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notion of false discovery rate (FDR) as a measure of type I error. Our main result studies specific
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non-parametric examples: testing the mean/signal in a Gaussian white noise model, testing the
intensity of a Poisson process and testing the c.d.f. of i.i.d. random variables.
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1. Introduction

1.1. Motivations

Multiple testing is a long-established topic in statistics which has seen a surge of interest
in the past two decades. This renewed popularity is due to a growing range of applications
(such as bioinformatics and medical imaging) enabled by modern computational possi-
bilities, through which collecting, manipulating and processing massive amounts of data
in very high dimension has become commonplace. Multiple testing is in essence a multi-
ple decision problem: each individual test output is a yes/no (or accept/reject) decision
about a particular question (or null hypothesis) concerning the generating distribution
of some random observed data.

The standard framework for multiple testing is to consider a finite family of hypothe-
ses and associated tests. However, in many cases of interest, it is natural to interpret
the observed data as the discretization of an underlying continuously-indexed random
process; each decision (test) is then associated to one of the discretization points. A
first example is that of detecting unusually frequent words in DNA sequences: a classical
model is to consider a Poisson model for the (non-overlapping) word occurrence process
(Robin, 2002), the observed data being interpreted as a discretized version of this pro-
cess. A second example is given in the context of medical imaging, where the observed
pixelized image can be interpreted as a sampled random process, and the decision to
take is, for each pixel, whether the observed value is due to pure noise or reveals some
relevant activity (pertaining to this setting, see in particular the work of Perone Pacifico
et al., 2004, 2007; see also Schwartzman et al., 2011).

Therefore, the present paper explores multiple testing for a (possibly) uncountably
infinite set of hypothesis. With some abuse of language, we will refer to this as the con-
tinuous setting and use loosely the word “continuous” in reference to sets in order to
mean: possibly uncountably infinite. For the above examples, this corresponds to per-
form testing for the underlying continuously-indexed process in a direct manner, without
explicit discretization.

1.2. Contribution and presentation of this work

The principal contributions of the present work are the following. We first define a precise,
but general in scope, mathematical setting for multiple testing over a continuous set of
hypotheses, taking particular attention to specific measurability issues. Specifically, we
focus on the extension to continuously-indexed observation (and decision) processes of
so-called step-up multiple testing procedures, and the control of the (continuous analogue
of) their false discovery rate (FDR), a type I error measure which has gained massive
acceptance in the last 15 years for testing in high-throughput applications. To this end, we
use the tools and analysis developed by (Blanchard and Roquain, 2008) (a programmatic
sketch of the present work can be found in Section 4.4 of the latter paper). In particular,
we extend suitably to the continuous setting the notion of positive regressively dependent
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on a subset (PRDS) condition, which plays a crucial role in the analysis. The latter is
a general type of dependence condition on the individual tests’ p-values allowing to
ensure FDR control. An important difference between the continuous and finite setting
is that the continuous case precludes the possibility of independent p-values, which is the
simplest reference setting considered in the finite case, so that a more general assumption
on dependence structure is necessary (on this point, see the discussion at the end of
Section 2.2).

We have tried as much as possible to make this work self-contained, and accessible
to readers having little background knowledge in multiple testing. We begin in the next
section with an extended informal discussion of the framework considered in this paper
in relation to existing literature on nonparametric testing. Sections 2 and 3 of the paper
introduce the necessary notions for multiple testing with a an angle towards stochastic
processes, and some specific examples for the introduced setting. The main result is ex-
posed in Section 4, followed by its applications to the examples introduced in Section 2.
The proof for the main theorem is found in Section 5. Extensions and discussions come
in Section 6, while some technical results are deferred to Appendix A and to the supple-
mentary material (Blanchard et al., 2011). Throughout the paper, the numbering of the
sections and results of this supplement are preceded by “S-” for clarity (by writing, e.g.,
Section S-1).

1.3. Relationship to nonparametric statistics

Multiple testing over a continuous set of hypotheses has natural ties with nonparametric
statistics. In the present section, we briefly discuss this link and introduce informally our
goals. We do not attempt a comprehensive survey of the very broad field of nonparametric
testing, but rather emphasize some key specificities of the point of view adopted in the
current work.

Nonparametric testing. In order to be more concrete, consider the classical white
noise model dZt = f(t)dt+σdBt, where B is a Wiener process, t ∈ [0, 1] (this model will
be more formally considered as Example 2.3), with unknown drift function f ∈ F , where
F is some a priori smoothness class. The problem of testing various hypotheses about f
against nonparametric alternatives has received considerable attention since the seminal
work of Ingster (1982, 1993). The most common goal is to test one single qualitative
null hypothesis, for instance: f is identically zero; f is nonnegative; f is monotone; f
is convex. For concreteness, consider the first possibility, denoted H0

∗ := {f ≡ 0}. A
common strategy to approach this goal is to consider a collection of test statistics of
the form Tψ :=

∫
ψ(t)dZt for some well chosen family Ψ of test functions ψ (normalized

so that ‖ψ‖2 = 1). For each individual test function ψ, we have Tψ ∼ N (
∫
fψ, σ2),

so that this test statistic can be used for a Gauss test of the “local” null hypothesis
H0
ψ :=

{
f ∈ F ;

∫
fψ = 0

}
⊃ H0

∗ .
Intuitively, each statistic Tψ will have power against a certain type of alternative. Tak-

ing into account simultaneously all test statistics Tψ over ψ ∈ Ψ now constitutes a mul-
tiple test problem. The simplest way to combine these is to consider TΨ := supψ∈Ψ |Tψ|
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and reject H0
∗ whenever TΨ exceeds a certain quantile τ of its distribution under the null

H0
∗ . In multiple testing parlance, this is interpreted as testing over the hypothesis family

(H0
ψ)ψ∈Ψ with weak control of the family-wise error rate (FWER), which is defined as the

probability to reject falsely one or more of the considered null hypotheses. Here a local
hypothesis H0

ψ is interpreted as rejected if |Tψ| exceeds τ . The qualifier “weak” refers to
the fact that this probability is controlled at a nominal level only under the global null
H0
∗ rather than for all f ∈ F .
This connection has been noted and discussed in the literature; for instance, Dümbgen

and Spokoiny (2001), using the above type construction and multiple testing interpre-
tation, observe that “whenever the null hypothesis H0

∗ is rejected, we have some infor-
mation about where this violation occurs”. To formalize this idea more precisely, define
the rejection set Rτ := {ψ ∈ Ψ : |Tψ| > τ} as the set of (indices of) hypotheses from the
family (H0

ψ)ψ∈Ψ which are deemed false. In order for Rτ to be interpretable as intended,
the threshold τ should now be chosen so that for any f ∈ F , the probability that the
rejection set has non-empty intersection with (indices of) the set of hypotheses satis-

fied by f ,
{
ψ ∈ Ψ : f ∈ H0

ψ

}
, is less than a nominal level. This is called strong control

of the FWER. This point of view appears to have been only seldom considered explic-
itly in nonparametric testing literature; a recent example is the work of Schmidt-Hieber
et al. (2011) (in the framework of density deconvolution), wherein each individual null
hypothesis H0

ψ has a qualitative interpretation in terms of f being monotone on some
subinterval.

Type I error criteria. For adequate (weak or strong) control of the FWER in the
example above, it is clear that a stochastic control of the deviations of the supremum
statistic TΨ is necessary; this, in turn, depends on the complexity of the set Ψ (typically
measured through L2 metric entropy). As a consequence, FWER-controlling procedures
will be more conservative as the complexity of the family of the underlying test increases;
for instance, in a d-dimensional version of the above example, or if we simply consider a
longer observation interval, the threshold τ would have to be more conservative (larger)
to obtain control of the FWER at the same level.

Motivated by the multiple testing point of view, we consider alternative, less stringent
type I error criteria. Let us still consider the white noise example, in a slightly modified
setup where we are specifically interested in the family of null hypotheses

(
H0
t

)
t∈[0,1]

with H0
t := {f ∈ F ; f(t) = 0}. Each individual null hypothesis H0

t can be tested using a
statistic Tψt

as defined above; more precisely, this statistic can test for the null Hδ
ψt

:={
f ∈ F :

∫
fψt ∈ [−δ, δ]

}
(ψt and δ being chosen adequately so that H0

t ⊂ Hδ
ψt

holds).
Define similarly to earlier Rτ := {t ∈ [0, 1] : |Tψt | > τ}, and introduce Fτ (f) := Rτ ∩{
t ∈ [0, 1] : f ∈ H0

t

}
the set of incorrectly rejected hypotheses when the true drift is

f . To reiterate, FWER control is the requirement that Pf [Fτ (f) 6= ∅] is bounded at a
nominal level for all f ∈ F . Consider now the weaker requirement that the average size of
Fτ (f) (measured through its Lebesgue measure, denoted |.|) is bounded at some nominal
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level. We observe via an application of Fubini’s theorem:

Ef [|Fτ (f)|] =

∫ 1

0

Pf [|Tψt
| > τ ]1{f ∈ H0

t }dt ;

the averaged false reject size is simply the individual test error level, integrated over
the null hypothesis family. It is the continuous analogue of the so-called per-comparison
error rate (PCER) in multiple testing. To control this quantity, clearly no multiple testing
correction is necessary, and it is sufficient to choose τ so that each individual test has
Type I error controlled at the desired level. This criterion, however, is not very useful in
practice: only if the volume the rejection set is much larger than the nominal expected
volume of errors, can we have some trust that the rejection set contains interesting
information. To address this issue, introduce the average volume proportion of falsely
rejected hypotheses:

FDR(Rτ , f) := Ef [FDP(Rτ , f)] , where FDP(Rτ , f) =
|Fτ (f)|
|Rτ |

, (1)

with the convention 0
0 = 1. The acronyms FDP and FDR stand for false discovery

proportion and rate, repectively, and the above are the continuous generalization of cor-
responding criteria introduced for finite hypothesis spaces by Benjamini and Hochberg
(1995) for a finite number of hypotheses, and which have gained widespread acceptance
since. Controlling the FDR is a more difficult task than for the PCER, because of the
random denominator |Rτ | inside the expectation, and is the main aim of this paper.

