}, and the stabilizer of A by
StabΦ(A) := {g ∈ G | ∀a ∈ A, g.a ∈ A}.
Definition 3. Le F be an arbitrary set. A map y : D −→ F is said invariant
by Φ, or invariant under the action of the group G, when

∀x ∈ D, ∀g ∈ G, y(g.x) = y(x) (3)

It amounts to requiring that y is constant on the orbits of Φ.

2.2. Random Fields. We borrow here a few definitions from the book [31],
with a few minor changes in the notations.

Definition 4. Two random fields Y and Y ′ defined respectively on the prob-
ability spaces (Ω,F ,P) and (Ω′,F ′,P′), and sharing a common state space
(D,D), are said equivalent if for any finite sequences of points x1, . . . ,xn ∈
D and events A1, . . . , An ∈ D,

P (Yx1 ∈ A1, . . . , Yxn ∈ An) = P
′ (Y ′

x1
∈ A1, . . . , Y

′
xn

∈ An

)
(4)

One also says in that case that each one of these random fields is a version
of the other, or that both are versions of the same random field. In other
words, two random fields are versions of each other whenever they have the
same finite-dimensional distributions.

Definition 5. Two random fields Y et Y ′ defined on the same probability
space (Ω,F ,P) are said to be modifications of each other when for all x ∈ D,

Yx = Y ′
x P-p.s. (5)

They are said indistinguishable when for P-almost all ω ∈ Ω,

∀x ∈ D, Yx(ω) = Y ′
x(ω) (6)

As prcised in ([31], p. 18), if Y and Y ′ are modifications of each other, they
clearly are versions of the same random field. A slightly less straightforward
result is that if two random fields modifications of each other are almost
surely continuous, then they are indistinguishable
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Definition 6. Y is said to have all its paths invariant under the action of
G whenever

∀ω ∈ Ω, ∀x ∈ D, ∀g ∈ G, Yx(ω) = Yg.x(ω) (7)

2.3. Classical results about invariant kernels and random fields.

2.3.1. Stationarity, isotropy: invariance-related notions in geostatistics. A
very classical notion in spatial statistics, and more generally in the literature
of random processes (including time series in the first place), is the one of
second order or weak stationarity. A centered squared-integrable random
field Y is said weakly stationary whenever cov(Yx, Yx′) is a function of x−x′

(here x,x′ ∈ D) or equivalently that for any x ∈ D and h such that x+h ∈
D, cov(Yx+h, Yx) is depending only on h and not on x. In other words,
the covariance kernel of Y is such that for any pair of points x,x′ ∈ D and
translation Th : x ∈ D −→ Th(x) := x+ h with x+ h,x′ + h ∈ D,

k(Th(x), Th(x
′)) = k(x,x′) (8)

Likewise, a centered random field Y defined over some subset D of a eu-
clidean space is said to be weakly isotropic whenever cov(Yx, Yx′) depends
only on the norm-induced distance between x and x′, i.e. k(x,x′) is a func-
tion of ||x− x′||. Again, this may be written as an invariance of the kernel
under the simultaneous transformation of both arguments:

k(R(x), R(x′)) = k(x,x′) (9)

where R belongs this time to the more general class of isometries. Both latter
invariances are in fact particular cases of the following definition given by
Parthasarathy and Schmidt in [29]:

Definition 7. k is said invariant under the action of G on D when

∀g ∈ G, ∀x,x′ ∈ D, k(g.x, g.x′) = k(x,x′) (10)

3. Main results

3.1. A characterization of kernels leading to invariant fields. Before
stating the main result of the paper, we need to introduce a new notion,
generalizing the notion of invariant kernel presented in the last section.

Definition 8. A kernel k is said argumentwise invariant under the action
of G on D when

∀g, g′ ∈ G, ∀x,x′ ∈ D, k(g.x, g′.x′) = k(x,x′) (11)

One can notice that eq.(10) corresponds to the particular case of eq.(11)
where g = g′. As we will see now, this second kind of kernels corresponds
to much stronger invariance properties of the associated random fields.

