
HAL Id: hal-00632789
https://hal.science/hal-00632789

Submitted on 15 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed delivery system for time-shifted streaming
systems

Yaning Liu, Gwendal Simon

To cite this version:
Yaning Liu, Gwendal Simon. Distributed delivery system for time-shifted streaming systems. LCN
2010 : 35th IEEE Conference on Local Computer Networks, Oct 2010, Denver, United States. �hal-
00632789�

https://hal.science/hal-00632789
https://hal.archives-ouvertes.fr

Distributed Delivery System for Time-shifted

Streaming Systems

Yaning Liu1,2

1State Key Lab. of Networking and Switching Tech.

Beijing Univ. of Posts and Telecommunications, China

Gwendal Simon2

2Computer Science Department

Institut Télécom - Télécom Bretagne, France

Abstract—In live streaming systems (IPTV, life-stream services,
etc.), an attractive feature consists in allowing users to access past
portions of the stream. This is called a time-shifted streaming sys-
tem. We address in this paper the design of a large-scale delivery
system for a time-shifted streaming application. We highlight
the challenging characteristics of time-shifted applications that
prevent known delivery systems to be used. Then, we describe the
turntable structure, the first structure that has been specifically
designed to cope with the properties of time-shifted systems. A set
of preliminary simulations confirm the interest for this structure.

I. INTRODUCTION

The delivery of television over the Internet (IPTV) is

expected to offer viewers new ways to enjoy TV content.

One of the most promising services, often called catch-up

TV or time-shifted TV, consists in allowing viewers to watch

their favorite broadcast TV programs within an expanded time

window. Let’s say that a program is normally broadcasted from

a given time t. In a catch-up TV, this program is made available

for viewing at any time from t to t+ δ hours where δ can be

excessively long (several weeks). In this context, a viewer is

also able to surf the TV content history using pause, rewind

or fast forward commands, hence he/she can switch from a

live experience to a shifted one.

Today, to enjoy catch-up TV requires to record the stream

on a Digital Video Recorder (DVR) connected to Internet. Of

course, this is unacceptable for TV providers, which would

like to control the delivery of their content. However, building

a large-scale time-shifted streaming service is not trivial.

Indeed, the disk-based servers that are currently used in on-

demand video services (VoD) have not been designed for

concurrent read and write operations. In particular, a VoD

server can not massively ingest content. Moreover, delivery

systems for IPTV can not be utilized because, contrarily to live

streaming systems, time-shifted systems can not directly use

group communication techniques like multicast protocols, for

the reason that clients require distinct portions of the stream.

Other obvious differences include the length of a catch-up TV

stream, which can be several orders of magnitude longer than

a typical movie in VoD, and the dynamicity of chunk request.

Contrarily to VoD, the popularity of every chunk is variable

in catch-up TV.

A few papers have recently addressed the VCR problem

in peer-to-peer VoD systems [1, 2], but no previous work

has assumed that VCR is so massively employed by user.

Several works have highlighted the problems met by classic

centralized architectures [3, 4]. New server implementations

are described in [5]. Cache replication and placement schemes

are extensively studied by the authors of [3]. When several

clients share the same optical Internet access, a patching

technique described in [4] is used to handle several con-

current requests, so that the server requirement is reduced.

Some works have recently sketched a peer-to-peer architecture

for time-shifted TV systems. In [6], every client stores all

downloaded video parts. A Distributed Hash Table (DHT) is

used to keep trace of the owner of every video part, so that

a peer that is able to upload a past video part can be found

upon a simple request to the DHT. Similarly, a DHT is used

to locate video parts in [7]. However, these works appear

to suffer from critical drawbacks. First, the use of the hash

function seems irrelevant in this context where chunks are

iteratively produced. A structure that takes into account the

stream linearity would be more appropriate. Second, a peer

departure should conduct to multiple deletions in the DHT.

For peers that store vast amounts of chunks in catch-up TV, a

huge number of messages should be generated. Furthermore,

the DHT could not guarantee the availability of all chunks,

particularly for early and unpopular chunks.

In this paper, we present a distributed system for a time-

shifted streaming service. This system tackles several crucial

challenges of time-shifted systems. In particular, we ensure

the storage of every past chunks, we guarantee a good quality

of service with a large majority of requests that are fulfilled

(past chunks are served to clients), and we balance the

load of storing and delivering the chunks to all the peers.

