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Gilles Blanchard, Sylvain Delattre and Etienne Roquain
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Abstract

We introduce a theoretical framework for performing statistical hypothesis testing
simultaneously over a fairly general, possibly uncountably infinite, set of null hypotheses.
This extends the standard statistical setting for multiple hypotheses testing, which is
restricted to a finite set. This work is motivated by numerous modern applications where
the observed signal is modeled by a stochastic process over a continuum.

As a measure of type I error, we extend the concept of false discovery rate (FDR) to
this setting. The FDR is defined as the average ratio of the measure of two random sets, so
that its study presents some challenge and is of some intrinsic mathematical interest. Our
main result shows how to use the p-value process to control the FDR at a nominal level,
either under arbitrary dependence of p-values, or under the assumption that the finite
dimensional distributions of the p-value process have positive correlations of a specific
type (weak PRDS). Both cases generalize existing results established in the finite setting,
the latter one leading to a less conservative procedure. The interest of this approach is
demonstrated in several non-parametric examples: testing the mean/signal in a Gaussian
white noise model, testing the intensity of a Poisson process and testing the c.d.f. of i.i.d.
random variables. Conceptually, an interesting feature of the setting advocated here is
that it focuses directly on the intrinsic hypothesis space associated with a testing model
on a random process, without referring to an arbitrary discretization.

1 Introduction

Multiple testing is a long-established topic of statistics which has known a surge of interest
in the past two decades. This renewed popularity is due to a growing range of applications
(such as bioinformatics and medical imaging), enabled in particular by modern computational
possibilities, through which collecting, manipulating and processing massive amounts of data
in very high dimension has become commonplace. Multiple testing is in essence a multiple
decision problem: each individual test output is a yes/no (or accept/reject) decision about a
particular question (or null hypothesis) concerning the generating distribution of some random
observed data, the decision being taken only on the basis on this data.

The standard framework for these problems is to consider a finite family of hypotheses and
of associated tests. However, in many cases of interest, it is natural to interpret the observed
data as the discretization of an underlying continuous random process; each decision (test)
is then associated to one of the discretization points. A first example is that of detecting
unusually frequent words in DNA sequences: a classical model is to consider a Poisson model
for the (non-overlapping) word occurrence process (Robin, 2002), the observed data being
interpreted as a discretized version of this process. A second example is given in the context
of medical imaging, where the observed pixelized image can be interpreted as a sampled
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random process, and the decision to take is, for each pixel, whether the observed value is due
to pure noise or reveals some relevant activity (pertaining to this setting, see in particular
the work of Perone Pacifico et al., 2004; see also Schwartzman et al., 2010).

As the discretization becomes finer with ever increasing computing power, it is a natural
theoretical question to consider whether results concerning the testing of finite families of
hypotheses have a suitable continuous counterpart when considered directly for the underlying
continuous process. It is this issue that the present paper tries to tackle. More specifically, we
focus on the extension to continuous observation (and decision) processes of so-called step-
up multiple testing procedures, and the control of the (continuous analogue of) their false
discovery rate (FDR). The motivation for concentrating on the latter specific criterion is as
follows. Thinking of the output of the multiple decision process as a random subset of rejected
hypotheses out of the initial set of candidate hypotheses, the FDR is a collective type I error
measure defined (in the finite case) as the average proportion of errors in the rejected set.
From this definition follows that FDR-controlling procedures scale without becoming trivial
as the size of the set of null hypotheses grows; and that the FDR has a natural counterpart
in a continuous setting, namely when the ratio of set cardinalities defining the proportion
is replaced by a volume ratio (for a certain reference finite measure). This natural scaling
property of the FDR contrasts with another standard collective type I error measure criterion,
the family-wise error rate (FWER), defined as the probability of making one error or more
in the rejection set. Procedures that control the FWER generally strongly depend on the
number of hypotheses to be tested and thus generally become trivial (rejecting nothing)
when the discretization become very fine. For this reason, it is more natural to focus on the
FDR criterion when the space of hypotheses is infinite (and possibly continuous).

To illustrate the above concepts, let us consider the following example, which will be more
developed in Section 4.2.4: observe (Nt)t∈[0,1] a Poisson process with intensity λ : [0, 1] → R+.
Assume that we are interested at detecting the times t ∈ [0, 1] such that λ(t) exceeds some
benchmark intensity λ0. In statistical terms, we want to test the null hypothesis “λ(t) ≤ λ0”
against the alternative“λ(t) > λ0” — and this for all elements t in the inteval [0, 1]. For each
individual t, a statistical test can be easily built (by assuming λ(·) smooth enough), that can
take the following form: reject “λ(t) ≤ λ0” at level α if pt ≤ α, where pt is the p-value of
the test. The resulting p-value process (pt)t∈[0,1] is displayed in the bottom of Figure 2, for
a particular realization of the Poisson process and by choosing some triangular signal λ(·).
The gray area indicates the regions where the null hypothesis is true. The goal is to find
a threshold (dashed line) such that the corresponding FDR is smaller than a nominal level
α ∈ (0, 1). In this continuous setting, the FDR is the mean of the ratio of the measure of the
false rejection set (red area) to the measure of the total rejection set (red plus green area).

At this point, it is legitimate to ask whether it is justified at all to make the extra
effort of defining and studying explicitly a mathematical model for testing over a continuum.
One could argue that in any practical application, the hypotheses space will be effectively
discretized, after which step existing theory for finite testing can be applied. To this regard,
the motivations of the present work are the following.

• Since in many applications the underlying signal is modeled as a random process on a
continuum, it is more coherent to study this object intrinsically; in particular, the FDR
error criterion is more naturally defined in its continuous version in that setting, rather
than depending on a possibly arbitrary choice of discretization.

• In some cases, such as the Poisson model described above, it turns out that the studied
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testing procedures take a very simple form in the continuous setting, a property that
can be obfuscated by an a priori discretization.

• Finally, a mathematical motivation is to study in a rigorous way some specific points
arising from the continuous setting. In particular, since the FDR involves ratios of
measures of random subsets of [0, 1], some measurability issues arise, and its control is
not straightforward.

The principal contributions of the present work are the following. We define a precise
mathematical setting for multiple testing over a (possibly) continuous set of hypotheses,
taking particular attention to specific measurability issues. We extend to this setting existing
results on the step-up procedure, using for this the tools and analysis developed by (Blanchard
and Roquain, 2008) (a programmatic sketch of the present work can be found in Section 4.4
of the latter paper). In particular, we extend suitably to the continuous setting the notion
of positive regressively dependent on a subset (PRDS) condition, which plays a crucial role
in the analysis. The latter is a general type of dependency condition on the individual tests’
p-values allowing to ensure FDR control. An important difference between the continuous
and finite setting is that the continuous case precludes the possibility of independent p-values,
which is the simplest reference setting considered in the finite case, so that a more general
assumption on dependency structure is necessary (on this point, see the discussion at the end
of Section 2.2).

We have tried as much as possible to make this work self-contained, and accessible to
readers having little background knowledge in multiple testing. Section 2 of the paper cor-
respondingly introduces the necessary notions with a an angle towards stochastic processes,
and some specific examples for the introduced setting. The main result is exposed in Section
3, followed by its applications to the examples introduced in Section 2. The proof for the
main theorem is found in Section 4. Extensions and discussions come in Section 5, while some
technical results are deferred to the Appendix.

2 Setting

2.1 Multiple testing: mathematical framework

Let X be a random variable defined from a measurable space (Ω,F) to some observation space
(X ,X). We assume that there is a family of probability distributions on (Ω,F) that induces a
subset P of probability distributions on (X ,X), which is called the model. The distribution
of X on (X ,X) is denoted by P ; for each P ∈ P there exists a distribution on (Ω,F) for which
X ∼ P ; it is referred to as PX∼P or simply by P when unambiguous. The corresponding
expectation operator is denoted EX∼P or E for short.

We consider a general multiple testing problem for P , defined as follows. Let H denote
an index space for (null) hypotheses. To each h ∈ H is associated a known subset Hh ⊂ P
of probability measures on (X ,X). Multiple hypothesis testing consists in taking a decision,
based on a single realization of the variable X, of whether for each h ∈ H it holds or not that
P ∈ Hh (which is read “P satisfies Hh”, or “Hh is true”). We denote by H0(P ) := {h ∈ H :
P satisfies Hh} the set of true null hypotheses, and by its complementary H1(P ) := H\H0(P )
the set of false nulls. These sets are of course unknown because they depend on the unknown
distribution P . For short, we will write sometimes H0 and H1 instead of H0(P ) and H1(P ),
respectively.
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As an illustration, if we observe a continuous Gaussian process X = (Xh)h∈[0,1]d with

a continuous mean function µ : h ∈ [0, 1]d 7→ µ(t) := EXt, then P is the distribution
of this process, (X ,X) is the Wiener space and P is the set of distributions generated by
continuous Gaussian processes having a continuous mean function. Typically, H = [0, 1]d

and, for any h, we choose Hh equal to the set of distributions in P for which the mean
function µ satisfies µ(h) ≤ 0. This is usually denoted Hh: “µ(h) ≤ 0”. Finally, the set
H0(P ) = {h ∈ [0, 1]d : µ(h) ≤ 0} corresponds to the true null hypotheses. Several other
examples are provided below in Section 2.4.