Theorem 3.1. (kernels characterizing invariant fields) Let G be a finite
group of order r ∈ N − {0} acting on D via the action Φ, and (Yx)x∈D a
centered squared-integrable random field over D. Y has all its paths invariant
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under Φ (up to a modification) if and only if its covariance kernel k is
argumentwise invariant under Φ.

Proof. Let us first assume that Y has all its paths invariant under Φ up to

a modification. Then, there exist a process Ỹ having all its paths invariant

under Φ and such that ∀x ∈ D, P(Yx = Ỹx) = 1. It is then clear that the
covariance kernels of both fields, say kY and k

Ỹ
, coincide. Now, by invariance

of Ỹ ’s paths, we have that ∀x ∈ D ∀g ∈ G ∀ω ∈ Ω, Ỹx(ω) = Ỹg.x(ω), so
that in particular ∀x ∈ D ∀g, g′ ∈ G:

k
Ỹ
(g.x, g′.x′) = cov[Ỹg.x, Ỹg′.x′ ] = cov[Ỹx, Ỹg′.x′ ] = cov[Ỹx, Ỹx′ ] = k

Ỹ
(x,x′)

Reciprocally, let us assume now that kY is argumentwise invariant under Φ.
Let us denote by A ⊂ D a fundamental domain for φ, and by πA : D −→ A
the projector mapping any x ∈ D to its representer πA(x) ∈ A, i.e. to the

point of A being in the same orbit. We then define the random field Ỹ by

∀x ∈ D Ỹx := YπA(x)

By construction, Ỹ has all its paths invariant under Φ. Now, for any x ∈ D,
there exists g ∈ G such that πA(x) = g.x. Subsequently,

var[Yx − Ỹx] = var[Yx − Yg.x]

= k(x,x) + k(g.x, g.x)− 2k(x, g.x) = 0,

so that P(Yx = Ỹx) = 1, and Y is a modification of a random field having
all its paths invariant under Φ. �

Remark 1. A fundamental domain A is such that every orbit has a unique
representer in A, and

⋃
g∈G g.A = D. However, the g.A’s (g ∈ G) are

not necessarily disjoints. For example, if G = Z/2Z, D = R, and Φ :
(g, x) ∈ (Z/2Z) × R −→ R is the action defined by Φ(1, x) = −x, A =
[0,+∞[ is a fundamental domain containing 0, but 0 ∈ 1.A =] −∞, 0] too.
Consequently, when decomposing an invariant process over the orbits of A,
one must account for the points appearing in several g.A’s by divinding by
the number of appearances, characterized by the cardinal of their stabilizers:

∀x ∈ D, Yx =
∑

g∈G
Yx

1g.A(x)

#StabΦ(x)
=

∑

g∈G
Zg.x (12)

where Zx := Yx
1A(x)

#StabΦ(x)
. Denoting Z’s kernel by kZ , we get in particular

∀x,x′ ∈ D kY (x,x
′) = Cov




m∑

g∈G
Zg.x,

m∑

g′∈G
Zg′.x′


 =

∑

(g,g′)∈G2

kZ(g.x, g
′.x′),

whereof the argumentwise invariance of kY clearly appears.
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Example 1. Let Y be a centered gaussian process indexed by R, with covari-
ance kernel kY : x, x′ ∈ R −→ kX(x, x′) = e−|x−x′| ∈ R (often called the
Ornstein-Uhlenbeck process, Cf. [31] sec. 1.3), and Φ : (g, x) ∈ (Z/2Z) ×
R −→ R the action of G = Z/2Z on R previously considered. The process
S obtained by symmetrization of Y ’s restriction to A := [0,+∞[, defined
by Sx = 1

1+1{0}(x)
Yx1[0,+∞[(x) +

1
1+1{0}(x)

Yx1[0,+∞[(−x), has all its paths

invariant under Φ. Its covariance kernel is given by ∀x, x′ ∈ R, kS(x, x
′) =

e−||x|−|x′||. Let us notice that S, symmetrized of the stationary process Y , is
obviously not second order stationary.