As we shall see, a crucial difference of the FDR criterion with respect to the FWER
is that, if a family of tests of the individual hypotheses is known, there exist relatively
generic procedures called step-up to combine individual tests into a FDR-controlled mul-
tiple testing, by finding an adequate, data-dependent rejection threshold. In particular,
these procedures do not depend on an intrinsic complexity measure of the initial family,
nor of the control of deviations of suprema of statistics.

To conclude these considerations, it is worth noting that a FDR-controlled proce-
dure can also be used for the goal of testing the single “global null” hypothesis H0

∗ =
∩t∈[0,1]H

0
t , as in the opening discussion. Namely, if Rτ is a procedure whose FDR is

controlled at level α, we can reject the global null hypothesis H0
∗ whenever |Rτ | > 0.

Under the global null, the FDP takes only the values 0 or 1 and precisely coincides with
1{|Rτ | > 0}; thus, its expectation is the probability of type I error for testing the global
null this way, and is bounded by α. That this can be achieved by a generic procedure
without explicitly considering the deviations of a supremum process can seem surprising
at first. Since the focus of this paper is centered on the multiple hypothesis testing point
of view, we will not elaborate on this issue further, although a power comparison with
the “standard” approaches would certainly be of interest.

Related work. The continuous FDR criterion using volume ratios was introduced
before by Perone Pacifico et al. (2004, 2007) to test nonnegativity of the mean of a
Gaussian field. In that work, the authors follow a two-step approach where the first
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step consists in a FWER-controlled multiple testing based on suprema statistics, as
delineated above. This is then used to define an upper bound on the FDP holding with
large probability, following the principle of so-called augmentation procedures (van der
Laan et al., 2007) for multiple tests. An advantage of this approach is that a control of
the FDP holding with large probability is obtained (which is stronger than a bound on
the FDR, its expectation); on the other hand, the authors observe that since the first step
is inherently based on FWER control, it is more conservative than a step-up procedure.
In the present work, we focus on step-up procedures, for which a probabilistic control of
the deviations of suprema statistics is not needed; this allows us also to address directly
a broader range of applications.

2. Setting

2.1. Multiple testing: mathematical framework

Let X be a random variable defined from a measurable space (Ω,F) to some observation
space (X ,X). We assume that there is a family of probability distributions on (Ω,F) that
induces a subset P of probability distributions on (X ,X), which is called the model. The
distribution of X on (X ,X) is denoted by P ; for each P ∈ P there exists a distribution
on (Ω,F) for which X ∼ P ; it is referred to as PX∼P or simply by P when unambiguous.
The corresponding expectation operator is denoted EX∼P or E for short.

We consider a general multiple testing problem for P , defined as follows. Let H denote
an index space for (null) hypotheses. To each h ∈ H is associated a known subset Hh ⊂
P of probability measures on (X ,X). Multiple hypothesis testing consists in taking a
decision, based on a single realization of the variable X, of whether for each h ∈ H
it holds or not that P ∈ Hh (which is read “P satisfies Hh”, or “Hh is true”). We
denote by H0(P ) := {h ∈ H : P satisfies Hh} the set of true null hypotheses, and by
its complementary H1(P ) := H \ H0(P ) the set of false nulls. These sets are of course
unknown because they depend on the unknown distribution P . For short, we will write
sometimes H0 and H1 instead of H0(P ) and H1(P ), respectively.

As an illustration, if we observe a continuous Gaussian process X = (Xh)h∈[0,1]d with

a continuous mean function µ : h ∈ [0, 1]d 7→ µ(t) := EXt, then P is the distribution of
this process, (X ,X) is the Wiener space and P is the set of distributions generated by
continuous Gaussian processes having a continuous mean function. Typically, H = [0, 1]d

and, for any h, we choose Hh equal to the set of distributions in P for which the mean
function µ satisfies µ(h) ≤ 0. This is usually denoted Hh: “µ(h) ≤ 0”. Finally, the set
H0(P ) = {h ∈ [0, 1]d : µ(h) ≤ 0} corresponds to the true null hypotheses. Several other
examples are provided below in Section 2.4.

Next, for a more formal definition of a multiple testing procedure, we first assume the
following:

The index space H is endowed with a σ-algebra H and for all P ∈ P,
the set H0(P ) of true nulls is assumed to be measurable, that is, H0(P ) ∈ H.

(A1)
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Definition 2.1 (Multiple testing procedure). Let X : (Ω,F) → (X ,X) be a random
variable, P a model of distributions of X , and H an index set of null hypotheses. Assume
(A1) holds. A multiple testing procedure on H is a function R : X(Ω) ⊂ X → H such
that the set

{(ω, h) ∈ Ω×H : h ∈ R(X(ω))}

is a F ⊗ H-measurable set; or in other terms, that the process (1{h ∈ R(X)})h∈H is a
measurable process.

The fact that R need only be defined on the image X(Ω), rather than on the full space
X , is a technical detail necessary for later coherence; this introduces no restriction since
R will only be ever applied to possible observed values of X.

A multiple testing procedure R is interpreted as follows: based on the observation
x = X(ω), R(x) is the set of null hypotheses that are deemed to be false, also called set
of rejected hypotheses. The set H0(P ) ∩ R(x) formed of true null hypotheses that are
rejected in error is called the set of type I errors. Similarly, the set H1(P )∩Rc(x) is that
of type II errors.

2.2. The p-value functional and process

We will consider a very common framework for multiple testing, where the decision for
each null hypothesis Hh, h ∈ H, is taken based on a scalar statistic ph(x) ∈ [0, 1] called
a p-value. The characteristic property of a p-value statistic is that if the generating
distribution P is such that the corresponding null hypothesis is true (i.e. h ∈ H0(P )),
then the random variable ph(X) should be stochastically lower bounded by a uniform
random variable. Conversely, this statistic is generally constructed in such a way that if
the null hypothesis Hh is false, its distribution will be more concentrated towards the
value 0. Therefore, a p-value close to 0 is interpreted as evidence from the data against
the validity of the null hypothesis, and one will want to reject hypotheses having lower
p-values. Informally speaking, based on observation x, the construction of a multiple
testing procedure generally proceeds as follows:

(i) compute the p-value ph(x) for each individual null index h ∈ H.
(ii) determine a threshold th(x) for each h ∈ H, depending on the whole family

(ph(x))h∈H.
(iii) put R(x) = {h ∈ H : ph(x) ≤ th(x)}.

To summarize, the rejection set consists of hypotheses whose p-values are lower than a
certain threshold, this threshold being itself random, depending on the observation x
and possibly depending on h. This will be elaborated in more detail in Section 3.2, in
particular how the threshold function th(x) is chosen. For now, we focus on properly
defining the p-value functional itself, the associated process, and the assumptions we
make on them.

Formally, we define the p-value functional as a mapping p : X → [0, 1]H, or equiva-
lently as a collection of functions p = (ph(x))h∈H, each of the functions ph : X → [0, 1],

imsart-bj ver. 2007/09/18 file: BDR_arXiv_version2.tex date: September 4, 2012



8

h ∈ H, being considered as a scalar statistic that can be computed from the observed
data x ∈ X .

We will consider correspondingly the random p-values ω ∈ Ω 7→ ph(X(ω)), and p-value
process ω ∈ Ω 7→ p(X(ω)). With some notation overload, we will sometimes drop the
dependence on X and use the notation ph and p to also denote the random variables
ph(X) and p(X) (the meaning – function of x, or random variable on Ω – should be clear
from the context).

We shall make the following assumptions on the p-value process:

• Joint measurability over Ω × H: we assume that the random process (ph(X))h∈H
is a measurable process, that is:

(ω, h) ∈
(
Ω×H,F⊗ H

)
7→ ph(X(ω)) ∈ [0, 1] is (jointly) measurable. (A2)

• For any P ∈ P, the marginal distributions of the p-values corresponding to true
nulls are stochastically lower bounded by a uniform random variable on [0, 1]:

∀h ∈ H0(P ), ∀u ∈ [0, 1], PX∼P (ph(X) ≤ u) ≤ u. (A3)

(The distribution of ph if h lies in H1(P ) can be arbitrary).

Condition (A2) is specific to the continuous setting considered here and will be dis-
cussed in more detail in the next section. Condition (A3) is the standard characterization
of a single p-value statistic in classical (single or multiple) hypothesis testing. In general,
an arbitrary scalar statistic used to take the rejection decision on hypothesis Hh can be
monotonically normalized into a p-value as follows: assume Sh(x) is a scalar test statistic,
then

ph(x) = sup
P∈Hh

Fh,P (Sh(x))

is a p-value in the sense of (A3), where Fh,P (t) = PX∼P (Sh(X) ≥ t) (and where the
supremum is assumed to maintain the measurability in x, for any fixed h). If the scalar
statistic Sh(x) is constructed so that it tends to be stochastically larger when hypothesis
Hh is false, the corresponding p-value indeed has the desirable property that it is more
concentrated towards 0 in this case. Such test statistics abound in the (single) testing
literature, and a few examples will be given below.

2.3. Discussion on measurability assumptions

Since the focus of the present work is to be able to deal with uncountable spaces of
hypotheses H, we have to be somewhat careful with corresponding measurability as-
sumptions over H (a problem that does not arise when H is finite or countable). The
main assumption needed in this regard in order to state properly the results to come is
the joint measurability assumption appearing in either Definition 2.1 (for the multiple
testing procedure) or in (A2) (for the p-value process), both of which are specific to
the uncountable setting. Essentially, joint measurability will be necessary in order to use
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Fubini’s theorem on the space
(
Ω×H,F⊗H

)
, and have the expectation operator w.r.t.

ω and the integral operator over H commute.
If H has at most countable cardinality, and is endowed with the trivial σ-field compris-

ing all subsets of H, then (A2) is automatically satisfied whenever all individual p-value
functions ph : X → [0, 1], h ∈ H, are separately measurable, which is the standard setting
in multiple testing.