Next, for a more formal definition of a multiple testing procedure, we first assume the
following:

(A1) The index space H is endowed with a σ-algebra H and for all P ∈ P, the set H0(P ) of
true nulls is assumed to be measurable, that is, H0(P ) ∈ H.

Definition 2.1 (Multiple testing procedure). Assume (A1) holds. A multiple testing proce-
dure on H is a function R : X(Ω) ⊂ X → H such that the set

{(ω, h) ∈ Ω×H : h ∈ R(X(ω))}

is a F ⊗ H-measurable set; or in other terms, that the process (1{h ∈ R(X)})h∈H is a mea-
surable process.

The fact that R need only be defined on the image X(Ω), rather than on the full space
X , is a technical detail necessary for later coherence; this introduces no restriction since R
will only be ever applied to possible observed values of X.

A multiple testing procedure R is interpreted as follows: based on the observation x =
X(ω), R(x) is the set of null hypotheses that are deemed to be false, also called set of rejected
hypotheses. The set H0(P ) ∩ R(x) formed of true null hypotheses that are rejected in error
is called the set of type I errors. Similarly, the set H1(P ) ∩R

c(x) is that of type II errors.

2.2 The p-value functional and process

We will consider a very common framework for multiple testing, where the decision for each
null hypothesis Hh, h ∈ H, is taken based on a scalar statistic ph(x) ∈ [0, 1] called a p-value.
The characteristic property of a p-value statistic is that if the generating distribution P is such
that the corresponding null hypothesis is true (i.e. h ∈ H0(P )), then the random variable
ph(X) should be stochastically lower bounded by a uniform random variable. Conversely,
this statistic is generally constructed in such a way that if the null hypothesis Hh is false, its
distribution will be more concentrated towards the value 0. Therefore, a p-value close to 0 is
interpreted as evidence from the data against the validity of the null hypothesis, and one will
want to reject hypotheses having lower p-values. Informally speaking, based on observation
x, the construction of a multiple testing procedure generally proceeds as follows:

(i) compute the p-value ph(x) for each individual null index h ∈ H.

(ii) determine a threshold th(x) for each h ∈ H, depending on the whole family (ph(x))h∈H.

(iii) put R(x) = {h ∈ H : ph(x) ≤ th(x)}.
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To summarize, the rejection set consists of hypotheses whose p-values are lower than a certain
threshold, this threshold being itself random, depending on the observation x and possibly
depending on h. This will be elaborated in more detail in Section 3.2, in particular how
the threshold function th(x) is chosen. For now, we focus on properly defining the p-value
functional itself, the associated process, and the assumptions we make on them.

Formally, we define the p-value functional as a mapping p : X → [0, 1]H, or equivalently
as a collection of functions p = (ph(x))h∈H, each of the functions ph : X → [0, 1], h ∈ H,
being considered as a scalar statistic that can be computed from the observed data x ∈ X .

We will consider correspondingly the random p-values ω ∈ Ω 7→ ph(X(ω)), and p-value
process ω ∈ Ω 7→ p(X(ω)). With some notation overload, we will sometimes drop the
dependency on X and use the notation ph and p to also denote the random variables ph(X)
and p(X) (the meaning – function of x, or random variable on Ω – should be clear from the
context).

We shall make the following assumptions on the p-value process:

• Joint measurability over Ω × H: we assume that the random process (ph(X))h∈H is a
measurable process, that is:

(ω, h) ∈
(
Ω×H,F⊗ H

)
7→ ph(X(ω)) ∈ [0, 1] is (jointly) measurable. (A2)

• For any P ∈ P, the marginal distributions of the p-values corresponding to true nulls
are stochastically lower bounded by a uniform random variable on [0, 1]:

∀h ∈ H0(P ), ∀u ∈ [0, 1], PX∼P (ph(X) ≤ u) ≤ u. (A3)

(The distribution of ph if h lies in H1(P ) can be arbitrary).

Condition (A2) is specific to the continuous setting considered here and will be discussed
in more detail in the next section. Condition (A3) is the standard characterization of a single
p-value statistic in classical (single or multiple) hypothesis testing. In general, an arbitrary
scalar statistic used to take the rejection decision on hypothesis Hh can be monotonically
normalized into a p-value as follows: assume Sh(x) is a scalar test statistic, then

ph(x) = sup
P∈Hh

Fh,P (Sh(x))

is a p-value in the sense of (A3), where Fh,P (t) = PX∼P (Sh(X) ≥ t) (and where the supremum
is assumed to maintain the measurability in x, for any fixed h). If the scalar statistic Sh(x)
is constructed so that it tends to be stochastically larger when hypothesis Hh is false, the
corresponding p-value indeed has the desirable property that it is more concentrated towards
0 in this case. Such test statistics abound in the (single) testing literature, and a few examples
will be given below.

2.3 Discussion on measurability assumptions

Since the focus of the present work is to be able to deal with uncountable spaces of hypotheses
H, we have to be somewhat careful with corresponding measurability assumptions over H (a
problem that does not arise when H is finite or countable). The main assumption needed to
this regard in order to state properly the results to come is the joint measurability assumption
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appearing in either Definition 2.1 (for the multiple testing procedure) or in (A2) (for the
p-value process), both of which are specific to the uncountable setting. Essentially, joint
measurability will be necessary in order to use Fubini’s theorem on the space

(
Ω×H,F⊗H

)
,

and have the expectation operator w.r.t. ω and the integral operator over H commute.
If H has at most countable cardinality, and is endowed with the trivial σ-field comprising

all subsets of H, then (A2) is automatically satisfied whenever all individual p-value functions
ph : X → [0, 1], h ∈ H, are separately measurable, which is the standard setting in multiple
testing.

If H is uncountable, a sufficient condition ensuring (A2) is the joint measurability of the
p-value functional,

(x, h) ∈
(
X ×H,X⊗ H

)
7→ ph(x) ∈ [0, 1] is (jointly) measurable, (A2’)

which implies (A2) by composition. Unfortunately, (A2’) might not always hold. To see
this, consider the following canonical example. Assume the observation takes the form of a
stochastic process indexed by the hypothesis space itself, X = {Xh, h ∈ H}. In this case, the
observation space X is included in RH. Furthermore, assume the p-value function ph(x) is
given by a fixed measurable mapping ψ of the value of x at point h, i.e. ph(x) = ψ(xh), ∀h ∈
H. In this case assumption (A2’) boils down to the joint measurability of the evaluation
mapping (x, h) ∈ X × H 7→ xh. Whether this holds depends on the nature of the space X .
We give some classical examples in the next section where the assumption holds; for example,
it is true if X is the Wiener space.

However, the joint measurability of the evaluation mapping does not hold if X is taken
to be the product space RH endowed with the canonical product σ-field (indeed, this would
imply that any x ∈ RH, i.e., any function from H into R, is measurable). The more general
assumption (A2) may still hold, though, but it generally requires some additional regularity
or structural assumptions on the paths of the process X. In particular, in the above example
if X = {Xh, h ∈ H} is a stochastic process having a (jointly) measurable modification (and
more generally for other examples, if there exists a modification of X such that (A2) is
satisfied), we will always assume that we observe such a modification, so that assumption
(A2) holds.

We have gathered in Appendix A some auxiliary (mostly classical) results related to
the existence and properties of such modifications. Lemma A.2 shows that such a (jointly)
measurable modification exists as soon as the process is continuous in probability. The latter
is not an iff condition, but is certainly much weaker than having continuous paths.

On the other hand, it is important to observe here that a jointly measurable modification
of X, or, for that matter, of the p value process, might not exist. Lemma A.1 reproduces
a classical argument showing that for H = [0, 1], assumption (A2) is violated for any mod-
ification of a mutually independent p-value process. Therefore, for an uncountable space of
hypotheses H, assumption (A2) precludes the possibility that the p-values {ph, h ∈ H} are
mutually independent. This contrasts strongly with the situation of a finite hypothesis set
H, where mutual independence of the p-values is generally considered the reference case.