Example 2. Let Y be a centered gaussian process indexed by R
2, with co-

variance kernel kY : x,x′ ∈ R
2 −→ e−||x−x

′||2 ∈ R, and Φ : (g,x) ∈
(Z/2Z)×R

2 −→ R
2 the action defined by φ(1,x) = s(x) := (x2, x1), the sym-

metrized point of x = (x1, x2) with respect to the first bisector. The process
S obtained by symmetrization of Y ’s restriction to A = {x ∈ R

2 : x1 ≤ x2}
is defined by Sx = 1

1+1{x∈R2:s(x)=x}(x)
Yx1A(x)+

1
1+1{x∈R2:s(x)=x}(x)

Yx1A(s(x)).

The following example illustrates the fact that a random field which paths
are almost sureley non-invariant under Φ may possess a modification which
paths are all invariant under Φ:

Example 3. Let Ω =]0, 1[, A = B(]0, 1[), P be Lebesgue’s measure on Ω ,
D = R, G = {e, s0} (s0 be the symmetry with respect to 0), F : x ∈
R −→

∫ x

−∞
e−

u2

2√
2π

du ∈]0, 1[, ε : ω ∈ Ω −→ ε(ω) = F−1(ω) ∈ R, and

Y : (x, ω) ∈ E × Ω −→ Yx(ω) = |x|ε(ω)1x 6=ε(ω). The process defined by

Ỹx(ω) = |x|ε(ω) has clearly all its paths invariant by s0, and Ỹ is a mod-

ification of Y since ∀x ∈ D, P (Yx = Ỹx) = P (ε 6= x) = 1. However,{
ω ∈ Ω / (∀x ∈ D, Yx(ω) = Ỹx(ω))

}
=

{
1
2

}
is negligible, and the two pro-

cesses are hence not indistinguable.

Example 4. Let us come back to the notations of example 2. One can con-
struct a process having its paths invariant under Φ based on the process Y by
defining ∀x ∈ D, Y Φ

x = 1
2(Yx+Ys(x)) =

1
2(Y(x1,x2)+Y(x2,x1)). The covariance

kernel of this new process Y Φ is given by

kXΦ (x, x′) =
1

4
[kX(x− x′) + kX(s(x)− x′) + kX(x− s(x′)) + kX(s(x)− s(x′))]

=
1

4
e−||(x1−x′

1
,x2−x′

2
)||2 +

1

4
e−||(x1−x′

1
,x′

2
−x2)||

2

+
1

4
e−||(x′

1
−x1,x2−x′

2
)||2

+
1

4
e−||(x′

1
−x1,x

′

2
−x2)||

2

(13)

3.2. Kriging with an argumentwise invariant kernel. Let us now come
back to our prediction problem of origin, and assume that we dispose of n
noiseless observations Yxi

= yi (1 ≤ i ≤ n) of a squared-integrable centered
random field (Yx)x∈D assumed invariant under the action Φ of a finite group
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G on D. As recalled in the introduction (eq.1), the function

m : x ∈ D −→ m(x) = k(x)′K−1y,

is the Simple Kriging predictor (or ”Kriging mean”) of Y knowing the re-
ponses at design points x1, . . . ,xn. In addition, the Simple Kriging variance
(or ”Mean Squared Error”) s2 is often used as a quantifyer of m’s accuracy:

s2 : x ∈ D −→ s2(x) = k(x,x)− k(x)′K−1k(x). (14)

It is well known that m interpolates the observations and s2 vanishes at the
design of experiments. As we will see now, more can be said in the case
where k is argumentwise invariant.