If H is uncountable, a sufficient condition ensuring (A2) is the joint measurability of
the p-value functional,

(x, h) ∈
(
X ×H,X⊗ H

)
7→ ph(x) ∈ [0, 1] is (jointly) measurable, (A2’)

which implies (A2) by composition. Unfortunately, (A2’) might not always hold. To see
this, consider the following canonical example. Assume the observation takes the form
of a stochastic process indexed by the hypothesis space itself, X = {Xh, h ∈ H}. In
this case, the observation space X is included in RH. Furthermore, assume the p-value
function ph(x) is given by a fixed measurable mapping ψ of the value of x at point
h, i.e. ph(x) = ψ(xh), ∀h ∈ H. In this case assumption (A2’) boils down to the joint
measurability of the evaluation mapping (x, h) ∈ X × H 7→ xh. Whether this holds
depends on the nature of the space X . We give some classical examples in the next
section where the assumption holds; for example, it is true if X is the Wiener space.

However, the joint measurability of the evaluation mapping does not hold if X is
taken to be the product space RH endowed with the canonical product σ-field (indeed,
this would imply that any x ∈ RH, i.e., any function from H into R, is measurable).
The more general assumption (A2) may still hold, though, but it generally requires
some additional regularity or structural assumptions on the paths of the process X. In
particular, in the above example if X = {Xh, h ∈ H} is a stochastic process having a
(jointly) measurable modification (and more generally for other examples, if there exists
a modification of X such that (A2) is satisfied), we will always assume that we observe
such a modification, so that assumption (A2) holds.

We have gathered in Section S-1 of the supplementary material Blanchard et al. (2011)
some auxiliary (mostly classical) results related to the existence and properties of such
modifications. Lemma S-1.2 shows that such a (jointly) measurable modification exists
as soon as the process is continuous in probability. The latter is not an iff condition, but
is certainly much weaker than having continuous paths.

On the other hand, it is important to observe here that a jointly measurable modifi-
cation of X, or, for that matter, of the p value process, might not exist. Lemma S-1.1
reproduces a classical argument showing that for H = [0, 1], assumption (A2) is vio-
lated for any modification of a mutually independent p-value process. Therefore, for an
uncountable space of hypotheses H, assumption (A2) precludes the possibility that the
p-values {ph, h ∈ H} are mutually independent. This contrasts strongly with the situa-
tion of a finite hypothesis set H, where mutual independence of the p-values is generally
considered the reference case.

A final issue is to which extent the results exposed in the remainder of this work
depend on the (jointly) measurable modification chosen for the underlying stochastic
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process. Lemma S-1.4 elucidates this issue by showing that this is not the case, because
the FDR (the main measure of type I error, which will be formally defined in Section 3.1
) is identical for two such modifications.

2.4. Examples

To illustrate the above generic setting, let us consider the following examples.

Example 2.2 (Testing the mean of a process). Assume that we observe the realization
of a real-valued process X = (Xt)t∈[0,1]d with an unknown (measurable) mean function

µ : t ∈ [0, 1]d 7→ µ(t) := EXt. We take H = [0, 1]d and want to test simultaneously
for each t ∈ [0, 1]d the null hypothesis Ht : “µ(t) ≤ 0”. Assume that for each t the
marginal distribution of (Xt − µ(t)) is known, does not depend on t and has upper-tail
function G (for instance, X is a Gaussian process with marginals Xt ∼ N (µ(t), 1)). We
correspondingly define the p-value process ∀t ∈ [0, 1]d, pt(X) = G(Xt), which satisfies
(A3). Next, the measurability assumption (A2) follows from a regularity assumption on
X:

• if we assume that the process X has continuous paths, X : ω 7→ (Xt(ω))t can be
seen as taking values in the Wiener space X = C[0,1]d = C([0, 1]d,R) of continuous

functions from [0, 1]d to R. (In this case, the Borel σ-field corresponding to the
supremum norm topology on C[0,1]d is the trace of the product σ-field on C[0,1]d ,
and X is measurable iff all its coordinate projections are.) Furthermore, the p-value
function can be written as

(x, t) ∈ C[0,1]d × [0, 1]d 7→ pt(x) = G(x(t)) ∈ [0, 1].

The evaluation functional (x, t) ∈ C[0,1]d × [0, 1]d 7→ x(t) is jointly measurable
because it is continuous, thus pt(x) is jointly measurable by composition and (A2’)
holds, hence also (A2).

• if d = 1 and the process X is càdlàg , the random variable X can be seen as taking
values in the Skorohod space X = D := D([0, 1],R) of càdlàg functions from [0, 1]
to R. In this case, the Borel σ-field generated by the Skorohod topology is also
the trace of the product σ-field on D (see, e.g., Theorem 14.5 p.121 of Billingsley,
1999). Moreover, the evaluation functional (x, t) 7→ x(t) is jointly measurable, as
for any càdlàg funtion x, it is the pointwise limit of the jointly measurable functions

ζn: (x, t) 7→ ζn(x, t) :=
∑2n

k=1 x(k2−n)1{(k − 1)2−n ≤ t < k2−n} + x(1)1{t = 1} ,
therefore (A2’) is fulfilled by composition, hence also (A2).

• assume that X is a Gaussian process defined on the space X = R[0,1]d endowed with
the canonical product σ-field, and with a covariance function Σ(t, t′) such that Σ
is continuous on all points (t, t) of the diagonal and takes a contant (known) value
σ2 on those points.
This assumption is not sufficient to ensure that X has a continuous version, but
it ensures that (Xt) is continuous in L2 and hence in probability; Lemma S-1.2
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then states that X has a modification such that the evaluation functional is jointly
measurable. Assuming that such a jointly measurable modification is observed, we
deduce that (A2) holds for the associated p-value process.

Example 2.3 (Testing the signal in a Gaussian white noise model). Let us consider
the Gaussian white noise model dZt = f(t)dt + σdBt, t ∈ [0, 1], where B is a Wiener
process on [0, 1] and f ∈ C([0, 1]) is a continuous signal function. For simplicity, the
standard deviation σ is assumed to be equal to 1. Equivalently, we assume that we can
observe the stochastic integral of Zt against any test function in L2([0, 1]), that is, that
we observe the Gaussian process (Xg)g∈L2([0,1]) defined by

Xg :=

∫ 1

0

g(t)f(t)dt+

∫ 1

0

g(t)dBt, g ∈ L2([0, 1]).

Formally, the observation space is the whole space X = RL2([0,1]), endowed with the
product σ-field. However, in the sequel, we will use the observation of the process X only
against a “small” subspace of functions of L2([0, 1]).

Let us consider H = [0, 1] and the problem of testing for each t ∈ H, the null Ht :
“f(t) ≤ 0” (signal nonpositive). We can build p-values based upon a kernel estimator in
the following way. Consider a kernel function K ∈ L2(R), assumed positive on [−1, 1] and
zero elsewhere, and denote by Kt ∈ L2([0, 1]) the function Kt(s) := K((t− s)/η), where

0 < η ≤ 1 is a bandwidth to be chosen. Let us consider the process X̃t := XKt
, t ∈ [0, 1].

From Lemma S-1.3, X̃ has a modification which is jointly measurable in (ω, t). Clearly,

this implies that there exists a modification of the original process X such that X̃ is
jointly measurable in (ω, t), and we assume that we observe such a modification. For any

t ∈ [0, 1], letting cK,t :=
∫ 1

0
K((t−s)/η)ds > 0 and vK,t :=

∫ 1

0
K2((t−s)/η)ds ≥ c2K,t > 0,

we can consider the following standard estimate of f(t):

f̂η(t) := c−1
K,tXKt

= c−1
K,t

∫ 1

0

K

(
t− s
η

)
f(s)ds+ c−1

K,t

∫ 1

0

K

(
t− s
η

)
dBs. (2)

Assume that there is a known δt,η > 0 such that for any t with f(t) ≤ 0, we have the
upper-bound

Ef̂η(t) = c−1
K,t

∫ 1

0

K

(
t− s
η

)
f(s)ds ≤ δt,η. (3)

For instance, this holds if we can assume a priori knowledge on the regularity of f , of
the form sups:|s−t|≤η |f(s)− f(t)| ≤ δt,η. Then, the statistics (f̂η(t))t can be transformed
into a p-value process in the following way:

pt(X) = Φ

(
f̂η(t)− δt,η
v

1/2
K,t/cK,t

)
, (4)
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where Φ(w) := P(W ≥ w), W ∼ N (0, 1), is the upper tail distribution of a standard
Gaussian distribution. The p-value process (4) satisfies (A3), because for any t with
f(t) ≤ 0 and any u ∈ [0, 1],

P(pt(X) ≤ u) = P(f̂η(t)− δt,η ≥ v1/2
K,t/cK,tΦ

−1
(u))

≤ P(cK,t(f̂η(t)− Ef̂η(t))/v
1/2
K,t ≥ Φ

−1
(u))

= u,

because
∫ 1

0
Kt(s)dBs ∼ N (0, vK,t). Moreover, the p-value process (4) satisfies (A2), since

we assumed (XKt)t ∈ [0, 1] to be jointly measurable in (ω, t).

Example 2.4 (Testing the c.d.f.). Let X = (X1, . . . , Xm) ∈ X = Rm be a m-uple of
i.i.d. real random variables of common continuous c.d.f. F . For H = I an interval of R
and a given benchmark c.d.f. F0, we aim to test simultaneously for all t ∈ I the null Ht :
”F (t) ≤ F0(t)”. The individual hypothesis Ht may be tested using the p-value

pt(X) = Gt(mFm(X, t)), (5)

where Fm(X, t) = m−1
∑m
i=1 1{Xi ≤ t} is the empirical c.d.f. of X1, . . . , Xm and where

Gt(k) = P [Zt ≥ k], Zt ∼ B(m,F0(t)), is the upper-tail function of a binomial distribution
of parameter (m,F0(t)). The conditions (A2) and (A3) are both clearly satisfied.

Figure 1 provides a realization of the p-value process (5) when testing for all t ∈ [0, 1]
the null Ht : “F (t) ≤ t” when F comes from a mixture of beta distributions. The
correct/erroneous rejections are also pictured for the simple procedure R(X) = {t ∈
[0, 1] : pt(X) ≤ 0.4}.