Moreover, the fact that the system is fully distributed makes

that the system is scalable (an unlimited number of peers can

participate) and dependable (no failure point).

Our system relies on a structure, namely turntable, which

is a lightweight overlay network. We describe the foundations

of this structure in Section II. Then, we present in Section III

a set of simulations where the quality of this structure is

highlighted. In this simulations, we have based on a recent

series of measurements in order to build realistic settings. In

particular, the behavior of clients has been precisely simulated.

II. THE TURNTABLE STRUCTURE

We propose a structured system based on a turntable. See

Table I for summarized notation, and Figure 1 for a represen-

Notation Description

C, chi Set of chunks and ith chunk produced
S, si,m Set of turntable sectors, ith sector, and number of sectors
V, n Set of peers, number of peers

x̂i Responsible peer in sector si
Γintra(x) Intra-sector neighbors of the peer x

Γinter(x) Inter-sector neighbors of the peer x
cx Upload capacity of x

Υ(z) Set of peers serving client z
k Number of hops for flooding chunk requests
fj Number of flooding failures for chj

pj Probability to forward the fresh chunk chj

TABLE I
SUMMARY OF KEY NOTATIONS

s i−
1

s i
s i

+
1 si−1

si
si+1

source

Fig. 1. The distributed turntable structure

tation. The model and protocol are described as follows.

A. Turntable Model

We divide the turntable into m sectors noted si, 0 ≤ i < m.

Every peer joins exactly one sector. The turntable implements

a rotational motion in clockwise direction. At every cycle t,

the source produces a new chunk that is sent to a sector si,

then the chunk produced at cycle t+1 is sent to the sector sj
with j = (i+ 1) mod m, and so on1. Hence, every chunk is

under the responsibility of a sector, i.e., of a subset of peers.

They store the chunks, and deliver them to clients. Please note

that a cycle is a generic duration, but a chunk is typically a

relatively long portion of a stream, e.g., one minute. The longer

are the chunks, the lesser is the overhead of control messages.

A client is connected to a set of peers, which are expected

to be able to serve it. Hence these peers belong to the

sector corresponding to the chunk that the client is willing

to download now. We note by Υ(z) the set of peers to which

a client z sends requests. From a cycle t to a cycle t+1, the set

Υ(z) is totally refreshed, because the chunk requested at cycle

t is different from the chunk requested at cycle t + 1. When

a client wants to download any past portion of the stream,

it should first determine the sector associated with the first

chunk of this portion. After it finds a peer that has stored the

requested chunks in this sector, it should then jump to the

1in the following, we omit the modulo for notation clarity.

next sector in order to retrieve the next chunk and continues

consuming the stream.

Besides, a peer contacted by a client is expected to be able

not only to deliver the requested chunk, but also to determine

a set of peers this client can contact in order to fetch the next

chunk. Peers regularly exchange information for that purpose.

The overall overlay formed by the turntable structure depends

on how peers are linked inside a sector, which are called the

intra-sector links, and how peers from one sector are linked

to peers of the next sector, namely the inter-sector links. We

denote by Γintra(x) (resp. Γinter(x)) the set of intra-sector

neighbors (resp. inter-sector neighbors) of a peer x.

The source must be connected to one peer in every sector.

These peers are called representative. We denote by x̂i the

representative for sector si. When it is time for a sector si
to handle a new chunk, the source alerts the representative x̂i

and sends the chunk to it, then this chunk is diffused in the

sector. During the m next cycles, this chunk is called the fresh

chunk for this sector.

Several algorithms runs the turntable. First, an algorithm

for the diffusion of fresh chunks. As the fresh chunks are

also the most requested chunks, they should be diffused as

quickly as possible to many peers within the sector. Second,

an algorithm ensuring a fair repartition of the past chunks.

Ideally, the number of replicas of a chunk should correspond

to the number of requests emitted for this chunk. Third, an

algorithm for finding a peer storing a requested chunk. When

a peer is contacted by a client for a chunk, either this peer is

able to serve the client (it has the chunk and it has the capacity

to upload the chunk), or it should find a peer that is able to

serve the client. We detail these algorithms in Sec. II-C.