Property 3.2. (Properties of m and s2 when k is argumentwise invariant)

(1) m and s2 are invariant

(2) ∀i ∈ {1, . . . , n}, ∀g ∈ G, m(g.xi) = yi and s2(g.xi) = 0.

Proof. (1) By argumentwise invariance of k, it is clear that the co-
variance vector k(.) is invariant as well. Pluging in the equality
k(g.x) = k(x) in eqs 1 and 14, it follows that m and s2 are invari-
ant.

(2) Relies on (1) in the cases where x = g.xi (i ∈ {1, . . . , n}).
�

In order to generalize to the conditional distribution of Y knowing Yxi
=

yi (1 ≤ i ≤ n), we can start by looking at its conditional covariance:

Cov(Yx, Yx′ |YX = y) = k(x,x)− k(x)′K−1k(x′). (15)

In the case where Y is assumed Gaussian, the Simple Kriging mean and
variance at x coincide respectively with the conditional expectation and
variance of Yx knowing the observations. In addition, the Gaussian assump-
tion makes it possible to get conditional simulations of Y , relying only on
the conditional mean function and covariance kernel. The following property
will play a crucial role in the applications of the next section.

Property 3.3. (Properties of the conditional distribution of a Gaussian
Random Field with argumentwise invariant kernel)

(1) The conditional random field has an argumentwise invariant kernel

(2) All conditional simulations are invariant

Proof. (1) Follows from the invariance of k(.) applied to eq. 15.

(2) Both conditional expectation and conditional covariance being in-
variant, the conditional field is the sum of an invariant function
with a centered field having an argumentwise invariant kernel. The
paths of this field (up to a modification) are then invariant.

�
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Remark 2. In practice, the paths of Y are often simulated at a finite set of
points Xsimu = {x1, ..., xm} ⊂ D based on a matrix decomposition (Cholesky,
Mahalanobis) of K = (kY (xi, xj))1≤i,j≤m

. The invariance under Φ of the

vectors simulated that way is thus sure (i.e. ∀ω ∈ Ω).

3.3. What about the RKHS point of view? If k is argumentwise in-
variant and H is a RKHS of real-valued functions with kernel k, it is clear
that any function f ∈ H is invariant under Φ. Indeed, taking any arbitrary
x ∈ D and g ∈ G, we get

f(g.x) = 〈f, k(g.x, .)〉H
= 〈f, k(x, .)〉H = f(x)

(16)

It clearly appears from that representation that the left invariance is suffi-
cient. This is of course related to the fact that work here with symmetric
kernels in the first place (in the sense that k(x,x′) = k(x′,x)).

For the reciprocal, assuming that any f ∈ H is invariant, it is straightforward
that all k(x, .)’s (x ∈ D) are invariant since they belong to H.

Note that the case wher Mercer theorem applies is particularly enlightening.
k then possesses an orthogonal expansion of the form

k(x,x′) =
+∞∑

i=1

λiei(x)ei(x
′) (17)

where the eigenfunctions ei(.) form an orthonormal basis of L2(D). Since
the ei(.)’s are in the RKHS, they are invariant, and it appears then in a very
natural way that k is coordinatewise invariant.

4. Applications

4.1. Invariant Brownian Motion and other elementary examples.

4.1.1. Symmetrized BM and OU process. Let us first consider (Bt)t∈[0,+∞[,
a one-dimensional Brownian Motion (BM), and the symmetry with respect
to the origin s : x ∈ D −→ −x ∈ D, where D := R. The corresponding
action of the group G = Z/2Z on R is the same as in Ex. 1. In order to
symmetrize B, let us first extend it to a process on the whole line by setting
∀t < 0, Bt = 0. Now, relying on the fundamental domain A := [0,+∞[, a
straightforward way to symmetrize B is to construct Bsym1 as follows:

Bsym1
t = BπA(t) = B|t| (18)