Example 2.5 (Testing the intensity of a Poisson process). Assume we observe (Nt)t∈[0,1] ∈
X = D([0, 1],R) a Poisson process with intensity λ : [0, 1] → R+ ∈ L1(dΛ), where
Λ denotes the Lebesgue measure on [0, 1]. For each t ∈ [0, 1], we aim to test Ht :
“λ(t) ≤ λ0(t)” where λ0(·) > 0 is a given benchmark intensity. Assume that for a

given bandwidth η ∈ (0, 1], there is a known upper bound δt,η for
∫ (t+η)∧1

(t−η)∨0
λ(s)ds

that holds true for any t such that λ(t) ≤ λ0(t). For instance, we can choose δt,η =
((t+ η) ∧ 1− (t− η) ∨ 0)(λ0(t) + sups:|t−s|≤η |λ(t)− λ(s)|) (assuming knowledge on the
regularity of λ is available a priori). For any t ∈ [0, 1], the variable N(t+η)∧1 −N(t−η)∨0

follows a Poisson variable of parameter
∫ (t+η)∧1

(t−η)∨0
λ(s)ds. Since the latter parameter is

smaller than δt,η as soon as λ(t) ≤ λ0(t), the following p-value process satisfies (A3):

pt(X) = Gt
(
N(t+η)∧1 −N(t−η)∨0

)
, (6)

where for any k ∈ N, Gt(k) denotes P [Z ≥ k] for Z a Poisson distribution of parameter
δt,η. Moreover, the p-value process fulfills condition (A2’), because (Nt) is a càdlàg
process, so that arguments similar to those of Example 2.2 apply. Thus (A2) also holds.
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Figure 1. Plot of a realization of the p-value process as defined in (5) for the c.d.f. testing, together
with F0 and F , for F0(t) = t and F (t) = 0.5F1(t) + 0.5F2(t), where F1 (resp. F2) is the c.d.f. of a beta
distribution of parameter (0.5, 1.5) (resp. (1.5, 0.5)). The region where the null hypothesis “F (t) ≤ F0(t)”
is true is depicted in grey color. The crosses correspond to the elements of {Xi, 1 ≤ i ≤ m}; m = 50.
The correct/erroneous rejections refer to the procedure R(X) = {t ∈ [0, 1] : pt(X) ≤ 0.4} using the
threshold 0.4.

3. Main concepts and tools

3.1. False discovery rate

Following the usual philosophy of hypothesis testing, one wants to ensure some control
over type I errors commited by the procedure. As discussed in Section 1.3, in the present
work we focus on a generalization to a continuum of hypotheses of the False Discovery
Rate (FDR). For a finite number of null hypotheses, the FDR, as introduced by Ben-
jamini and Hochberg (1995) (see also Seeger, 1968), is defined as the average proportion
of type I errors in the set of all rejected hypotheses. To extend this definition to a possibly
uncountable space, following Perone Pacifico et al. (2004, 2007), we quantify this propor-
tion by a volume ratio, defined with respect to a finite measure Λ on (H,H) (the usual
definition over a finite space is recovered by taking Λ equal to the counting measure).

Definition 3.1 (False discovery proportion, false discovery rate). Let Λ be a finite pos-
itive measure on (H,H). Let R be a multiple testing procedure on H . The false discovery
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rate (FDR) of R is defined as the average of the the false discovery proportion (FDP):

∀P ∈ P , ∀x ∈ X(Ω) , FDP(R(x), P ) :=
Λ
(
R(x) ∩H0(P )

)
Λ
(
R(x)

) 1{Λ
(
R(x)

)
> 0}, (7)

and
∀P ∈ P , FDR(R,P ) := EX∼P [FDP(R(X), P )] . (8)

The indicator function in (7) means that the ratio is taken equal to zero whenever
the denominator is zero. Observe that, due to the joint measurability assumption in
definition 2.1 of a multiple testing procedure, both of the above quantities are well-
defined (the FDP is only formally defined over the image of Ω through X since only
on this set is the measurability of R(x) guaranteed by the definition. In particular, it is
defined for P -almost all x ∈ X ).

As illustration, in the particular realization of the p-value process pictured in Figure 1,
if we denote by “Red” (resp. “Green”) the length of the interval corresponding to the
projection of the red (resp. green) part of the p-value process on the X-axis, the FDP
of the procedure R(X) = {t ∈ [0, 1] : pt(X) ≤ 0.4} is Red/(Red + Green). A similar
interpretation for the FDP holds in Figure 2.

Finding a procedure R with a FDR smaller than or equal to α has the following
interpretation: on average, the volume proportion of type I errors among the rejected
hypotheses is smaller than α. This means that the procedure is allowed to reject in error
some true nulls but in a small (average) proportion among the rejections. For a pre-
specified level α, the goal is then to determine multiple testing procedures R such that
for any P ∈ P, it holds that FDR(R,P ) ≤ α. (In fact, the statement need only hold for
P ∈ P ∩

⋃
h∈HHh, since outside of this set H0(P ) = ∅ and the FDR is 0.) The rest of

the paper will concentrate on establishing sufficient conditions under which the FDR is
controlled at a fixed level α. Under this constraint, in order to get a procedure with good
power properties (that is, low type II error), it is, generally speaking, desirable that R
rejects as many nulls as possible, that is, has volume Λ(R) as large as possible.

3.2. Step-up procedures

In what follows, we will focus on a particular form of multiple testing procedures which
can be written as function of the p-value family p(x) = (ph(x))h∈H.

First, we define a parametrized family of possible rejection sets having the following
form: for a given threshold function ∆ : (h, r) ∈ H × R+ 7→ R+, we define for any r ≥ 0
the sub-level set

∀x ∈ X , L∆(x, r) := {h ∈ H : ph(x) ≤ ∆(h, r)} ⊂ H. (9)

For short, we sometimes write L∆(r) instead of L∆(x, r) when unambiguous. We will more
particularly focus on threshold functions ∆ of the product form ∆(h, r) = απ(h)β(r),
where α ∈ (0, 1) is a positive scalar (level), π : H → R+ is measurable (weight function),
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and β : R+ → R+ is nondecreasing and right-continuous (shape function). Clearly this
decomposition is not unique, but will be practical for the formulation of the main result.

Given a threshold function ∆ of the above form, we will be interested in a particular,
data-dependent choice of the parameter r determining the rejection set, called step-up
procedure.

Definition 3.2 (Step-up procedure). Let ∆(h, r) = απ(h)β(r) a threshold function
with α ∈ (0, 1); π : H → R+ measurable and β : R+ → R+ nondecreasing and right-
continuous. Then the step-up multiple testing procedure R on (H,Λ) associated to ∆ , is
defined by

∀x ∈ X(Ω) , R(x) = L∆(x, r̂(x)) , where r̂(x) := max{r ≥ 0 : Λ(L∆(x, r)) ≥ r} . (10)

Note that r̂ above is well-defined: first, since x ∈ X(Ω) and from assumption (A2),
the function h 7→ ph(x) − απ(h)β(r) is measurable; thus L∆(x, r) is a measurable set
of H, which in turn implies that Λ(L∆(x, r)) is well-defined. Secondly, the supremum of
{r ≥ 0 : Λ(L∆(x, r)) ≥ r} exists because r = 0 belongs to this set and M = Λ(H) is an
upper bound. Third, this supremum is a maximum because the function r 7→ Λ(L∆(x, r))
is nondecreasing (right-continuity is not needed for this).

We should ensure in Definition 3.2 that a step-up procedure satisfies the measurability
requirements of Definition 2.1. This is proved separately in Section 5.2. In that section,
we also check that the equality Λ(L∆(x, r̂(x))) = r̂(x) always holds. Hence, r̂(x) is the
largest intersection point between the function r 7→ Λ(L∆(x, r)) giving the volume of the
candidate rejection sets as a function of r, and the identity line r 7→ r.

To give some basic intuition behind the principle of a step-up procedure, consider for
simplicity that π is a constant function, so that the family defined by (9) are ordinary sub-
level sets of the p-value family. The goal is to find a suitable common rejection threshold t
giving rise to rejection set Rt. Assume also without loss of generality that Λ(H) = 1. Now
consider the following heuristic. If the threshold t is deterministic, any p-value associated
to a true null hypothesis, being stochastically lower bounded by a uniform variable, has
probability less than t of being rejected in error. Thus, we expect on average a volume
tΛ(H0) ≤ t of erroneously rejected null hypotheses. If we therefore use t as a rough upper
bound of the numerator in the definition (7) of the FDP or FDR, and we want the latter
to be less than α, we obtain the constraint t/Λ(Rt) ≤ α, or equivalently Λ(Rt) ≥ α−1t.
Choosing the largest t satisfying this heuristic constraint is equivalent to the step-up
procedure wherein β(u) = u. The choice of a different shape function with β(u) ≤ u can
be interpreted roughly as a pessimistic discount to compensate for various inaccuracies
in the above heuristic argument (in particular the fact that the obtained threshold is
really a random quantity).

In the case where H is finite and Λ is the counting measure, it can be seen that the
above definition recovers the usual notion of step-up procedures (see, e.g., Blanchard
and Roquain, 2008); in particular, the linear shape function β(u) = u gives rise to the
celebrated linear step-up procedure of Benjamini and Hochberg (1995).
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3.3. PRDS conditions

To ensure control of the FDR criterion, an important role is played by structural as-
sumptions on the dependence of the p-values. While the case of independent p-values is
considered as the reference setting in the case where H is finite, we recall that for an un-
countable set H, we cannot assume mutual independence of the p-values since this would
contradict our measurability assumptions (see concluding discussion of Section 2.3).

We will consider two different situations in our main result: first, if the dependence
of the p-values can be totally arbitrary, and secondly, if a form of positive dependence is
assumed. This is the latter condition which we define more precisely now. We consider
a generalization to the case of infinite, possibly uncountable space H, of the notion
of positive regression dependence on each one from a subset (PRDS) introduced by
Benjamini and Yekutieli (2001) in the case of a finite set of hypotheses.

For any finite set I, a subset D ⊂ [0, 1]I is called nondecreasing if for all z, z′ ∈ [0, 1]I

such that z ≤ z′ (i.e. ∀h ∈ I, zh ≤ z′h), we have z ∈ D ⇒ z′ ∈ D .

Definition 3.3. (PRDS conditions for a finite p-value family) Assume H to be finite.
For H′ a subset of H , the p-value family p(X) = (ph(X))h∈H is said to be weak PRDS
on H′ for the distribution P , if for any h ∈ H′, for any measurable nondecreasing set
D in [0, 1]H , the function u ∈ [0, 1] 7→ P(p(X) ∈ D | ph(X) ≤ u) is nondecreasing
on {u ∈ [0, 1] : P(ph(X) ≤ u) > 0} ; it is said to be strong PRDS if the function
u 7→ P(p(X) ∈ D | ph(X) = u) is nondecreasing.