B. Inter- and Intra-Link Management

We present now a set of distributed algorithms for neigh-

borhood management in the turntable overlay.

Intra-Link Management. We choose to build a lightweight

overlay within every sector. We use a gossip-based technique

inspired by T-Man [8]. Every peer is connected to a subset

of peers, which it continuously refreshes. Peers periodically

exchange messages, which carry neighborhood information.

Then, every peer connects to the “best” peers among its current

neighbors and all the possible neighbors described in these

messages. In the resulting overlay, every peer is connected to

the peers that it considers as the best.

We propose that peers connect preferentially to the neigh-

bors that store collectively the largest set of distinct chunks.

Indeed, the larger is the set of distinct chunks at one hop,

the higher is the probability to find a requested chunk at one

hop. In other words, we give priority to the performances of

the algorithm that aims to find a requested chunk. For com-

binations of peers having almost similar performances, peers

discriminate by selecting the closest peers in the network. Here

the motivation comes from ISP-friendly considerations.

Inter-Link Management. The inter-sector links aim to ease

the retrieval of consecutive chunks. A client z retrieving a past

stream portion requests consecutive past chunks. The purpose

of an inter-sector link is to connect two peers that are in

consecutive sectors and that store some successive chunks

from past stream portions. When z is served by a node xi ∈ si,

its next request is in sector si+1, i.e. z should find in sector

si+1 a peer that stores the chunk next to the one it just

downloads from xi. Ideally, the next chunk is stored by a peer

xi+1, which is in Γinter(xi). Thus xi can introduce xi+1 to z

and save request messages. More generally, the set Γinter(x) is

constructed with a gossip-based mechanism, where the number

of chunks stored by peers that are next to chunks stored by x

allows to choose the neighbors in the next sector.

C. Algorithms

We describe now the algorithms that are implemented on top

of the turntable overlay. Please note that various protocols can

be designed. We present here the ones that have demonstrate

good performances during our simulations.

1) Finding a peer storing a chunk: A client z is connected

to a set of peers Υ(z) in the sector that is responsible of the

requested chunk. This set of peers has been given to z by peers

from the previous sector. If none of these peers is able to serve

z (either because neither they have the requested chunk, nor

they have the capacity to upload it), a search should be done

in the whole sector. We use here a classic two-steps algorithm

where, first, the intra-sector neighbors of every peer in Υ(z)
are explored, and, if the chunk is still impossible to download,

then the sector overlay is flooded at k hops.

2) Fresh chunk management: We use a push-based ap-

proach to distribute fresh chunks. Our approach is to distribute

chunks through a gossip process based on two parameters.

Peers receiving a chunk chj decide to forward it with a

probability pj , if this chunk has not been already forwarded

more than a given number of times. The computation of pj is

an issue. Our approach consists in leveraging the knowledge of

the popularity of fresh chunks in the previous sector to adjust

pj . We denote by fj the failure frequency of a fresh chunk

chj , i.e. the number of requests for chj that have not been

fulfilled. The idea is that fj is probably similar to fj−1 if the

probability pj is close to pj−1. Therefore, if the failure ratio

fj−1 is too high, the probability pj should increase, and vice

versa. We propose then to use an Additive Increase Additive

Decrease (AIAD) mechanism to adjust the number of fresh

chunk replicas. When a peer x gets the knowledge of a ratio of

request failures lower than a given threshold flow, it can decide

to decrease the probability by a value a. When x infers that the

ratio of request failures is higher than a given threshold fhigh,

it can increase the probability by another value b. Otherwise,

x maintain the forwarding probability unchanged. The goal of

the control algorithm is to keep the number of request failure

within a prefixed quality of service.

3) Past chunk management: The limitation of the storage

capacities imposes to not create a replica of each chunk at

each peer. An important issue for past chunk management is

the choice of the chunk to be removed when the local storage

is full and when a new chunk should be stored. We implement

a pseudo-LRU algorithm where a peer first establishes a list of

chunks that it can discard because it knows that at least one

replica exists in the sector, then, it determines the chunk to

remove among this selected chunks by a classic least recently

used (LRU) policy. Now, we study the creation of new replicas.