A final issue is to which extent the results exposed in the remainder of this work de-
pend on the (jointly) measurable modification chosen for the underlying stochastic process.
Lemma A.4 elucidates this issue by showing that this is not the case, because the FDR (the
main measure of type I error, which will be formally defined in Section 3.1 ) is identical for
two such modifications.
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2.4 Examples

To illustrate the above generic setting, let us consider the following examples.

Example 2.2 (Testing the mean of a process). Assume that we observe the realization of a
real-valued process X = (Xt)t∈[0,1]d with an unknown (measurable) mean function µ : t ∈

[0, 1]d 7→ µ(t) := EXt. We take H = [0, 1]d and want to test simultaneously for each t ∈ [0, 1]d

the null hypothesis Ht : “µ(t) ≤ 0”. Assume that for each t the marginal distribution of
(Xt − µ(t)) is known, does not depend on t and has upper-tail function G (for instance, X is
a Gaussian process with marginals Xt ∼ N (µ(t), 1)). We correspondingly define the p-value
process ∀t ∈ [0, 1]d, pt(X) = G(Xt), which satisfies (A3). Next, the measurability assumption
(A2) follows from a regularity assumption on X:

• if we assume that the process X has continuous paths, X : ω 7→ (Xt(ω))t can be seen
as taking values in the Wiener space X = C[0,1]d = C([0, 1]d,R) of continuous functions

from [0, 1]d to R. (In this case, the Borel σ-field corresponding to the supremum norm
topology on C[0,1]d is the trace of the product σ-field on C[0,1]d , and X is measurable iff
all its coordinate projections are.) Furthermore, the p-value function can be written as

(x, t) ∈ C[0,1]d × [0, 1]d 7→ pt(x) = G(x(t)) ∈ [0, 1].

The evaluation functional (x, t) ∈ C[0,1]d × [0, 1]d 7→ x(t) is jointly measurable because it
is continuous, thus pt(x) is jointly measurable by composition and (A2’) holds, hence
also (A2).

• if d = 1 and the process X is càdlàg , the random variable X can be seen as taking
values in the Skorohod space X = D := D([0, 1],R) of càdlàg functions from [0, 1] to R.
In this case, the Borel σ-field generated by the Skorohod topology is also the trace of
the product σ-field on D (see, e.g., Theorem 14.5 p.121 of Billingsley, 1999). Moreover,
the evaluation functional (x, t) 7→ x(t) is jointly measurable, as for any càdlàg funtion
x, it is the pointwise limit of the jointly measurable functions ζn: (x, t) 7→ ζn(x, t) :=∑2n

k=1 x(k2
−n)1{(k − 1)2−n ≤ t < k2−n}+ x(1)1{t = 1} , therefore (A2’) is fulfilled by

composition, hence also (A2).

• assume that X is a Gaussian process defined on the space X = R[0,1]d endowed with
the canonical product σ-field, and with a covariance function Σ(t, t′) such that Σ is
continuous on all points (t, t) of the diagonal and takes a contant (known) value σ2 on
those points.

This assumption is not sufficient to ensure that X has a continuous version, but it
ensures that (Xt) is continuous in L

2 and hence in probability; Lemma A.2 then states
that X has a modification such that the evaluation functional is jointly measurable.
Assuming that such a jointly measurable modification is observed, we deduce that (A2)
holds for the associated p-value process.

Example 2.3 (Testing the signal in a Gaussian white noise model). Let us consider the Gaus-
sian white noise model dZt = f(t)dt+ σdBt, t ∈ [0, 1], where B is a Wiener process on [0, 1]
and f ∈ C([0, 1]) is a continuous signal function. For simplicity, the standard deviation σ is
assumed to be equal to 1. Equivalently, we assume that we can observe the stochastic integral
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of Zt against any test function in L2([0, 1]), that is, that we observe the Gaussian process
(Xg)g∈L2([0,1]) defined by

Xg :=

∫ 1

0
g(t)f(t)dt+

∫ 1

0
g(t)dBt, g ∈ L2([0, 1]).

Formally, the observation space is the whole space X = RL2([0,1]), endowed with the product
σ-field. However, in the sequel, we will use the observation of the process X only against a
“small” subspace of functions of L2([0, 1]).

Let us consider H = [0, 1] and the problem of testing for each t ∈ H, the null Ht :
“f(t) ≤ 0” (signal nonpositive). We can build p-values based upon a kernel estimator in
the following way. Consider a kernel function K ∈ L2(R), assumed positive on [−1, 1] and
zero elsewhere, and denote by Kt ∈ L2([0, 1]) the function Kt(s) := K((t − s)/η), where
0 < η ≤ 1 is a bandwidth to be chosen. Let us consider the process X̃t := XKt , t ∈ [0, 1].
From Lemma A.3, X̃ has a modification which is jointly measurable in (ω, t). Clearly, this
implies that there exists a modification of the original process X such that X̃ is jointly
measurable in (ω, t), and we assume that we observe such a modification. For any t ∈ [0, 1],
letting cK,t :=

∫ 1
0 K((t − s)/η)ds > 0 and vK,t :=

∫ 1
0 K

2((t − s)/η)ds ≥ c2K,t > 0, we can
consider the following standard estimate of f(t):

f̂η(t) := c−1
K,tXKt

= c−1
K,t

∫ 1

0
K

(
t− s

η

)
f(s)ds+ c−1

K,t

∫ 1

0
K

(
t− s

η

)
dBs. (1)

Assume that there is a known δt,η > 0 such that for any t with f(t) ≤ 0, we have the
upper-bound

Ef̂η(t) = c−1
K,t

∫ 1

0
K

(
t− s

η

)
f(s)ds ≤ δt,η. (2)

For instance, this holds if we can assume a priori knowledge on the regularity of f , of the
form sups:|s−t|≤η |f(s) − f(t)| ≤ δt,η. Then, the statistics (f̂η(t))t can be transformed into a
p-value process in the following way:

pt(X) = Φ


 f̂η(t)− δt,η

v
1/2
K,t/cK,t


 , (3)

where Φ(w) := P(W ≥ w), W ∼ N (0, 1), is the upper tail distribution of a standard Gaussian
distribution. The p-value process (3) satisfies (A3), because for any t with f(t) ≤ 0 and any
u ∈ [0, 1],

P(pt(X) ≤ u) = P(f̂η(t)− δt,η ≥ v
1/2
K,t/cK,tΦ

−1
(u))

≤ P(cK,t(f̂η(t)− Ef̂η(t))/v
1/2
K,t ≥ Φ

−1
(u))

= u,

because
∫ 1
0 Kt(s)dBs ∼ N (0, vK,t). Moreover, the p-value process (3) satisfies (A2), since we

assumed (XKt)t ∈ [0, 1] to be jointly measurable in (ω, t).
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Example 2.4 (Testing the c.d.f.). Let X = (X1, . . . , Xm) ∈ X = Rm be a m-uple of i.i.d. real
random variables of common continuous c.d.f. F . For H = I an interval of R and a given
benchmark c.d.f. F0, we aim to test simultaneously for all t ∈ I the null Ht : ”F (t) ≤ F0(t)”.
The individual hypothesis Ht may be tested using the p-value

pt(X) = Gt(mFm(X, t)), (4)

where Fm(X, t) = m−1
∑m

i=1 1{Xi ≤ t} is the empirical c.d.f. of X1, . . . , Xm and where
Gt(k) = P [Zt ≥ k], Zt ∼ B(m,F0(t)), is the upper-tail function of a binomial distribution
of parameter (m,F0(t)). The conditions (A2) and (A3) are both clearly satisfied.

Figure 1 provides a realization of the p-value process (4)when testing for all t ∈ [0, 1]
the null Ht : “F (t) ≤ t” when F comes from a mixture of beta distributions. The cor-
rect/erroneous rejections are also pictured for the simple procedure R(X) = {t ∈ [0, 1] :
pt(X) ≤ 0.4}.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

F0

F

threshold

pvalue process

correct reject.

erroneous reject.

Figure 1: Plot of a realization of the p-value process as defined in (4) for the c.d.f. testing,
together with F0 and F , for F0(t) = t and F (t) = 0.5F1(t) + 0.5F2(t), where F1 (resp. F2)
is the c.d.f. of a beta distribution of parameter (0.5, 1.5) (resp. (1.5, 0.5)). The region where
the null hypothesis “F (t) ≤ F0(t)” is true is depicted in gray color. The crosses correspond
to the elements of {Xi, 1 ≤ i ≤ m}; m = 50. The correct/erroneous rejections refer to the
procedure R(X) = {t ∈ [0, 1] : pt(X) ≤ 0.4} using the threshold 0.4.