To be completely rigorous, observe that the conditional probability with respect to the
event {ph(X) ≤ u} is defined pointwise unequivocally whenever this event has positive
probability, using a ratio of probabilities; while the conditional probability with respect
to ph(X) = u can only be defined via conditional expectation, and is therefore only
defined up to a ph(X)-negligible set. Hence, in the definition of strong PRDS, strictly
speaking, we only require that the conditional probability coincides ph(X)-a.s. with a
nondecreasing function.

Definition 3.4. (Finite dimensional PRDS conditions for a p-value process) For H′
a subset of H , the p-value process p(X) = (ph(X))h∈H is said to be finite dimensional
weak PRDS on H′ (resp. finite dimensional strong PRDS on H′) for the distribution P ,
if for any finite subset S of H, the finite p-value family pS(X) = (ph(X))h∈H∩S is weak
PRDS on H′ ∩ S (resp. strong PRDS on H′ ∩ S) for the distribution P .

While the finite dimensional weak PRDS property will be sufficient to state our main
result, the strong PRDS property is sometimes easier to handle. Hence, it is important
to note that the finite dimensional strong PRDS property implies the finite dimensional
weak PRDS property, as we establish in Lemma S-2.2, by using a standard argument
pertaining to classical multiple testing theory for a finite set of hypotheses.

Finally, Benjamini and Yekutieli (2001) (Section 3.1 therein) proved that the p-value
family corresponding to a finite Gaussian random vector are (finite) strong PRDS as
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soon as all the coefficient of the covariance matrix are non-negative. This equivalently
proves the following result:

Lemma 3.5. Let p(X) = (ph(X))h∈H be a p-value process of the form ph(X) = G(Xh),
h ∈ H, where X = (Xh)h∈H is a Gaussian process and where G is continuous decreasing
from R to [0, 1]. Assume that the covariance function Σ of X satisfies

∀h, h′ ∈ H, Σ(h, h′) ≥ 0. (11)

Then the p-value process is finite dimensional strong PRDS (on any subset).

4. Control of the FDR

In this section, our main result is stated and then illustrated with several examples.

4.1. Main result

The following theorem establishes our main result on sufficient conditions to ensure FDR
control at a specified level for step-up procedures. It is proved in Section 5.

Theorem 4.1. Assume that the hypothesis space H satisfies (A1) and is endowed with
a finite measure Λ. Let p(X) = (ph(X))h∈H be a p-value process satisfying the conditions
(A2) and (A3). Denote R the step-up procedure on (H,Λ) associated to a threshold
function of the product form ∆(h, r) = απ(h)β(r), with α ∈ (0, 1), β a non-decreasing
right-continuous shape function and π a probability density function on H with respect
to Λ. Then for any P ∈ P, letting Π(H0(P )) :=

∫
h∈H0(P )

π(h)dΛ(h), the inequality

FDR(R,P ) ≤ α Π(H0(P )) (≤ α) (12)

holds in either of the two following cases:

1. β(x) = x and the p-value process p is finite dimensional weak PRDS on H0(P ) for
the distribution P ;

2. the function β is of the form

βν(x) =

∫ x

0

udν(u) , (13)

where ν is an arbitrary probability distribution on (0,∞) .

Since π is taken as a probability density function on H with respect to Λ, the FDR
in (12) is upper bounded by αΠ(H0) ≤ αΠ(H) = α, so that the corresponding step-up
procedure provides FDR control at level α. As an illustration, a typical choice for π is
the constant probability density function ∀h ∈ H, π(h) = 1/Λ(H) = M−1.
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According to the standard philosophy of (multiple) testing, while the FDR is con-
trolled at level α as in (12), we aim to have a procedure that rejects a volume of hy-
potheses as large as possible. In that sense, choosing a step-up procedure with β(x) = x
always leads to a better step-up procedure than choosing β(x) of the form (13), because∫ x

0
udν(u) ≤ x. Hence, in Theorem 4.1, the PRDS assumption allows us to get a result

which is less conservative (i.e. rejecting more) than under arbitrary dependencies. There-
fore, when we want to apply Theorem 4.1, an important issue is to obtain, if possible,
the finite dimensional PRDS condition, see the examples of Section 4.2. When the PRDS
assumption does not hold, we refer to Blanchard and Roquain (2008) for an extended
discussion on choices of the shape function β of the form (13) (which can be suitably
adapted to the uncountable case).

4.2. Applications

4.2.1. FDR control for testing the mean of a Gaussian process

Consider the multiple testing setting of Example 2.2. More specifically, we consider here
the particular case where we observe {Xt, t ∈ [0, 1]d} a Gaussian process with measurable
mean µ, with unit variance and covariance function Σ. Recall that the problem is to test
for all t ∈ [0, 1]d the hypothesis Ht : “µ(t) ≤ 0”. Taking for Λ the d-dimensional Lebesgue
measure, the FDR control at level α of a step-up procedure of shape function β and weight
function π(h) = 1 can be rewritten as

E

Λ

({
t ∈ [0, 1]d : µ(t) ≤ 0, Φ(Xt) ≤ αβ(r̂(X))

})
Λ

({
t ∈ [0, 1]d : Φ(Xt) ≤ αβ(r̂(X))

})
 ≤ α , (14)

where Φ is the upper-tail distribution function of a standard Gaussian variable and

r̂(X) = max

{
r ∈ [0, 1] : Λ

({
t ∈ [0, 1]d : Φ(Xt) ≤ αβ(r)

})
≥ r
}
.

Thus, Theorem 4.1 and Lemma 3.5 entail the following result.

Corollary 4.2. For any jointly measurable Gaussian process {Xt}t∈[0,1]d over [0, 1]d

with a measurable mean µ and unit variances, the FDR control (14) holds in either of
the two following cases:

• β(x) = x and the covariance function of the process is coordinates-wise non-
negative, that is, satisfies (11);

• β is of the form (13), under no assumption on the covariance function.

For instance, any Gaussian process with continuous paths is measurable and thus can
be used in Corollary 4.2. More generally, Lemma S-1.2 states that any Gaussian process
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with a covariance function Σ(t, t′) such that

∀t ∈ [0, 1]d, lim
t′→t

Σ(t′, t) = Σ(t, t) and lim
t′→t

Σ(t′, t′) = Σ(t, t) = 1

has a measurable modification and hence can be used in Corollary 4.2.

4.2.2. FDR control for testing the signal in a Gaussian white noise model

We continue Example 2.3, in which we observe the Gaussian process X defined by

Xg =
∫ 1

0
g(t)f(t)dt +

∫ 1

0
g(t)dBt, g ∈ L2([0, 1]), where B is a Wiener process on [0, 1]

and f ∈ C([0, 1]) is a continuous signal function. Remember that we aim at testing Ht :
“f(t) ≤ 0” for any t ∈ [0, 1], using the integration of the process against a smooth-
ing kernel Kt. Assuming condition (3) holds, the p-value process is obtained via (4) as

pt(X) = Φ
−1

(Yt), where Yt = v
−1/2
K,t (XKt

− δt,ηcK,t) is a Gaussian process. Applying
Lemma 3.5, we can prove that the p-value process defined by (4) is finite dimensional
strong PRDS (on any subset) by checking that the covariance function of (Yt)t has non-
negative values: the latter holds because the kernel K has been taken nonnegative and

∀t, s, Cov(Yt, Ys) = c
∫ 1

0
K((t− u)/η)K((s− u)/η)du, for a nonnegative constant c. As a

consequence, Theorem 4.1 shows that a step-up procedure using β(x) = x controls the
FDR.

To illustrate this result, let us consider a simple particular case where the kernel K is
rectangular, i.e., K(s) = 1{|s| ≤ 1}/2 and f is L-Lipschitz. Also, to avoid the boundary
effects due to the kernel smoothing, we assume that the observation X is made against
functions of L2([−1, 2]) while the test of Ht : “f(t) ≤ 0” has only to be performed for
t ∈ [0, 1] only. In that case, for t ∈ [0, 1], δt,η = Lη, cK,t = η, vK,t = η/2, so that
Yt = (2η)−1/2(Zt+η − Zt−η − Lη2). Therefore, the following statement holds.

Corollary 4.3. Let us consider the Gaussian process Zt =
∫ t
−1
f(s)ds+Bt, t ∈ [−1, 2],

where B is a Wiener process on [−1, 2] and f is a L-Lipschitz function on [−1, 2] (L > 0).
Let η ∈ (0, 1] and Yt = (2η)−1/2(Zt+η − Zt−η − Lη2). Denote the Lebesgue measure on
[0, 1] by Λ. Consider the volume rejection of the step-up procedure using π(t) = 1 and
β(x) = x, that is,

r̂(X) = max

{
r ∈ [0, 1] : Λ

({
t ∈ [0, 1] : Φ(Yt) ≤ αr

})
≥ r
}
,

where Φ denotes the upper-tail distribution function of a standard Gaussian variable.
Then the following FDR control holds:

E

Λ

({
t ∈ [0, 1] : f(t) ≤ 0, Φ(Yt) ≤ αr̂(X)

})
Λ

({
t ∈ [0, 1] : Φ(Yt) ≤ αr̂(X)

})
 ≤ α . (15)
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4.2.3. FDR control for testing the c.d.f.

Consider the testing setting of Example 2.4 where we aim at testing whether “F (t) ≤
F0(t)” for any t in an interval I ⊂ R. Lemma A.1 states that the p-value process defined
by (5) is finite dimensional weak PRDS (on any subset). As a consequence, Theorem 4.1
applies and leads to a control of the FDR.