The resulting process is still centered and gaussian, with covariance

kBsym1(s, t) := Cov(Bsym1
s , Bsym1

t ) = Cov(B|s|, B|t|) = min(|s|, |t|) (19)

Now, as we have seen in Ex. 4, another way of getting a process with
symmetric paths based on B is by averaging it over the action’s orbits:

Bsym2
t =

1

2
(Bt +Bs(t)) =

1

2
(Bt +B−t) (20)
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Interestingly, this new process possesses the following covariance kernel:

kBsym2(s, t) := Cov(Bsym2
s , Bsym2

t )

=
1

4
Cov(Bs +B−s, Bt +B−t) =

1

4
min(|s|, |t|),

(21)

so that kBsym2 = 1
4kBsym1 . Simulated paths of the centered Gaussian process

defined by eq. 19 are represented on figure 1.
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y

20 simulated paths of the BM extended to [−1,1]
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Figure 1. Symmetrization of the Brownian Motion relying on the sym-
metrized kernel (by projection on a fundamental domain) of eq. 19.
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20 simulated paths of the symmetrized OU process (1)
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Figure 2. Symmetrization of the OU process relying on both kernels
defined by eqs. 23, 25. Left: by projection on a fundamental domain
(eq. 23). Right: by averaging over the orbits (eq. 25).

Let us now consider an Orstein-Uhlenbeck (OU) process (Yx)t∈D restricted
to D := [0, 1], and s : t ∈ D −→ 1 − t ∈ D the symmetry with respect
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to 1
2 . This time, we choose A := [0, 12 ] as fundamental domain. A similar

construction as for the first symmetrized BM leads to the process

Y sym1
t = YπA(t) = Ymin(t,s(t)) = Ymin(t,1−t) (22)

This centered Gaussian process is then characterized by the kernel

kY sym1(s, t) := Cov(Ymin(s,1−s), Ymin(t,1−t))

= exp (−|min(s, 1− s)−min(t, 1− t)|) (23)

On the other hand, the second symmetrized OU process is obtained by
averaging over the orbits of the considered group action:

Y sym2
t =

1

2
(Yt + Ys(t)) =

1

2
(Yt + Y1−t), (24)

and possesses the following covariance kernel:

kY sym2(s, t) =
1

4
Cov(Ys + Y1−s, Yt + Y1−t)

=
1

4
exp (−|s− t|) + 1

4
exp (−|(1− s)− t|)

+
1

4
exp (−|s− (1− t)|) + 1

4
exp (−|(1− s)− (1− t)|)

=
1

2
exp (−|s− t|) + 1

2
exp (−|1− s− t|)

(25)

Simulated paths of the centered Gaussian process defined by both eq. 23
and eq. 25 are represented on figure 2.

4.1.2. Conditional simulations of an invariant Gaussian Process. We now
assume that the invariant process Y sym2 was observed at the 3 points t1 =
0.6, t2 = 0.8, t3 = 1, with response values y1 = −0.8, y2 = 0.5, y3 = 0.9.
The covariance kernel of eq. 25 is used for performing simulations of Y sym2

conditionally on the latter observations. 20 such conditional simulations are
represented on figure 3. As can be seen on figure 3, all paths are interpo-
lating the conditioning data, illustrating the property 3.3 of the conditional
distribution of Gaussian Random Fields with argumentwise invariant kernel.

4.2. Kriging with an invariant kernel. Let us finally apply Kriging with
an argumentwise invariant kernel to a benchmark example from the struc-
tural reliability literature exhibiting obvious symmetries.

Quoting [7] in which this test-case was recently used, ”the example has been
analyzed by [41] and [15] made a comparison with several meta-models
proposed by [36]”. The limit state function of interest reads:

y : (x1, x2) ∈ [−5, 5]2 −→ min





3 + 0.1(x1 − x2)
2 − (x1 + x2)/

√
2

3 + 0.1(x1 − x2)
2 + (x1 + x2)/

√
2

(x1 − x2) + 6/
√
2

(x1 − x2) + 6/
√
2
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Figure 3. Conditional Simulations of the symmetrized OU process with
the kernel of eq. 25. The black points stand for the conditioning data.