Example 2.5 (Testing the intensity of a Poisson process). Assume we observe (Nt)t∈[0,1] ∈
X = D([0, 1],R) a Poisson process with intensity λ : [0, 1] → R+ ∈ L1(dΛ), where Λ denotes
the Lebesgue measure on [0, 1]. For each t ∈ [0, 1], we aim to test Ht : “λ(t) ≤ λ0(t)” where
λ0(·) > 0 is a given benchmark intensity. Assume that for a given bandwidth η ∈ (0, 1], there

is a known upper bound δt,η for
∫ (t+η)∧1
(t−η)∨0 λ(s)ds that holds true for any t such that λ(t) ≤ λ0(t).

For instance, we can choose δt,η = ((t+ η) ∧ 1− (t− η) ∨ 0)(λ0(t) + sups:|t−s|≤η |λ(t)− λ(s)|)
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(assuming knowledge on the regularity of λ is available a priori). For any t ∈ [0, 1], the

variable N(t+η)∧1 − N(t−η)∨0 follows a Poisson variable of parameter
∫ (t+η)∧1
(t−η)∨0 λ(s)ds. Since

the latter parameter is smaller than δt,η as soon as λ(t) ≤ λ0(t), the following p-value process
satisfies (A3):

pt(X) = Gt

(
N(t+η)∧1 −N(t−η)∨0

)
, (5)

where for any k ∈ N, Gt(k) denotes P [Z ≥ k] for Z a Poisson distribution of parameter δt,η.
Moreover, the p-value process fulfills condition (A2’), because (Nt) is a càdlàg process, so
that arguments similar to those of Example 2.2 apply. Thus (A2) also holds.

3 Main concepts and tools

3.1 False discovery rate

Following the usual philosophy of hypothesis testing, the first thing one wants to ensure is
some form of control over type I errors commited by the procedure. For multiple testing,
there are different scalar criteria available to assess the amount of type I errors over the whole
family of hypotheses. In the present work we focus on a generalization to a continuum of
hypotheses of the false discovery rate (FDR). We choose this criterion for two reasons: first,
it has now become a widely used standard after its introduction by Benjamini and Hochberg
(1995) (see also Seeger, 1968); secondly, it has a natural extension to an uncountable spaces
of hypotheses. For a finite number of null hypotheses, the FDR is defined as the average
proportion of type I errors in the set of all rejected hypotheses. To extend this definition to
a possibly uncountable space, we quantify this proportion by a volume ratio, defined with
respect to a finite measure Λ on (H,H) (the usual definition over a finite space is recovered
by taking Λ equal to the counting measure).

Definition 3.1 (False discovery proportion, false discovery rate). Let Λ be a finite positive
measure on (H,H). Let R be a multiple testing procedure on H . The false discovery rate
(FDR) of R is defined as the average of the the false discovery proportion (FDP):

∀P ∈ P , ∀x ∈ X(Ω) , FDP(R(x), P ) :=
Λ
(
R(x) ∩H0(P )

)

Λ
(
R(x)

) 1{Λ
(
R(x)

)
> 0}, (6)

and
∀P ∈ P , FDR(R,P ) := EX∼P [FDP(R(X), P )] . (7)

The indicator function in (6) means that the ratio is taken equal to zero whenever the
denominator is zero. Observe that, due to the joint measurability assumption in definition 2.1
of a multiple testing procedure, both of the above quantities are well-defined (the FDP is only
formally defined over the image of Ω through X since only on this set is the measurability of
R(x) guaranteed by the definition. In particular, it is defined for P -almost all x ∈ X ).

As illustration, in the particular realization of the p-value process pictured in Figure 1, if
we denote by “Red” (resp. “Green”) the length of the interval corresponding to the projection
of the red (resp. green) part of the p-value process on the X-axis, the FDP of the procedure
R(X) = {t ∈ [0, 1] : pt(X) ≤ 0.4} is Red/(Red + Green). A similar interpretation for the
FDP holds in Figure 2.
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Finding a procedure R with a FDR smaller than or equal to α has the following interpre-
tation: on average, the volume proportion of type I errors among the rejected hypotheses is
smaller than α. This means that the procedure is allowed to reject in error some true nulls
but in a small (average) proportion among the rejections. For a pre-specified level α, the
goal is then to determine multiple testing procedures R such that for any P ∈ P, it holds
that FDR(R,P ) ≤ α. (In fact, the statement need only hold for P ∈ P ∩

⋃
h∈HHh, since

outside of this set H0(P ) = ∅ and the FDR is 0.) The rest of the paper will concentrate on
establishing sufficient conditions under which the FDR is controlled at a fixed level α. Under
this constraint, in order to get a procedure with good power properties (that is, low type II
error), it is, generally speaking, desirable that R rejects as many nulls as possible, that is, has
volume Λ(R) as large as possible.

3.2 Step-up procedures

In what follows, we will focus on a particular form of multiple testing procedures which can
be written as function of the p-value family p(x) = (ph(x))h∈H.

First, we define a parametrized family of possible rejection sets having the following form:
for a given threshold function ∆ : (h, r) ∈ H×R+ 7→ R+, we define for any r ≥ 0 the sub-level
set

∀x ∈ X , L∆(x, r) := {h ∈ H : ph(x) ≤ ∆(h, r)} ⊂ H. (8)

For short, we sometimes write L∆(r) instead of L∆(x, r) when unambiguous. We will more
particularly focus on threshold functions ∆ of the product form ∆(h, r) = απ(h)β(r), where
α ∈ (0, 1) is a positive scalar (level), π : H → R+ is measurable (weight function), and β :
R+ → R+ is nondecreasing and right-continuous (shape function). Clearly this decomposition
is not unique, but will be practical for the formulation of the main result.

Given a threshold function ∆ of the above form, we will be interested in a particular, data-
dependent choice of the parameter r determining the rejection set, called step-up procedure.

Definition 3.2 (Step-up procedure). Let ∆(h, r) = απ(h)β(r) a threshold function with
α ∈ (0, 1); π : H → R+ measurable and β : R+ → R+ nondecreasing and right-continuous.
Then the step-up multiple testing procedure R on (H,Λ) associated to ∆ , is defined by

∀x ∈ X(Ω) , R(x) = L∆(x, r̂(x)) , where r̂(x) := max{r ≥ 0 : Λ(L∆(x, r)) ≥ r} . (9)

Note that r̂ above is well-defined: first, since x ∈ X(Ω) and from assumption (A2),
the function h 7→ ph(x) − απ(h)β(r) is measurable; thus L∆(x, r) is a measurable set of H,
which in turn implies that Λ(L∆(x, r)) is well-defined. Secondly, the supremum of {r ≥ 0 :
Λ(L∆(x, r)) ≥ r} exists because r = 0 belongs to this set and M = Λ(H) is an upper bound.
Third, this supremum is a maximum because the function r 7→ Λ(L∆(x, r)) is nondecreasing
(right-continuity is not needed for this).

We should ensure in Definition 3.2 that a step-up procedure satisfies the measurability
requirements of Definition 2.1. This is proved separately in Section 5.2. In that section, we
also check that the equality Λ(L∆(x, r̂(x))) = r̂(x) always holds. Hence, r̂(x) is the largest
intersection point between the function r 7→ Λ(L∆(x, r)) giving the volume of the candidate
rejection sets as a function of r, and the identity line r 7→ r.

To give some basic intuition behind the principle of a step-up procedure, consider for
simplicity that π is a constant function, so that the family defined by (8) are ordinary sub-
level sets of the p-value family. The goal is to find a suitable common rejection threshold t
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giving rise to rejection set Rt. Assume also without loss of generality that Λ(H) = 1. Now
consider the following heuristic. If the threshold t is deterministic, any p-value associated to a
true null hypothesis, being stochastically lower bounded by a uniform variable, has probability
less than t of being rejected in error. Thus, we expect on average a volume tΛ(H0) ≤ t of
erroneously rejected null hypotheses. If we therefore use t as a rough upper bound of the
numerator in the definition (6) of the FDP or FDR, and we want the latter to be less than
α, we obtain the constraint t/Λ(Rt) ≤ α, or equivalently Λ(Rt) ≥ α−1t. Choosing the largest
t satisfying this heuristic constraint is equivalent to the step-up procedure wherein β(u) = u.
The choice of a different shape function with β(u) ≤ u can be interpreted roughly as a
pessimistic discount to compensate for various inaccuracies in the above heuristic argument
(in particular the fact that the obtained threshold is really a random quantity).

In the case where H is finite and Λ is the counting measure, it can be seen that the above
definition recovers the usual notion of step-up procedures (see, e.g., Blanchard and Roquain,
2008); in particular, the linear shape function β(u) = u gives rise to the celebrated linear
step-up procedure of Benjamini and Hochberg (1995).