For instance, let us consider the simple case where I = [0, 1], F0(t) = t and Λ is the
Lebesgue measure on [0, 1]. In this case, for any k ∈ {1, . . . ,m}, the function Gt(k) =
P(Zt ≥ k), with Zt ∼ B(m, t), is continuous increasing in the variable t ∈ [0, 1]. Moreover,
for any t ∈ (0, 1), the function Gt(k) is decreasing in k = 0, . . . ,m. Therefore, denoting
0 = X(0) ≤ X(1) ≤ . . . ≤ X(m) ≤ X(m+1) = 1 the order statistics of X1, . . . , Xm, the
p-value process t 7→ pt(X) = Gt(|{1 ≤ i ≤ m : Xi ≤ t}|) is equal to 1 on [0, X(1)),
is increasing on each interval (X(j), X(j+1)], j = 1, . . . ,m, and is left-discontinuous and
right-continuous in each X(j), 1 ≤ j ≤ m, with a left limit larger than pX(j)

(X) =
GX(j)

(j) (see Figure 1).
As a consequence, for any threshold u ∈ (0, 1), we obtain the following relation for the

Lebesgue measure γ(u) of the level set {t ∈ [0, 1] : pt(X) ≤ u}:

γ(u) =

m∑
j=0

1{GX(j)
(j) ≤ u} Λ

(
{t ≥ X(j) : Gt(j) ≤ u and t < X(j+1)}

)
=

m∑
j=0

(X(j+1) ∧ tj(u)−X(j))+ (16)

where tj(u), j = 0, . . . ,m is the unique solution of the equation Gt(j) = u, which can be
easily computed numerically. Choosing for simplicity a uniform weighting π(x) ≡ 1, the
choice of the rejection threshold given by the linear step-up procedure is then û = αr̂,
where r̂ is the largest solution of the equation γ(αr) = r. To sum up, we have shown the
following result:

Corollary 4.4. Let X = (X1, . . . , Xm) be a vector of m i.i.d. real random variables
of common continuous c.d.f. F . Consider (pt(X))t∈[0,1] the p-value process pt(X) =
Gt(|{1 ≤ i ≤ m : Xi ≤ t}|) for Gt(k) = P(Zt ≥ k), where Zt is a binomial variable of
parameters (m, t). Assume that the hypothesis space [0, 1] is endowed with the Lebesgue
measure Λ. Consider the volume rejection of the step-up procedure given by

r̂(X) = max {r ∈ [0, 1] : γ(αr) ≥ r} , (17)

where γ(·) is defined by (16). Then the following FDR control holds:

E

[
Λ
(
{t ∈ [0, 1] : F (t) ≤ t, pt(X) ≤ αr̂(X)}

)
Λ
(
{t ∈ [0, 1] : pt(X) ≤ αr̂(X)}

) ]
≤ α. (18)
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4.2.4. FDR control for testing the intensity of a Poisson process

Let us consider the testing setting of Example 2.5. Lemma A.2 states that the p-values
process is finite dimensional strong PRDS (on any subset). Thus, it is also finite dimen-
sional weak PRDS (on any subset) by Lemma S-2.2, and Theorem 4.1 leads to a control
of the FDR.

Now, we aim at finding a closed formula for the linear step-up procedure (β(x) =
x) using the p-value process (pt(X))t. Let us consider the particular case where the
benchmark intensity λ0(·) is constantly equal to some λ0 > 0 while λ(·) is L-Lipschitz.
Also, to avoid the boundary effects, assume that the process (Nt)t is observed for t ∈
[−1, 2] while Ht: “λ(t) ≤ λ0” is tested only for t ∈ [0, 1]. In this case, the p-value process
is simply given by

pt(X) = G
(
Nt+η −Nt−η

)
, (19)

where for any k ∈ N, G(k) denotes P [Z ≥ k] for Z a Poisson distribution of parameter
2ηλ0 +Lη2 (note that G(·) is independent of t). Consider the jumps {Tj}j of the process
(Nt)t∈[−1,2] and the set S = {si}2≤i≤m of the the distinct and ordered values of the set
∪j{Tj−η, Tj +η}∩ (0, 1). Moreover, we let s1 = 0 and sm+1 = 1. Next, since the p-value
process is constant on each interval [si, si+1), 1 ≤ i ≤ m, we have for any u ≥ 0,

Λ ({t ∈ [0, 1] : pt(X) ≤ u}) =

m∑
i=1

(si+1 − si)1{psi(X) ≤ u}

=

m∑
k=1

wk1{qσ(k)(X) ≤ u},

where we let qi(X) = psi(X), where σ is a permutation of {1, . . . ,m} such that qσ(1) ≤
. . . ≤ qσ(m) and where wk = sσ(k)+1 − sσ(k) > 0 can be interpreted as a “weighting”
associated to qσ(k). As a consequence, we get

r̂(X) = max

{
r ∈ [0, 1] :

m∑
l=0

wl1{qσ(l)(X) ≤ αr} ≥ r

}

= max

{
k∑
l=0

wl, for k ∈ {0, . . . ,m} s.t. qσ(k)(X) ≤ α
k∑
l=0

wl

}
, (20)

because since r̂(X) is a maximum, it is of the form
∑k
l=0 wl, k ∈ {0, . . . ,m}. Note that

we should let qσ(0) = 0 and w0 = 0 to cover the case r̂(X) = 0. Relation (20) only
involves a finite number of variables. Thus, r̂(X) can be easily computed in practice.
This is illustrated in Figure 2.

We have proved the following result:

Corollary 4.5. Let X = (Nt)t∈[−1,2] be a Poisson process with an intensity λ : [−1, 2]→
R+ L-Lipschitz (L > 0) and let λ0 > 0. For η ∈ (0, 1], consider the p-value process
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{pt(X)}t∈[0,1] given by (19). Assume that the hypothesis space [0, 1] is endowed with the
Lebesgue measure Λ. Then r̂(X) defined by (20) satisfies the following:

E

[
Λ
(
{t ∈ [0, 1] : λ(t) ≤ λ0, pt(X) ≤ α r̂(X)}

)
Λ
(
{t ∈ [0, 1] : pt(X) ≤ α r̂(X)}

) ]
≤ α. (21)

To illustrate Corollary 4.5, Figure 2 displays the case where λ(t) is a truncated trian-
gular signal. The choice of the bandwidth η has been made manually, see Section 6.2 for
a discussion on this point.

Remark 4.6. Up to increase the set S = {si}i so that t 7→ 1{λ(t) ≤ λ0} is constant
over each [si, si+1), the FDR control (21) can be rewritten as

E
[∑m

i=1(si+1 − si)1{λ(si) ≤ λ0}1{psi(X) ≤ α r̂(X)}∑m
i=1(si+1 − si)1{psi(X) ≤ α r̂(X)}

]
≤ α. (22)

Hence, the procedure (20) appears as controlling the discrete FDR-weighting on {1, . . . ,m}
where the weight for rejecting “λ(si) ≤ λ0” is (si+1 − si) and where the initial p-values
are qi(X) = psi(X). The rationale behind this is that if qi(X) = psi(X) is below r̂(X),
then so are all pt(X), t ∈ [si, si+1). Hence a rejection for a p-value qi(X) = psi(X) ac-
counts for the length of the entire interval in the FDR. From an intuitive point of view,
this means that the type I error importance in the FDR is larger for “isolated” points of
the process.

Finally, let us underline that (discrete) weighted FDR control results of the type (22)
have been found in Benjamini and Hochberg (1997) and Blanchard and Roquain (2008),
but only for a weighting that does not dependent on the data. Here, since {si}i depends
on X, these former results do not apply and Corollary 4.5 is a novel finding.

5. Proof of Theorem 4.1

5.1. Two conditions for controlling the FDR

Similarly to Proposition 2.7 of Blanchard and Roquain (2008) (which we refer to as BR08
for short from now on), we can prove that the FDR control FDR(R,P ) ≤ αΠ(H0(P ))
holds true for any P ∈ P as soon as the two following sufficient conditions hold for any
P ∈ P:

• the multiple testing procedure R satisfies the “self-consistency condition”

R(x) ⊂ {h ∈ H : ph(x) ≤ απ(h)β(Λ(R(x)))} for P -almost all x ∈ X
(SC(α, π, β))

• for any h ∈ H0(P ) the couple of real random variables (Uh, V ) := (ph(X),Λ(R(X)))
satisfies the “dependence control condition”

∀c > 0, E
[
1{Uh ≤ cβ(V )}

V
1{V > 0}

]
≤ c . (DC(β))
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Figure 2. Several plots versus t ∈ [0, 1]. Top left: λ(t) (solid) and λ0 (dashed). Top right: qσ(k)(X)

and α
∑k
l=0 wl in function of

∑k
l=0 wl, for k = 1, . . . ,m. Bottom: p-value process pt(X) defined by (19).

η = 0.015, α = 0.4. The grey areas indicate regions where the null hypotheses are true.
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The proof is as follows: by definition and by using Fubini’s theorem, we have

FDR(R,P ) = E
[

Λ(R ∩H0)

Λ(R)
1{Λ(R) > 0}

]
= E

[∫
h∈H0

1{h ∈ R}
Λ(R)

1{Λ(R) > 0}dΛ(h)

]
=

∫
h∈H0

E
[
1{h ∈ R}

Λ(R)
1{Λ(R) > 0}

]
dΛ(h)

≤
∫
h∈H0

E
[
1{ph ≤ απ(h)β(Λ(R))}

Λ(R)
1{Λ(R) > 0}

]
dΛ(h)

≤ α
∫
h∈H0

π(h)dΛ(h),

where we have used the shortened notation R for R(X) and ph for ph(X), and used
successively conditions (SC(α, π, β)) and(DC(β)) for the two above inequalities. Ob-
serve that the use of Fubini’s theorem is granted by the measurability assumption of
Definition 2.1.

Therefore, to obtain the FDR bound of Theorem 4.1 in each case, we simply have to
check conditions (SC(α, π, β)) and (DC(β)) in the different settings.

5.2. Any step-up procedure satisfies (SC(α, π, β))

From the definition of a step-up procedure, for all ε > 0, we have Λ(L∆(r̂)) ≤ Λ(L∆(r̂+
ε)) < r̂ + ε. This entails that r̂ satisfies Λ(L∆(r̂)) = r̂. Hence the step-up procedure R
satisfies SC(α, π, β) with equality.

We now check that any step-up procedure is a multiple testing procedure, that is, that
(ω, h) 7→ 1{h ∈ R(X(ω))} = 1{ph(X(ω)) ≤ απ(h)β(r̂(X(ω)))} is (jointly) measurable.
From (A2) and since β and π are measurable, it is enough to check that ω 7→ r̂(X(ω))
is measurable. For any x ∈ X(Ω), let us consider the function

f : r ∈ R+ 7→ Λ(L∆(x, r)) =

∫
H
1{ph(x) ≤ απ(h)β(r)}dΛ(h).