Our proposal is inspired by [9] where authors describe a

distributed replication algorithm with regards to the popularity

of data item and storage capacity of peers, as well as the

heterogeneity and dynamics of network and workload. In the

same idea that for fresh chunks, every peer x maintains a

counter of the number of failed received requests fxi for a

chunk chi. When a failure ratio fxi is above a given threshold,

the peer x decides that the chunk chi is not replicated enough.

Then, the chunk chi is put in the set of missed chunks of

x. Periodically, the peer x picks one chunk in this set, and

requests it in its sector, so that a new replica can be created.

III. SIMULATIONS

We implement our turntable time-shifted system on Peer-

Sim, a simulator targeting large-scale and dynamic overlays.

Two sets of studies conducted in 2008 and 2009 have been

utilized to model the behavior of shifters (viewers of catch-

up TV). The first set is real measurements by DVR vendors,

which have been given in a Nielsen report [10]. The second

set of related works is the recent measurements conducted on

IPTV [11] and VoD systems [12].

The TV prime-time is clearly on evening. Measurements

made in [10] confirm that shifters are obviously more con-

nected at certain time of the day than others. In our simulator,

we create x new peers at every cycle. During less attractive

hours, x equals 1, while it can be equal to 10 at the prime-time.

With respect to the measurements in [11], peers get assigned

a role in our simulation: half of the peers are surfers (watch

a same program during 1 or 2 chunks before to switch to

another program), 40% of them are viewers (switch after a

duration uniformly chosen between 2 and 60 minutes), and

only 10% are leavers (stay on a program during a time

comprised between 60 and 1000 chunks, i.e. a TV constantly

opens during up to 20 hours).

Several continuous chunks form a program, which is asso-

ciated with a genre [11], a popularity chosen in a predefined

distribution, and a length ranging from 30 to 100 chunks.

Three genres are considered: 80% are free, 15% are news and

5% are kids. While a program reaches its predefined length, a

new program is immediately created. As it has been noticed in

various IPTV measurements, a viewer is more likely to choose

a program in the same genre when it switches.

Based on the configurations of user behavior and program

popularity, Figure 2 represents the Cumulative distribution

Function (CDF) of the lag of shifters at the end of our simu-

lation. The embedded plot zooms on the 5 000 first minutes,

which represents actually more than 80% of shifters. A point

at (1 000, 0.50) means that half of shifters are watching a

program broadcasted less than 1 000 minutes ago. Note on

the embedded figure that variable program popularity results

in a sinuous curve. This curve is actually conform with the

recent measurements made in [10].

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000

c
d
f
o
f
p
la

y
b
a
c
k
 p

o
s
it
io

n

lag to live streaming

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 1000 2000 3000 4000 5000

Fig. 2. CDF of playing positions

 0

 2

 4

 6

 8

 10

 12

 14

 0 5000 10000 15000 20000 25000

n
b
 o

f
re

p
lic

a
s

chunkId

replica snapshot for 500 peers
replica snapshot for 1000 peers
replica snapshot for 1500 peers

Fig. 3. Average number of replicas per chunk
during the simulation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000

ra
ti
o
 o

f
fa

ilu
re

s

cycles

for 500 peers
for 1000 peers
for 1500 peers

Fig. 4. Ratio of failures per demand

Our simulation runs 30 000 cycles, i.e., more than 20 days.

We assume that the turntable has m = 20 sectors, each of

which introduces one representative. Each peer, randomly as-

signed to a sector, can store 100 chunks. A peer has privileged

relationships with 5 intra-sector neighbors, and 5 inter-sector

neighbors that are both chosen among 20 acquaintances. We

consider that a chunk represents one minute of stream in our

simulator.

In general, the upload capacity of peers is hard to set

because they are highly dependent on the service. In our

system, peers are expected to upload a whole chunk to other

peers, i.e., one data transmission consists of one-minute long

stream delivery. Therefore, the capacity of a peer is described

as the number of concurrent streams that the peer is able to

send to other peers. Obviously, if the stream source generates

High-Definition TV (HDTV) content, and if peers are end

users’ computer, the average capacity can not be large. Here,

we set the average capacity of peers as 1 (in average, a peer

is able to send one stream to only one peers).