3.3 PRDS conditions

To ensure control of the FDR criterion, an important role is played by structural assumptions
on the dependency of the p-values. While the case of independent p-values is considered
as the reference setting in the case where H is finite, we recall that for an uncountable set
H, we cannot assume mutual independency of the p-values since this would contradict our
measurability assumptions (see concluding discussion of Section 2.3).

We will consider two different situations in our main result: first, if the dependency of the
p-values can be totally arbitrary, and secondly, if a form of positive dependency is assumed.
This is the latter condition which we define more precisely now. We consider a generalization
to the case of infinite, possibly uncountable space H, of the notion of positive regression
dependency on each one from a subset (PRDS) introduced by Benjamini and Yekutieli (2001)
in the case of a finite set of hypotheses. For any finite set I, a subset D ⊂ [0, 1]I is called
nondecreasing if for all z, z′ ∈ [0, 1]I such that z ≤ z′ (i.e. ∀h ∈ I, zh ≤ z′h), we have
z ∈ D ⇒ z′ ∈ D .

Definition 3.3. (PRDS conditions for a finite p-value family) Assume H to be finite. For
H′ a subset of H , the p-value family p(X) = (ph(X))h∈H is said to be weak PRDS on H′ for
the distribution P , if for any h ∈ H′, for any measurable nondecreasing set D in [0, 1]H , the
function u ∈ [0, 1] 7→ P(p(X) ∈ D | ph(X) ≤ u) is nondecreasing on {u ∈ [0, 1] : P(ph(X) ≤
u) > 0} ; it is said to be strong PRDS if the function u 7→ P(p(X) ∈ D | ph(X) = u) is
nondecreasing.

To be completely rigorous, observe that the conditional probability with respect to the
event {ph(X) ≤ u} is defined pointwise unequivocally whenever this event has positive proba-
bility, using a ratio of probabilities; while the conditional probability with respect to ph(X) =
u can only be defined via conditional expectation, and is therefore only defined up to a ph(X)-
negligible set. Hence, in the definition of strong PRDS, strictly speaking, we only require that
the conditional probability coincides ph(X)-a.s. with a nondecreasing function.

Definition 3.4. (Finite dimensional PRDS conditions for a p-value process) For H′ a subset
of H , the p-value process p(X) = (ph(X))h∈H is said to be finite dimensional weak PRDS
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on H′ (resp. finite dimensional strong PRDS on H′) for the distribution P , if for any finite
subset S of H, the finite p-value family pS(X) = (ph(X))h∈H∩S is weak PRDS on H′ ∩ S
(resp. strong PRDS on H′ ∩ S) for the distribution P .

To state our main result, the finite dimensional weak PRDS property will be sufficient.
However, on practical examples it is sometimes easier to establish first the finite dimensional
strong PRDS property and use the following lemma.

Lemma 3.5. The finite dimensional strong PRDS property implies the finite dimensional
weak PRDS property.

Proof. We just have to replace “=” by “≤” in the conditional probability. This can be done
using the following standard argument (also used by (Benjamini and Yekutieli, 2001) with a
reference to (Lehmann, 1966)). Put f(u) := P [p ∈ D | ph = u] and let u ≥ 0 be such that
P(ph(X) ≤ u) > 0. For all u′ ≥ u , putting γ = P [ph ≤ u | ph ≤ u′] (which is well-defined by
the probability quotient),

P
[
p ∈ D | ph ≤ u′

]
= E

[
f(ph) | ph ≤ u′

]

= γE [f(ph) | ph ≤ u] + (1− γ)E
[
f(ph) | u < ph ≤ u′

]

≥ E [f(ph) | ph ≤ u] = P [p ∈ D | ph ≤ u] ,

where we used in the inequality that f is nondecreasing.

Finally, Benjamini and Yekutieli (2001) (Section 3.1 therein) proved that the p-value
family corresponding to a finite Gaussian random vector are (finite) strong PRDS as soon
as all the coefficient of the covariance matrix are non-negative. This equivalently proves the
following result:

Lemma 3.6. Let p(X) = (ph(X))h∈H be a p-value process of the form ph(X) = G(Xh),
h ∈ H, where X = (Xh)h∈H is a Gaussian process and where G is continuous decreasing from
R to [0, 1]. Assume that the covariance function Σ of X satisfies

∀h, h′ ∈ H, Σ(h, h′) ≥ 0. (10)

Then the p-value process is finite dimensional strong PRDS (on any subset).

4 Control of the FDR

In this section, our main result is stated and then illustrated with several examples.

4.1 Main result

The following theorem establishes our main result on sufficient conditions to ensure FDR
control at a specified level for step-up procedures. It is proved in Section 5.

Theorem 4.1. Assume that the hypothesis space H satisfies (A1) and is endowed with a
finite measure Λ. Let p(X) = (ph(X))h∈H be a p-value process satisfying the conditions (A2)
and (A3). Denote R the step-up procedure on (H,Λ) associated to a threshold function of
the product form ∆(h, r) = απ(h)β(r), with α ∈ (0, 1), β a non-decreasing right-continuous
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shape function and π a probability density function on H with respect to Λ. Then for any
P ∈ P, letting Π(H0(P )) :=

∫
h∈H0(P ) π(h)dΛ(h), the inequality

FDR(R,P ) ≤ α Π(H0(P )) (≤ α) (11)

holds in either of the two following cases:

1. β(x) = x and the p-value process p is finite dimensional weak PRDS on H0(P ) for the
distribution P ;

2. the function β is of the form

βν(x) =

∫ x

0
udν(u) , (12)

where ν is an arbitrary probability distribution on (0,∞) .

Since π is taken as a probability density function on H with respect to Λ, the FDR in (11)
is upper bounded by αΠ(H0) ≤ αΠ(H) = α, so that the corresponding step-up procedure
provides FDR control at level α. As an illustration, a typical choice for π is the constant
probability density function ∀h ∈ H, π(h) = 1/Λ(H) =M−1.

According to the standard philosophy of (multiple) testing, while the FDR is controlled
at level α as in (11), we aim to have a procedure that rejects a volume of hypotheses as
large as possible. In that sense, choosing a step-up procedure with β(x) = x always leads
to a better step-up procedure than choosing β(x) of the form (12), because

∫ x
0 udν(u) ≤

x. Hence, in Theorem 4.1, the PRDS assumption allows us to get a result which is less
conservative (i.e. rejecting more) than under arbitrary dependencies. Therefore, when we
want to apply Theorem 4.1, an important issue is to obtain, if possible, the finite dimensional
PRDS condition, see the examples of Section 4.2. When the PRDS assumption does not hold,
we refer to Blanchard and Roquain (2008) for an extended discussion on choices of the shape
function β of the form (12) (which can be suitably adapted to the uncountable case).

4.2 Applications

4.2.1 FDR control for testing the mean of a Gaussian process

Consider the multiple testing setting of Example 2.2. More specifically, we consider here the
particular case where we observe {Xt, t ∈ [0, 1]d} a Gaussian process with measurable mean
µ, with unit variance and covariance function Σ. Recall that the problem is to test for all
t ∈ [0, 1]d the hypothesis Ht : “µ(t) ≤ 0”. Taking for Λ the d-dimensional Lebesgue measure,
the FDR control at level α of a step-up procedure of shape function β and weight function
π(h) = 1 can be rewritten as

E



Λ

({
t ∈ [0, 1]d : µ(t) ≤ 0, Φ(Xt) ≤ αβ(r̂(X))

})

Λ

({
t ∈ [0, 1]d : Φ(Xt) ≤ αβ(r̂(X))

})


 ≤ α , (13)

where Φ is the upper-tail distribution function of a standard Gaussian variable and

r̂(X) = max

{
r ∈ [0, 1] : Λ

({
t ∈ [0, 1]d : Φ(Xt) ≤ αβ(r)

})
≥ r

}
.

Thus, Theorem 4.1 and Lemma 3.6 entail the following result.

14



Corollary 4.2. For any jointly measurable Gaussian process {Xt}t∈[0,1]d over [0, 1]d with
a measurable mean µ and unit variances, the FDR control (13) holds in either of the two
following cases:

• β(x) = x and the covariance function of the process is coordinates-wise non-negative,
that is, satisfies (10);

• β is of the form (12), under no assumption on the covariance function.

For instance, any Gaussian process with continuous paths is measurable and thus can be
used in Corollary 4.2. More generally, Lemma A.2 states that any Gaussian process with a
covariance function Σ(t, t′) such that

∀t ∈ [0, 1]d, lim
t′→t

Σ(t′, t) = Σ(t, t) and lim
t′→t

Σ(t′, t′) = Σ(t, t) = 1

has a measurable modification and hence can be used in Corollary 4.2.