We observe that f is right-continuous and nondecreasing (because β is) and bounded,
and that r̂ = max{r ≥ 0 : f(r) ≥ r} . Applying Lemma S-2.3, we deduce that for any
x ∈ X(Ω),

r̂(x) = inf
ε>0,ε∈Q

sup
{
r ∈ Q+ : Λ(L∆(x, r)) ≥ r − ε

}
= inf

ε>0,ε∈Q
sup
r∈Q+

(
r1{Λ(L∆(x, r)) ≥ r − ε}

)
. (23)

Since from (A2), for all ε > 0, ε ∈ Q and r ∈ Q+, the function

ω 7→r1{Λ(L∆(X(ω), r)) ≥ r − ε} = r1{Λ
(
{h ∈ H : ph(X(ω)) ≤ απ(h)β(r)}

)
≥ r − ε}
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is measurable, expression (23) implies that ω 7→ r̂(X(ω)) is measurable. Hence, a step-up
procedure satisfies the measurability requirements of Definition 2.1.

5.3. Conditions implying (DC(β))

We use the following lemma which was proved in (BR08) (see Lemma 3.2, items (ii,iii)
therein):

Lemma 5.1. Let (U, V ) be a couple of nonnegative random variables such that U is
stochastically lower bounded by a uniform variable on [0, 1] , i.e. ∀t ∈ [0, 1],P(U ≤ t) ≤ t .
Then the dependence control condition DC(β) is satisfied by (U, V ) in either one of the
following situations:

(i) β(x) = x and

∀r ∈ R+, u 7→ P(V < r | U ≤ u) is nondecreasing on {u : P (U ≤ u) > 0} . (24)

(ii) The shape function β is of the form (13).

The point (ii) above, together with the results of the two previous sections, establishes
point 2 of Theorem 4.1. To establish point 1 and finish the proof, we have to prove that
(24) holds in the finite dimensional weak PRDS dependence context, which is done in
the following proposition:

Proposition 5.2. Assume that the p-values process p = (ph, h ∈ H) is finite dimen-
sional weak PRDS on H0(P ) for any P ∈ P. Consider R the step-up procedure defined
by Definition 3.2 with β(x) = x. Then for any P ∈ P, for any h ∈ H0(P ), the couple of
variables (Uh, V ) = (ph,Λ(R)) satisfies (24) and thus DC(β) holds for β(x) = x .

Proof. In the above statement and the present proof, we use the shortened notation
R, ph, and L∆(r) for the random quantities R(X), ph(X), and L∆(X, r), respectively.
The goal of the proof is to establish (24), that is for any h0 ∈ H0 (h0 is assumed to be
fixed in H0 in the rest of the proof), for any t, and 0 ≤ u ≤ u′ with P(ph0 ≤ u) > 0 :

P [Λ(R) < t | ph0
≤ u] ≤ P [Λ(R) < t | ph0

≤ u′] ;

From Definition 3.2, the real random variable Λ(R) can be rewritten as Λ(R) = r̂ =

max{r : f(r) ≥ r} with f : r 7→ Λ(L∆(r)). Furthermore, denoting Gu =
1{ph0

≤u}
P[ph0

≤u]
, we

are equivalently aiming at proving that for any t and 0 ≤ u ≤ u′ with P(ph0
≤ u) > 0 :

E [1{r̂ < t}Gu] ≤ E [1{r̂ < t}Gu′ ] . (25)

By using Lemma 5.3 (and the notation therein) there exists a fixed sequence of finitely
supported measures Λn on H such that, denoting r̂n,k = max{r ≥ 0 : Λn(L∆(r)) ≥
r − k−1}, it holds that

r̂ = lim
k→∞

r̂+
k = lim

k→∞
r̂−k almost surely, (26)
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where we let r̂+
k = lim supn→∞ r̂n,k and r̂−k = lim infn→∞ r̂n,k.

Let Sn be the (finite) support of Λn and S ′n = Sn∪{h0}. Writing r̂n,k as a function of

the finite p-value set {ph, h ∈ S ′n}, the function r̂n,k : z = (zh)h∈S′
n
∈ [0, 1]S

′
n 7→ r̂n,k(z)

is measurable (where the space [0, 1]S
′
n is endowed with the standard product Borel σ-

field), and is additionally non-increasing in each p-value. Hence the set {z = (zh)h∈S′
n

:

r̂n,k(z) < t + k−1} is a non-decreasing measurable subset of [0, 1]S
′
n . Using that the

p-value process p = (ph, h ∈ H) is finite dimensional weak PRDS on H0, the p-values
(ph, h ∈ S ′n) are PRDS on H0 ∩ S ′n, which implies that for any t ≥ 0 and u ≤ u′ with
P(ph0 ≤ u) > 0 ,

E
[
1{r̂n,k − k−1 < t}Gu

]
≤ E

[
1{r̂n,k − k−1 < t}Gu′

]
. (27)

Now, to prove (25), it suffices to carefully make n and k tend to infinity. By Fatou’s
lemma and by (27), we have for all k ≥ 1 :

E
[
lim inf

n
1{r̂n,k − k−1 < t}Gu

]
≤ lim inf

n
E
[
1{r̂n,k − k−1 < t}Gu

]
≤ lim sup

n
E
[
1{r̂n,k − k−1 < t}Gu′

]
≤ E

[
lim sup

n
1{r̂n,k − k−1 < t}Gu′

]
.

Notice that the following inclusions of events hold: {r̂+
k < t + k−1} ⊂ lim infn{r̂n,k <

t+ k−1}, lim supn{r̂n,k < t+ k−1} ⊂ {r̂−k ≤ t+ k−1}. Hence, we obtain for all k:

E
[
1{r̂+

k − k
−1 < t}Gu

]
≤ E

[
1{r̂−k − k

−1 ≤ t}Gu′
]
.

Then, if t is such that P [r̂ = t] = 0, the above expression can be rewritten as

E
[
1{r̂+

k − k
−1 < t}Gu1{r̂ 6= t}

]
≤ E

[
1{r̂−k − k

−1 ≤ t}Gu′1{r̂ 6= t}
]
.

We now let k →∞ in the above expression by using (26) and the dominated convergence
theorem: for any u ≤ u′ with P(ph0 ≤ u) > 0, and any t /∈ D := {s ≥ 0 : P [r̂ = s] > 0},
we have

E [1{r̂ < t}Gu] ≤ E [1{r̂ < t}Gu′ ] . (28)

Since the above expectations may be interpreted as (conditional) probabilities, the LHS
and RHS in (28) are left-continuous functions of t. Using that R+ ∩ Dc is dense in
R+ (because D is at most countable), we obtain that (28) holds for any t. Finally, the
condition (DC(β)) comes from Lemma 5.1.

5.4. Finite approximation of step-up procedures

As usual, to lighten notationR, ph, L∆(r), r̂ denote the random quantitiesR(X), ph(X), L∆(X, r), r̂(X).
The following result shows how to derive the continuous step-up procedure (see Defini-
tion 3.2) from a limit of finite step-up procedures. It is used in the proof of Proposition 5.2.
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Lemma 5.3. Consider the step-up procedure R = L∆(r̂) on H using Λ and with r̂
defined in Definition 3.2. Then there exists a sequence of finitely supported measures Λn
on H such that, denoting

r̂n,k = max{r ≥ 0 : Λn(L∆(r))) ≥ r − k−1},

we have

r̂ = lim
k→∞

(
lim sup
n→∞

r̂n,k

)
= lim
k→∞

(
lim inf
n→∞

r̂n,k

)
almost surely.

Proof. We start with the following observation. Consider (Λn) some sequence of mea-
sures on H such that Λn(H) ≡ M . For a fixed realization x ∈ X(Ω) of X, we consider
f : r ∈ R+ 7→ Λ(L∆(x, r)) and fΛn : r ∈ R+ 7→ Λn(L∆(x, r))). Clearly, f and fΛn

are nondecreasing right-continuous functions. Using Lemma S-2.4, we conclude that the
desired result holds provided that, for P -almost all x ∈ X , fΛn

converges uniformly to f
over [0,M+1]. It remains thus to prove that there exists a sequence of finitely supported
measures Λn on H such that for P -almost all x ∈ X ,

lim sup
n→∞

{
sup

r∈[0,M+1]

|Λn(L∆(x, r))− Λ(L∆(x, r))|
}

= 0 . (29)

Denote Y the product space HN, endowed with the product sigma-algebra. For y :=

(hi)i≥1 ∈ Y some sequence of hypotheses, denote Λ
[y]
n = Mn−1

∑n
i=1 δhi

the suitably
scaled uniform atomic measure on (h1, . . . , hn).

Consider now Y := (Hi)i≥1 ∈ Y an i.i.d. sequence of hypotheses drawn independently
of X according to the probability distribution Λ/M on H. Observe that for any fixed
x ∈ X(Ω), L∆(x, r) = {h ∈ H : ph(x) ≤ απ(h)β(r)} = {h ∈ H : q(h, x) ≤ αβ(r)},
where

q(h, x) :=


ph(x)/π(h) if π(h) > 0;

0 if π(h) = 0 and ph(x) = 0;

αβ(M + 1) + 1 if π(h) = 0 and ph(x) > 0 .