Figure 4 shows the contours of y, with an illustration of the three transfor-
mations of R2 –denoted by s1, s2, s3– leaving y invariant.
Actually, y can be shown to be left invariant by an action of the group
(Z/2Z)2 on R

2. Indeed, as illustrated on figure 4, y is invariant under s1,
the axial symmetry with respect to the first bisector. y is also invariant
under s2, the axial symmetry with respect to the second bisector. Finally,
y is naturally invariant under their composition, s3, i.e. the symmetry with
respect to the origin. Together with the identity of R2, denoted by s0, the
latter s1, s2, s3 forms a group of order 4, representing (Z/2Z)2 on R

2.

4.2.1. Kriging with three different kernels. Here we investigate using ar-
gumentwise invariant kernels for approximating this function by Ordinary
Kriging based on 30 observations at a maximin LHS Design X. The un-
derlying Design of Experiments is generated using the R package lhs. As a
preliminary step towards a comparison between different kernels, a Simple
Kriging model with a tensor product OU kernel

kY (x,x
′) = σ2 exp

(
−1

θ

(
|x1 − x′1|+ |x2 − x′2|

))
+ τ21x=x′ (26)
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Figure 4. Borri and Speranzini’s function, with its two axes of sym-
metry (black lines). The colored arrows stand for the three non-trivial
transformations leaving this function unchanged.

is fitted to the data (see figure 5). Here the parameter are fixed to their
Maximum Likelihood estimates, σ2 = 7.5 and θ = 20. In addition, a nugget
effect with τ2 = 0.01 is added to kY for numerical purposes.
We now consider two different argumentwise invariant kernels. To start with,
using similar notations as for the 1-dimensional OU example, we define a
fundamental domain for Φ (see figure 6 for an illustration):

A := {x ∈ [−5, 5]2 : x1 ≥ 0,−x1 < x2 ≤ x1} (27)

The first argumentwise invariant kernel considered is then constructed based
on the projector πA : x ∈ D −→ πA(x) = O(x) ∩A ∈ A, as follows:

kY sym1(x,x′) := kY (πA(x), πA(x
′)) (28)

The second argumentwise invariant kernel considered is then constructed by
averaging kY over the orbits of Φ:

kY sym2(x,x′) :=
1

16

3∑

i=0

3∑

j=0

kY (si.x, sj .x
′) (29)
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Figure 5. Simple Kriging mean and standard deviation with the regu-
lar tensor product kernel of eq. 26, based on observations of y at X.
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Figure 6. Left: the fundamental domain A for the considered action
of (Z/2Z)2 on [−5, 5]2. The lower left boundary is excluded. Right:
projection of the design points of X (black points) onto A (red stars).

The results of Kriging with kernels kY sym1 and kY sym2 based on the observa-
tions at X are illustrated on figures 7 and 8, respectively.

Finally, for comparison, a Kriging model with regular OU kernel (the same
as for the first model) but based on the design

Xsym :=
3⋃

i=0

si.X (30)

and with the observations at X replicated four times is considered.
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Figure 7. Simple Kriging mean and standard deviation with the sym-
metrized OU kernel of eq. 28, based on observations of y at X.
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Figure 8. Simple Kriging mean and standard deviation with the sym-
metrized OU kernel of eq. 29, based on observations of y at X.

4.2.2. Discussion on the compared results. In order to compare the predic-
tion abilities of the four considered Kriging models, we predict y at a 50×50
out-of-sample validation design Xval using everyone of them, and compare
the average prediction errors and the residuals. The graphics on figure 10
represent the mean predictions against reality (first line) and the standard-
ized residuals (i.e. divided by the Kriging standard deviations, second line).