4.2.2 FDR control for testing the signal in a Gaussian white noise model

We continue Example 2.3, in which we observe the Gaussian process X defined by Xg =∫ 1
0 g(t)f(t)dt+

∫ 1
0 g(t)dBt, g ∈ L2([0, 1]), whereB is a Wiener process on [0, 1] and f ∈ C([0, 1])

is a continuous signal function. Remember that we aim at testing Ht : “f(t) ≤ 0” for any
t ∈ [0, 1], using the integration of the process against a smoothing kernel Kt. Assuming

condition (2) holds, the p-value process is obtained via (3) as pt(X) = Φ
−1

(Yt), where Yt =

v
−1/2
K,t (XKt − δt,ηcK,t) is a Gaussian process. Applying Lemma 3.6, we can prove that the
p-value process defined by (3) is finite dimensional strong PRDS (on any subset) by checking
that the covariance function of (Yt)t has nonnegative values: the latter holds because the
kernelK has been taken nonnegative and ∀t, s, Cov(Yt, Ys) = c

∫ 1
0 K((t−u)/η)K((s−u)/η)du,

for a nonnegative constant c. As a consequence, Theorem 4.1 shows that a step-up procedure
using β(x) = x controls the FDR.

To illustrate this result, let us consider a simple particular case where the kernel K is
rectangular, i.e.,K(s) = 1{|s| ≤ 1}/2 and f is L-Lipschitz. Also, to avoid the boundary effects
due to the kernel smoothing, we assume that the observation X is made against functions of
L2([−1, 2]) while the test ofHt : “f(t) ≤ 0” has only to be performed for t ∈ [0, 1] only. In that
case, for t ∈ [0, 1], δt,η = Lη, cK,t = η, vK,t = η/2, so that Yt = (2η)−1/2(Zt+η − Zt−η − Lη2).
Therefore, the following statement holds.

Corollary 4.3. Let us consider the Gaussian process Zt =
∫ t
−1 f(s)ds+Bt, t ∈ [−1, 2], where

B is a Wiener process on [−1, 2] and f is a L-Lipschitz function on [−1, 2] (L > 0). Let
η ∈ (0, 1] and Yt = (2η)−1/2(Zt+η −Zt−η −Lη2). Denote the Lebesgue measure on [0, 1] by Λ.
Consider the volume rejection of the step-up procedure using π(t) = 1 and β(x) = x, that is,

r̂(X) = max

{
r ∈ [0, 1] : Λ

({
t ∈ [0, 1] : Φ(Yt) ≤ αr

})
≥ r

}
,

where Φ denotes the upper-tail distribution function of a standard Gaussian variable. Then
the following FDR control holds:

E



Λ

({
t ∈ [0, 1] : f(t) ≤ 0, Φ(Yt) ≤ αr̂(X)

})

Λ

({
t ∈ [0, 1] : Φ(Yt) ≤ αr̂(X)

})


 ≤ α . (14)
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4.2.3 FDR control for testing the c.d.f.

Consider the testing setting of Example 2.4 where we aim at testing whether “F (t) ≤ F0(t)”
for any t in an interval I ⊂ R. Lemma C.1 states that the p-value process defined by (4) is
finite dimensional weak PRDS (on any subset). As a consequence, Theorem 4.1 applies and
leads to a control of the FDR.

For instance, let us consider the simple case where I = [0, 1], F0(t) = t and Λ is the
Lebesgue measure on [0, 1]. In this case, for any k ∈ {1, . . . ,m}, the function Gt(k) =
P(Zt ≥ k), with Zt ∼ B(m, t), is continuous increasing in the variable t ∈ [0, 1]. Moreover,
for any t ∈ (0, 1), the function Gt(k) is decreasing in k = 0, . . . ,m. Therefore, denoting
0 = X(0) ≤ X(1) ≤ . . . ≤ X(m) ≤ X(m+1) = 1 the order statistics of X1, . . . , Xm, the p-value
process t 7→ pt(X) = Gt(|{1 ≤ i ≤ m : Xi ≤ t}|) is equal to 1 on [0, X(1)), is increasing on
each interval (X(j), X(j+1)], j = 1, . . . ,m, and is left-discontinuous and right-continuous in
each X(j), 1 ≤ j ≤ m, with a left limit larger than pX(j)

(X) = GX(j)
(j) (see Figure 1).

As a consequence, for any threshold u ∈ (0, 1), we obtain the following relation for the
Lebesgue measure γ(u) of the level set {t ∈ [0, 1] : pt(X) ≤ u}:

γ(u) =
m∑

j=0

1{GX(j)
(j) ≤ u} Λ

(
{t ≥ X(j) : Gt(j) ≤ u and t < X(j+1)}

)

=
m∑

j=0

(X(j+1) ∧ tj(u)−X(j))+ (15)

where tj(u), j = 0, . . . ,m is the unique solution of the equation Gt(j) = u, which can be easily
computed numerically. Choosing for simplicity a uniform weighting π(x) ≡ 1, the choice of
the rejection threshold given by the linear step-up procedure is then û = αr̂, where r̂ is the
largest solution of the equation γ(αr) = r. To sum up, we have shown the following result:

Corollary 4.4. Let X = (X1, . . . , Xm) be a vector of m i.i.d. real random variables of
common continuous c.d.f. F . Consider (pt(X))t∈[0,1] the p-value process pt(X) = Gt(|{1 ≤
i ≤ m : Xi ≤ t}|) for Gt(k) = P(Zt ≥ k), where Zt is a binomial variable of parameters (m, t).
Assume that the hypothesis space [0, 1] is endowed with the Lebesgue measure Λ. Consider
the volume rejection of the step-up procedure given by

r̂(X) = max {r ∈ [0, 1] : γ(αr) ≥ r} , (16)

where γ(·) is defined by (15). Then the following FDR control holds:

E

[
Λ
(
{t ∈ [0, 1] : F (t) ≤ t, pt(X) ≤ αr̂(X)}

)

Λ
(
{t ∈ [0, 1] : pt(X) ≤ αr̂(X)}

)
]
≤ α. (17)

4.2.4 FDR control for testing the intensity of a Poisson process

Let us consider the testing setting of Example 2.5. Lemma C.2 states that the p-values process
is finite dimensional strong PRDS (on any subset). Thus, it is also finite dimensional weak
PRDS (on any subset) by Lemma 3.5, and Theorem 4.1 leads to a control of the FDR.

Now, we aim at finding a closed formula for the linear step-up procedure (β(x) = x)
using the p-value process (pt(X))t. Let us consider the particular case where the benchmark
intensity λ0(·) is constantly equal to some λ0 > 0 while λ(·) is L-Lipschitz. Also, to avoid
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the boundary effects, assume that the process (Nt)t is observed for t ∈ [−1, 2] while Ht:
“λ(t) ≤ λ0” is tested only for t ∈ [0, 1]. In this case, the p-value process is simply given by

pt(X) = G
(
Nt+η −Nt−η

)
, (18)

where for any k ∈ N, G(k) denotes P [Z ≥ k] for Z a Poisson distribution of parameter
2ηλ0 + Lη2 (note that G(·) is independent of t). Consider the jumps {Tj}j of the process
(Nt)t∈[−1,2] and the set S = {si}2≤i≤m of the the distinct and ordered values of the set
∪j{Tj − η, Tj + η} ∩ (0, 1). Moreover, we let s1 = 0 and sm+1 = 1. Next, since the p-value
process is constant on each interval [si, si+1), 1 ≤ i ≤ m, we have for any u ≥ 0,

Λ ({t ∈ [0, 1] : pt(X) ≤ u}) =
m∑

i=1

(si+1 − si)1{psi(X) ≤ u}

=

m∑

k=1

wk1{qσ(k)(X) ≤ u},

where we let qi(X) = psi(X), where σ is a permutation of {1, . . . ,m} such that qσ(1) ≤ . . . ≤
qσ(m) and where wk = sσ(k)+1 − sσ(k) > 0 can be interpreted as a “weighting” associated to
qσ(k). As a consequence, we get

r̂(X) = max

{
r ∈ [0, 1] :

m∑

ℓ=0

wℓ1{qσ(ℓ)(X) ≤ αr} ≥ r

}

= max

{
k∑

ℓ=0

wℓ, for k ∈ {0, . . . ,m} s.t. qσ(k)(X) ≤ α

k∑

ℓ=0

wℓ

}
, (19)

because since r̂(X) is a maximum, it is of the form
∑k

ℓ=0wℓ, k ∈ {0, . . . ,m}. Note that we
should let qσ(0) = 0 and w0 = 0 to cover the case r̂(X) = 0. Relation (19) only involves a
finite number of variables. Thus, r̂(X) can be easily computed in practice. This is illustrated
in Figure 2.