Thus, applying the Glivenko-Cantelli theorem to the i.i.d. variables (q(Hi, x))i, we deduce

that for any x ∈ X (Ω), ζ(x, y) = lim supn→∞ supr∈[0,M+1]

∣∣∣Λ[y]
n (L∆(x, r))− Λ(L∆(x, r))

∣∣∣ =

0 for PY -almost all realizations y of Y . Observe furthermore that for any fixed r, the
function

(ω, y) ∈ Ω×HN 7→ Λ[y]
n (L∆(X(ω), r)) = Mn−1

n∑
i=1

1{phi
(X(ω)) ≤ απ(hi)β(r)}

is a (jointly) measurable function of (ω, y) by assumption (A2). The inside supremum
in (29) can be restricted to rational numbers since the functions involved are right-
continuous. Therefore, (ω, y) 7→ ζ(X(ω), y) is a jointly measurable function in its vari-
ables. By Fubini’s theorem, this implies that EX,Y [ζ(X,Y )] = 0; and thus also, for
PY -almost all y ∈ Y, ζ(x, y) = 0 for P -almost all x ∈ X . Since an event of probability
1 is non-empty, there exists a fixed y ∈ Y such that ζ(x, y) = 0 for P -almost all x ∈ X ,
which gives rise to a sequence of finitely supported measures Λn satisfying (29).
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6. Discussion

6.1. FDR control for self-consistent, non step-up procedures

In some cases, for instance, after a discretization in r or under a global constraint over
the admissible geometry of sets of rejected hypotheses, the procedure of interest may not
be of the step-up form, while still satisfying the more general condition (SC(α, π, β))
(called self-consistency, see Section 5.1). In that situation, Theorem 4.1 does not apply,
because the procedure is not step-up. We proved an extension of Theorem 4.1 holding
more generally for (nonincreasing) self-consistent procedures, but point 1 of the theorem
is established only under a stronger PRDS condition called general PRDS. (On the
other hand, the fact that point 2 of Theorem 4.1 remains valid under the more general
condition (SC(α, π, β)) is quite immediate.) The general PRDS condition is defined in
terms of the entire process X and not only its finite dimensional projections. Therefore,
it is substantially more technical than finite dimensional PRDS. In particular, it is an
open question to characterize when does finite dimensional PRDS imply general PRDS
(we provide some sufficient conditions). For simplicity, we deferred the corresponding
study in part II of the supplementary material (Blanchard et al., 2011).

6.2. Power and adaptive procedures

This work has focused on procedures ensuring control of the type I error as measured by
the FDR. Under this constraint, one would like to maximize power. We do not address
this issue in the present work; a specific multiple testing power criterion would have to be
defined to begin with, for instance the average number of correct rejections. We briefly
discuss possible future directions in this regard, in particular adaptivity properties with
respect to different types of underlying regularity structure.

Adaptivity of single tests
The power of a multiple testing procedure depends primarily on the power of the

underlying single tests and p-values it is built upon. It is of course desirable to design
individual tests that are as powerful as possible in the first place. While this issue actually
pertains to the domain of single hypothesis testing, and is to this extent quite independent
of the methodology studied here, we briefly discuss this issue in the light of the specific
example of the Gaussian white noise model dZt = f(t)dt+ σdBt. For designing a test of
the hypothesis f(t0) = 0, we have assumed known regularity of f and considered a test
based on a simple kernel estimator. Could this be improved?

There is an abundance of literature on adaptive testing of a global qualitative hy-
pothesis on f (the simplest example being testing that f is identically zero), where
adaptation is understood with respect to the (Hölder or Besov) regularity of the alter-
native and separation from the null is generally measured in some Lp norm. This might
give some hope that some form of regularity adaptation is possible also for testing the
local hypothesis f(t0) = 0 (and the separation distance |f(t0)|), but the situation is
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in fact quite different and possibilities for this are severely limited. This is in essence
the same phenomenon as for the existence of regularity-adaptive confidence intervals for
pointwise estimation of a function, as studied by Cai and Low (2004). We sketch the
main arguments here. First, following the discussion in Dümbgen and Spokoiny (2001),
Section 2, observe that for testing of f0 against g0, the power of the optimal NP test is
Φ(σ ‖f0 − g0‖2), where Φ is a nondecreasing function. Thus, the optimal power of a com-
posite null H0 against an alternative H1 is upper bounded (with equality if H0 and H1

are convex) by Φ(σ inff∈H0,g∈H1
‖f − g‖2). In the case where H0 = {f ∈ F , f(t0) = 0}

and H1 = {f ∈ F1, f(t0) = ε}, where F1 ⊂ F are Hölder regularity classes, Cai and
Low (2004) (Example 1 there) establish that the rate behavior as ε→ 0 of this infimum
distance is determined by F and not by F1. Therefore, no adaptation to the regularity
of the alternative is possible in this configuration, and it is necessary to assume some a
priori known regularity class F . On the other hand, these authors show that adaptive
confidence intervals (and hence tests) exist in this setting provided some additional shape
restrictions, such as monotonicity, are assumed to hold.

Adaptivity to Π(H0) and to the dependence structure
For multiple testing over a finite hypothesis space, recent research has focused on

improving step-up procedures to take into account, on the one hand, the (unknown)
volume Π(H0(P )) of true null hypotheses – which comes as a nuisance parameter reducing
the effective level , see (12), and on the other hand, the dependence structure of the p-
values. Both directions suggest further possible developments in the continuous setting
as well.

Appendix A: PRDS statements

Lemma A.1. The p-value process p(X) = {pt(X), t ∈ I} defined by (5) is finite di-
mensional weak PRDS (on any subset).

Proof. Let us consider a finite subset (tj)0≤j≤N−1 of I and D a non-decreasing mea-
surable subset of [0, 1]N . Let us prove that the function u 7→ P [p(X) ∈ D | pt0(X) ≤ u]
is nondecreasing on {u ∈ [0, 1] : P(pt0(X) ≤ u) > 0}. If F (t0) ∈ {0, 1}, the result is
trivial. We thus assume that F (t0) ∈ (0, 1), so that Ut0 = {Gt0(k), k = m,m− 1, . . . , 0}
contains only increasing points of (0, 1]. Without loss of generality, we only have to prove
the nondecreasing property for u ∈ Ut0 . Since Gt0 is decreasing from {0, . . . ,m} to Ut0 ,
we have pt0(X) ≤ Gt0(k)⇐⇒ mFm(X, t0) ≥ k ⇐⇒ X(k) ≤ t0 (letting X(0) = −∞). We
thus have to prove that for any k, 1 ≤ k ≤ m,

P
[
(X(1), . . . , X(m)) ∈ D′ |X(k−1) ≤ t0

]
≥ P

[
(X(1), . . . , X(m)) ∈ D′ |X(k) ≤ t0

]
, (30)

where D′ = {x ∈ Rm : (ptj (x))0≤j≤N−1 ∈ D} is a nondecreasing subset of Rm (because
p is coordinate wise nondecreasing, i.e., x ≤ x′ ⇒ ∀t, pt(x) ≤ pt(x

′)). Using that the
family of order statistics {X(i)}i has positive regression dependency (see Lemma S-2.1),

imsart-bj ver. 2007/09/18 file: BDR_arXiv_version2.tex date: September 4, 2012



30

we derive that the function f(a, b) = E
[
(X(1), . . . , X(m)) ∈ D′ |X(k−1) = a,X(k) = b

]
is

nondecreasing in a and b. Therefore, denoting γ = P
[
X(k) ≤ t0 |X(k−1) ≤ t0

]
, we get

P
[
(X(1), . . . , X(m)) ∈ D′ |X(k−1) ≤ t0

]
= γE

[
f(X(k−1), X(k)) |X(k−1) ≤ t0, X(k) ≤ t0

]
+ (1− γ)E

[
f(X(k−1), X(k)) |X(k−1) ≤ t0 < X(k)

]
≥ E

[
f(X(k−1), X(k)) |X(k−1) ≤ t0, X(k) ≤ t0

]
,

which provides (30) and concludes the proof.

Lemma A.2. The p-value process p(X) = {pt(X), t ∈ [0, 1]} defined by (6) is finite
dimensional strong PRDS (on any subset).

Proof. Let Mt = N(t+η)∧1 − N(t−η)∨0 for any t ∈ [0, 1]. Fix (tj)0≤j≤q−1 ∈ [0, 1]q

and assume t0 ∈ [η, 1 − η] (the other case can be proved similarly). Take a nonde-
creasing measurable set D ⊂ [0, 1]q and consider the set D′ = {(Mtj )0≤j≤q−1 ∈ Nq :
(Gtj (Mtj ))0≤j≤q−1 ∈ D}, which is nonincreasing on Nq and measurable. We thus aim to
prove that for any n ≥ 0,

P
[
(Mtj )0≤j≤q−1 ∈ D′ |Mt0 = n+ 1

]
≤ P

[
(Mtj )0≤j≤q−1 ∈ D′ |Mt0 = n

]
. (31)

Denote by X1 < . . . < XkX , Y1 < . . . < YkY and Z1 < . . . < ZkZ the jump times of the
process (Nt)t∈[0,1] within the (disjoint) subsets [0, t0 − η), [t0 − η, t0 + η] and (t0 + η, 1],
respectively. Remark that kY = Mt0 with our notation. Since (Nt)t∈[0,1] is a Poisson
process, the family {(Xi, 1 ≤ i ≤ kX , kX), (Yi, 1 ≤ i ≤ kY , kY ), (Zi, 1 ≤ i ≤ kZ , kZ)},
contains mutually independent elements. Furthermore, the distribution of (Y1, . . . , YkY )
conditionally on kY = n is equal to the distribution of the order statistics of a sample
(Y ′1 , . . . , Y

′
n) of i.i.d. random variables with common density t 7→ λ(t)/

∫
[t0−η,t0+η]

λ(s)ds

on [t0−η, t0+η] (w.r.t. the Lebesgue measure). Next, denoting It = [(t−η)∨0, (t+η)∧1],
for any t ∈ [0, 1], we can write:

P
[
(Mtj )0≤j≤q−1 ∈ D′ |Mt0 = n+ 1

]
= P

( kX∑
i=1

1{Xi ∈ Itj}+

n+1∑
i=1

1{Y ′i ∈ Itj}+

kZ∑
i=1

1{Zi ∈ Itj}

)
0≤j≤q−1

∈ D′


= P

( kX∑
i=1

1{Xi ∈ Itj}+

n∑
i=1

1{Y ′i ∈ Itj}+

kZ∑
i=1

1{Zi ∈ Itj}

)
0≤j≤q−1

∈ D′ − (1{Y ′n+1 ∈ Itj})j


≤ P

( kX∑
i=1

1{Xi ∈ Itj}+

n∑
i=1

1{Y ′i ∈ Itj}+

kZ∑
i=1

1{Zi ∈ Itj}

)
0≤j≤q−1

∈ D′


= P
[
(Mtj )0≤j≤q−1 ∈ D′ |Mt0 = n

]
,

the inequality coming from D′ − (1{Y ′n+1 ∈ Itj})j ⊂ D′, because D′ is nonincreasing.
This proves (31) and concludes the proof.
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