Looking at the values of the Integrated Squared Error (ISE) at Xval for the
four candidate Kriging models, we first see that the first model is undoubtly
dominated by the three other ones. This was to be expected since the first
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Figure 9. Simple Kriging mean and standard deviation with the regu-
lar tensor product kernel of eq. 26, based on observations of y at Xsym.
The solid black circles represent the LHS design X. The red squares,
blue diamonds, and green triangles represent respectively the orbits of
X under the transformations s1, s2, and s3.

model is the only one which doesn’t take into account the symmetry of the
problem. The second model, based on a combination of the OU kernel with
the projector onto the fundamental domain of figure 6, shows significantly
better performances. Indeed, the ISE drops from 433.01 to 264.33, just by
playing on the underlying kernel. However, the performances of the third
model, with the kernel averaged over the action’s orbits, are even better.
Not only does the ISE drop to 142.89, but the order of magnitude of the
standardized residuals is more in accordance with what one usually expects
when Kriging under the Gaussian Process assumption (even if this is not re-
ally theoretically well-founded, without further ergodicity assumptions, it is
customary to expect that about 95% of the sample of standardized residuals
lie between the 2.5% and 97.5% quantiles of the Gaussian distribution).

Perhaps surprisingly, the last model obtained by using a regular covariance
kernel with a symmetrized design gave here better performances in terms
of ISE (124.53) than the two previous models with argumentwise invariant
kernels. This has to be tempered by the fact that doing it this way multplies
the dimension of the covariance matrix by the order of the group (i.e. 4
here), that is to say that the total number of coefficients jumps from n2 to
n2× r2 (i.e. from 900 to 14′400 here). Hence, replicating the design is likely
to cause problems in terms of matrix inversion, and even in terms of data
storage (for the reasonable values n = 1000 and r = 8, n2×r2 = 64′000′000).
Furthermore, the test function studied here is not very smooth (so that an
OU kernel was considered instead of a Gauss or a Matérn, more commonly
used in smoother cases), which may relatively hinder the benefits of taking
symmetries into account, since the latter come in more regular cases with
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Figure 10. Comparison of prediction results at Xval when using the 4
Kriging models considered for Borri and Speranzini’s function.

additional smoothness properties on the axes of symmetry. Concerning the
second model, let us also remark that the choice of A is arbitrary, and
not always without consequences on the model obtained. In the case of
an anisotropic covariance, for instance, choosing the current A or its image
by a rotation of center 0 and angle π

2 may lead to substantially different
predictions. This has to be studied in more detail in further works.

To finish with this application, let us point out the fact that amon the
considered models, only the ones based on an argumentwise invariant co-
variance kernel enables conditional simulations with invariant paths. 4 such
simulated paths with the kernel of eq. 28 conditional on the observations at
X are represented on figure 11.
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Figure 11. Four conditional simulations of Borri and Speranzini’s func-
tion with symmetrized OU kernel (1), based on observations at X.

5. Conclusion and perspectives

We proposed a class of covariance kernels, called argumentwise invariant
kernels, characterizing (up to a modification) squared integrable random
fields with invariant paths under an arbitrary action of a finite group on the
index set, as well as reproducing kernel hilbert spaces of invariant functions
(still with a finite group acting on the source space).

These kernels can be used for different purposes. We focused here on mod-
eling invariant functions by Kriging. As discussed along the paper, Kriging
models with an argumentwise invariant kernel have interesting properties,
including the invariance of both Kriging mean and variance functions, but
also the invariance of paths emanating from conditional simulations.
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Among the two variants for making up invariant kernels based on arbitrary
kernels proposed in the last example, summing a kernel over the orbits of the
considered group action gave more convincing results than composing the
basis kernel with a projection onto a fundamental domain. However, this
may not hold in the general case, and further works may focus on identifying
and unlocking the potential weak points of both considered approaches.
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