We have proved the following result:

Corollary 4.5. Let X = (Nt)t∈[−1,2] be a Poisson process with an intensity λ : [−1, 2] → R+

L-Lipschitz (L > 0) and let λ0 > 0. For η ∈ (0, 1], consider the p-value process {pt(X)}t∈[0,1]
given by (18). Assume that the hypothesis space [0, 1] is endowed with the Lebesgue measure
Λ. Then r̂(X) defined by (19) satisfies the following:

E

[
Λ
(
{t ∈ [0, 1] : λ(t) ≤ λ0, pt(X) ≤ α r̂(X)}

)

Λ
(
{t ∈ [0, 1] : pt(X) ≤ α r̂(X)}

)
]
≤ α. (20)

To illustrate Corollary 4.5, Figure 2 displays the case where λ(t) is a truncated triangular
signal. The choice of the bandwidth η has been made manually, see Section 6.2 for a discussion
on this point.

Remark 4.6. Up to increase the set S = {si}i so that t 7→ 1{λ(t) ≤ λ0} is constant over each
[si, si+1), the FDR control (20) can be rewritten as

E

[∑m
i=1(si+1 − si)1{λ(si) ≤ λ0}1{psi(X) ≤ α r̂(X)}∑m

i=1(si+1 − si)1{psi(X) ≤ α r̂(X)}

]
≤ α. (21)
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Hence, the procedure (19) appears as controlling the discrete FDR-weighting on {1, . . . ,m}
where the weight for rejecting “λ(si) ≤ λ0” is (si+1 − si) and where the initial p-values are
qi(X) = psi(X). The rationale behind this is that if qi(X) = psi(X) is below r̂(X), then so
are all pt(X), t ∈ [si, si+1). Hence a rejection for a p-value qi(X) = psi(X) accounts for the
length of the entire interval in the FDR. From an intuitive point of view, this means that the
type I error importance in the FDR is larger for “isolated” points of the process.

Finally, let us underline that (discrete) weighted FDR control results of the type (21) have
been found in Benjamini and Hochberg (1997) and Blanchard and Roquain (2008), but only
for a weighting that does not dependent on the data. Here, since {si}i depends on X, these
former results do not apply and Corollary 4.5 is a novel finding.

5 Proof of Theorem 4.1

5.1 Two conditions for controlling the FDR

Similarly to Proposition 2.7 of Blanchard and Roquain (2008) (which we refer to as BR08 for
short from now on), we can prove that the FDR control FDR(R,P ) ≤ αΠ(H0(P )) holds true
for any P ∈ P as soon as the two following sufficient conditions hold:

• the multiple testing procedure R satisfies the “self-consistency condition”

R(x) ⊂ {h ∈ H : ph(x) ≤ απ(h)β(Λ(R(x)))} for P -almost all x ∈ X
(SC(α, π, β))

• for any P ∈ P, for any h ∈ H0(P ) the couple of real random variables (Uh, V ) :=
(ph(X),Λ(R(X))) satisfies the “dependency control condition”

∀c > 0, E

[
1{Uh ≤ cβ(V )}

V
1{V > 0}

]
≤ c . (DC(β))

The proof is as follows: from the definition (7) of the FDR and using Fubini’s theorem,
we have

FDR(R,P ) = E

[
Λ(R ∩H0)

Λ(R)
1{Λ(R) > 0}

]

= E

[∫

h∈H0

1{h ∈ R}

Λ(R)
1{Λ(R) > 0}dΛ(h)

]

=

∫

h∈H0

E

[
1{h ∈ R}

Λ(R)
1{Λ(R) > 0}

]
dΛ(h)

≤

∫

h∈H0

E

[
1{ph ≤ απ(h)β(Λ(R))}

Λ(R)
1{Λ(R) > 0}

]
dΛ(h)

≤ α

∫

h∈H0

π(h)dΛ(h),

where we have used the shortened notation R for R(X) and ph for ph(X), and used successively
conditions (SC(α, π, β)) and(DC(β)) for the two above inequalities. Observe that the use of
Fubini’s theorem is granted by the measurability assumption of Definition 2.1.

Therefore, to obtain the FDR bound of Theorem 4.1 in each case, we simply have to check
conditions (SC(α, π, β)) and (DC(β)) in the different settings.
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5.2 Any step-up procedure satisfies (SC(α, π, β))

From the definition of a step-up procedure, for all ε > 0, we have Λ(L∆(r̂)) ≤ Λ(L∆(r̂+ε)) <
r̂ + ε. This entails that r̂ satisfies Λ(L∆(r̂)) = r̂. Hence the step-up procedure R satisfies
SC(α, π, β) with equality.

We now check that any step-up procedure is a multiple testing procedure, that is, that
(ω, h) 7→ 1{h ∈ R(X(ω))} = 1{ph(X(ω)) ≤ απ(h)β(r̂(X(ω)))} is (jointly) measurable. From
(A2) and since β and π are measurable, it is enough to check that ω 7→ r̂(X(ω)) is measurable.
For any x ∈ X(Ω), let us consider the function

f : r ∈ R+ 7→ Λ(L∆(x, r)) =

∫

H
1{ph(x) ≤ απ(h)β(r)}dΛ(h).

We observe that f is right-continuous and nondecreasing (because β is) and bounded, and
that r̂ = max{r ≥ 0 : f(r) ≥ r} . Applying Lemma D.2, we deduce that for any x ∈ X(Ω),

r̂(x) = inf
ε>0,ε∈Q

sup
{
r ∈ Q+ : Λ(L∆(x, r)) ≥ r − ε

}

= inf
ε>0,ε∈Q

sup
r∈Q+

(
r1{Λ(L∆(x, r)) ≥ r − ε}

)
. (22)

Since from (A2), for all ε > 0, ε ∈ Q and r ∈ Q+, the function

ω 7→r1{Λ(L∆(X(ω), r)) ≥ r − ε} = r1{Λ
(
{h ∈ H : ph(X(ω)) ≤ απ(h)β(r)}

)
≥ r − ε}

is measurable, expression (22) implies that ω 7→ r̂(X(ω)) is measurable. Hence, a step-up
procedure satisfies the measurability requirements of Definition 2.1.

5.3 Conditions implying (DC(β))

We use the following lemma which was proved in (BR08) (see Lemma 3.2, items (ii,iii) therein):

Lemma 5.1. Let (U, V ) be a couple of nonnegative random variables such that U is stochas-
tically lower bounded by a uniform variable on [0, 1] , i.e. ∀t ∈ [0, 1],P(U ≤ t) ≤ t . Then
the dependency control condition DC(β) is satisfied by (U, V ) in either one of the following
situations:

(i) β(x) = x and

∀r ∈ R+, u 7→ P(V < r | U ≤ u) is nondecreasing on {u : P (U ≤ u) > 0} . (23)

(ii) The shape function β is of the form (12).

The point (ii) above, together with the results of the two previous sections, establishes
point 2 of Theorem 4.1. To establish point 1 and finish the proof, we have to prove that (23)
holds in the finite dimensional weak PRDS dependence context, which is done in the following
proposition:

Proposition 5.2. Assume that the p-values process p = (ph, h ∈ H) is finite dimensional
weak PRDS on H0(P ) for any P ∈ P. Consider R the step-up procedure defined by Defini-
tion 3.2 with β(x) = x. Then for any P ∈ P, for any h ∈ H0(P ), the couple of variables
(Uh, V ) = (ph,Λ(R)) satisfies (23) and thus DC(β) holds for β(x) = x .