A. Simulation Results

1) Results for Chunk Replication: In Figure 3, we compute

the average number of replicas for every chunk during all the

time this chunk has been in the system. Then, we compare

three cases with a variable number of peers, from 500 to

1, 500. The variation of the number of replicas is quite high,

mostly because the popularity of chunks varies a lot from a

chunk at the beginning of a popular program to a chunk at

the end of a unpopular program. However, every chunk has at

least one replica in the system, therefore, the availability of

chunks is guaranteed. As expected the number of replicas is

higher when the number of peers increases.

2) Quality of Services - Fulfilled Requests: In this last part,

we observe the quality of service. We distinguish a flooding,

when all peers of a client can not treat the request of the

client and issues a k-hop flooding, and a failure, when even

the flooding fails, i.e. the client can not be served. In the

former case, the overhead generated by the request messages

is important. In the latter case, the system is unable to serve

the client. Figure 4 shows the evolution of the ratio of failures

to the number of received requests during the simulation.

The number of peers has a dramatic impact on the qual-

ity of services. When n is equal to 1, 500 (approximately

the maximum number of concurrent clients), the number of

failures is still low (less than 5% of requests are not fulfilled).

Actually, most failures occur for fresh chunks, where, despite

the algorithm for the diffusion of fresh chunks, peers have not

the capacity to generate the number of replicas on time. For

smaller number of peers, the problem of congestion becomes

more important, With an average upload capacity of 1, peers

can only serve as many clients as n. We observe that the ratio

of failed requests is approximately the ratio of the number of

clients to the number of peers. The system is able to almost

entirely utilize the upload resources of peers.

REFERENCES

[1] X. Yang, M. Gjoka, P. Chhabra, A. Markopoulou, and P. Rodriguez,
“Kangaroo: Video Seeking in P2P Systems,” in Proc. of IPTPS, 2009.

[2] X. Wang, C. Zheng, Z. Zhang, H. Lu, and X. Xue, “The design of
video segmentation-aided VCR support for P2P VoD systems,” IEEE

Transactions on Consumer Electronics, vol. 54, no. 2, May 2008.
[3] J. Zhuo, J. Li, G. Wu, and S. Xu, “Efficient cache placement scheme

for clustered time-shifted TV servers,” IEEE Transactions on Consumer

Electronics, vol. 54, no. 4, pp. 1947–1955, November 2008.
[4] W. Xiang, G. Wu, Q. Ling, and L. Wang, “Piecewise Patching for

Time-shifted TV Over HFC Networks,” IEEE Transactions on Consumer

Electronics, vol. 53, no. 3, pp. 891–897, Aug. 2007.
[5] C. Huang, C. Zhu, Y. Li, and D. Ye, “Dedicated Disk I/O Strategies for

IPTV Live Streaming Servers Supporting Timeshift Functions,” in Proc.

of IEEE CIT, 2007, pp. 333–338.
[6] F. V. Hecht, T. Bocek, C. Morariu, D. Hausheer, and B. Stiller,

“LiveShift: Peer-to-Peer Live Streaming with Distributed Time-
Shifting,” in Proc. of 8th Int. P2P Conf., 2008, pp. 187–188.

[7] D. Gallo, C. Miers, V. Coroama, T. Carvalho, V. Souza, and P. Karlsson,
“A Multimedia Delivery Architecture for IPTV with P2P-Based Time-
Shift Support,” in Proc. of 6th IEEE CCNC, 2009, pp. 1–2.

[8] M. Jelasity and O. Babaoglu, “T-man: Gossip-based overlay topology
management,” in ESOA, Intl’l Work. on Engineering Self-Organising

Systems, 2005.
[9] M. Sozio, T. Neumann, and G. Weikum, “Near-optimal dynamic repli-

cation in unstructured peer-to-peer networks,” in Proc. of the 27th ACM

Symp on Principles of Database Sys. (PODS), 2008.
[10] Nielsen, “How DVRs Are Changing the Television Landscape,” Nielsen

Company, Tech. Rep., April 2009.
[11] M. Cha, P. Rodriguez, J. Crowcroft, S. Moon, and X. Amatrianin,

“Watching television over an ip network,” in Proc. of Usenix/ACM

SIGCOMM Internet Measurement Conference (IMC), 2008.
[12] Y. Hongliang, Z. Dongdong, Z. B. Y., and Z. Weimin, “Understanding

user behavior in large-scale video-on-demand systems,” SIGOPS Oper.

Syst. Rev., vol. 40, no. 4, pp. 333–344, 2006.