20



Proof. In the above statement and the present proof, we use the shortened notation R, ph,
and L∆(r) for the random quantities R(X), ph(X), and L∆(X, r), respectively. The goal of
the proof is to establish (23), that is for any h0 ∈ H0 (h0 is assumed to be fixed in H0 in the
rest of the proof), for any t, and 0 ≤ u ≤ u′ with P(ph0 ≤ u) > 0 :

P [Λ(R) < t | ph0 ≤ u] ≤ P
[
Λ(R) < t | ph0 ≤ u′

]
;

From Definition 3.2, the real random variable Λ(R) can be rewritten as Λ(R) = r̂ = max{r :

f(r) ≥ r} with f : r 7→ Λ(L∆(r)). Furthermore, denoting Gu =
1{ph0≤u}

P[ph0≤u]
, we are equivalently

aiming at proving that for any t and 0 ≤ u ≤ u′ with P(ph0 ≤ u) > 0 :

E [1{r̂ < t}Gu] ≤ E [1{r̂ < t}Gu′ ] . (24)

By using Lemma B.1 (and the notation therein) there exists a fixed sequence of finitely
supported measures Λn on H such that, denoting r̂n,k = max{r ≥ 0 : Λn(L∆(r)) ≥ r− k−1},
it holds that

r̂ = lim
k→∞

r̂+k = lim
k→∞

r̂−k almost surely, (25)

where we let r̂+k = lim supn→∞ r̂n,k and r̂−k = lim infn→∞ r̂n,k.
Let Sn be the (finite) support of Λn and S ′

n = Sn ∪ {h0}. Writing r̂n,k as a function of
the finite p-value set {ph, h ∈ S ′

n}, the function r̂n,k : z = (zh)h∈S′

n
∈ [0, 1]S

′

n 7→ r̂n,k(z) is

measurable (where the space [0, 1]S
′

n is endowed with the standard product Borel σ-field),
and is additionally non-increasing in each p-value. Hence the set {z = (zh)h∈S′

n
: r̂n,k(z) <

t + k−1} is a non-decreasing measurable subset of [0, 1]S
′

n . Using that the p-value process
p = (ph, h ∈ H) is finite dimensional weak PRDS on H0, the p-values (ph, h ∈ S ′

n) are PRDS
on H0 ∩ S ′

n, which implies that for any t ≥ 0 and u ≤ u′ with P(ph0 ≤ u) > 0 ,

E
[
1{r̂n,k − k−1 < t}Gu

]
≤ E

[
1{r̂n,k − k−1 < t}Gu′

]
. (26)

Now, to prove (24), it suffices to carefully make n and k tend to infinity. By Fatou’s lemma
and by (26), we have for all k ≥ 1 :

E

[
lim inf

n
1{r̂n,k − k−1 < t}Gu

]
≤ lim inf

n
E
[
1{r̂n,k − k−1 < t}Gu

]

≤ lim sup
n

E
[
1{r̂n,k − k−1 < t}Gu′

]

≤ E

[
lim sup

n
1{r̂n,k − k−1 < t}Gu′

]
.

Notice that the following inclusions of events hold: {r̂+k < t+k−1} ⊂ lim infn{r̂n,k < t+k−1},
lim supn{r̂n,k < t+ k−1} ⊂ {r̂−k ≤ t+ k−1}. Hence, we obtain for all k:

E
[
1{r̂+k − k−1 < t}Gu

]
≤ E

[
1{r̂−k − k−1 ≤ t}Gu′

]
.

Then, if t is such that P [r̂ = t] = 0, the above expression can be rewritten as

E
[
1{r̂+k − k−1 < t}Gu1{r̂ 6= t}

]
≤ E

[
1{r̂−k − k−1 ≤ t}Gu′1{r̂ 6= t}

]
.

We now let k → ∞ in the above expression by using (25) and the dominated convergence
theorem: for any u ≤ u′ with P(ph0 ≤ u) > 0, and any t /∈ D := {s ≥ 0 : P [r̂ = s] > 0}, we
have

E [1{r̂ < t}Gu] ≤ E [1{r̂ < t}Gu′ ] . (27)
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Since the above expectations may be interpreted as (conditional) probabilities, the LHS and
RHS in (27) are left-continuous functions of t. Using that R+ ∩Dc is dense in R+ (because
D is at most countable), we obtain that (27) holds for any t. Finally, the condition (DC(β))
comes from Lemma 5.1.

6 Discussion

6.1 FDR control for self-consistent, non step-up procedures

In some cases, for instance, after a discretization in r or under a global constraint over the
admissible geometry of sets of rejected hypotheses, the procedure of interest may not be of
the step-up form, while still satisfying the more general condition (SC(α, π, β)) (called self-
consistency, see Section 5.1). In that situation, Theorem 4.1 does not apply, because the
procedure is not step-up. We proved an extension of Theorem 4.1 holding more generally
for (nonincreasing) self-consistent procedures, but point 1 of the theorem is established only
under a stronger PRDS condition called general PRDS. (On the other hand, the fact that
point 2 of Theorem 4.1 remains valid under the more general condition (SC(α, π, β)) is quite
immediate.) The general PRDS condition is defined in terms of the entire process X and
not only its finite dimensional projections. Therefore, it is substantially more technical than
finite dimensional PRDS. In particular, it is an open question to characterize when does
finite dimensional PRDS imply general PRDS (we provide some sufficient conditions). For
simplicity, we deferred the corresponding study to a supplementary material (Blanchard et al.,
2011).

6.2 Adaptive procedures

This work has focused on suitable control of the type I error. Under this constraint, the
quality of a testing procedure depends on its power, that is, its ability to reject as many false
hypotheses as possible. Ideally, power should be improved by making procedures adaptive
with respect to various types of underlying regularity structure:

• adaptivity of single tests to various alternatives

• adaptivity to the proportion of true nulls

• adaptivity to the dependence structure of the p-values

These issues have received significant attention in recent literature on testing over discrete
space of hypotheses; we discuss them briefly in the light of the framework developed in the
present paper.

Adaptivity of single tests
The power of a multiple testing procedure depends primarily on the power of the un-

derlying single tests and p-values it is built upon. It is of course desirable to have powerful
individual tests in the first place. While this issue actually pertains to the domain of single
hypothesis testing, and is to this extent quite independent of the methodology studied here,
we briefly discuss this issue in the light of the specific examples studied here.

In the Gaussian white noise or Poisson model, the p-value process depends on the band-
width η and on the regularity of the signal (Lipschitz constant L). The parameter L is often
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unknown and η should also be chosen based on the (unknown) regularity of the signal in
order to produce a powerful test. One can therefore ask whether we can build individual tests
that are adaptive to the regularity of the signal. Unfortunately, as argued in Low (1997) for
adaptive confidence intervals, this is a delicate issue because the null hypothesis “f(t0) ≤ 0”
(for a t0 ∈ [0, 1]) is a “huge” non-parametric class. This contrasts with the situation where
the null is “∀t ∈ [0, 1], f(t) ≤ 0”, for which adaptive non parametric testing can be applied,
see, e.g., Baraud et al. (2005); Durot and Rozenholc (2006); Horowitz and Spokoiny (2001);
Butucea and Tribouley (2006). However, recent work Picard and Tribouley (2000); Giné and
Nickl (2010); Nickl and Hoffmann (2011) showed that adaptive confidence intervals can be
designed under some additional restrictions on the signal. Correspondingly adaptive p-values
can be derived, though whether they satisfy or not the PRDS condition would have to be
checked.

Adaptivity to Π(H0)
The main result of the present paper indicates that we can increase the power of the

step-up procedure by considering α0 = α/Π(H0(P )) > α instead of α as pre-specified level
in the procedure. The latter still leads to a FDR control at level α because this yields
FDR(R,P ) ≤ α0Π(H0(P )) = α. However, since α0 depends on P , this parameter is unknown:
this is only an “oracle” value which is not accessible in practice. In the case of finite hypotheses
set, various approaches have been proposed to build multiple-testing procedures that are
adaptive to π0 := Π(H0(P )), see, e.g., Benjamini et al. (2006); Sarkar (2008); Blanchard and
Roquain (2009); Finner et al. (2009). It is naturally an interesting perspective to extend this
kind of methodology to the present continuous context. Note however, that the mentioned
works in the discrete case almost always posit joint independence of the p-values, which we
recall is not an acceptable assumption when the hypotheses space is uncountable. Therefore,
this extension is not straightforward.

Adaptivity to the dependence structure
Another source of possible power improvement for multiple testing procedures is to take

into account the dependence structure of the concerned statistics more finely than through
the fairly broad PRDS assumption. This point is particularly relevant when testing over a
continuum, as hypotheses which are “close” to each other will have very correlated statistics.
The extent to which the upper bound on the main theorem can be improved depends in a
complex way on this structure. In the discrete case, this issue has been studied for elementary
settings, such as equi-correlated Gaussian statistics, see, e.g., Finner et al. (2007); Roquain
and Villers (2011); Delattre and Roquain (2011). In the present continuous setting, studying
precisely how dependence structures coming from stochastic process models affect the value
of the FDR is an issue that remains to be explored.

A Auxiliary results pertaining to measurability issues

Lemma A.1 (Revuz and Yor (1991) p. 36). Let (Zt)t∈[0,1] a real stochastic process on (Ω,F,P)
where [0, 1] is endowed with its Borel σ-field and the Lebesgue measure Λ. Suppose that for
all t, Zt is square-integrable and VarZt > 0. Then, if the variables of (Zt)t∈[0,1] are mutually
independent, the application (ω, t) 7→ Zt(ω) is not jointly measurable in its variables.
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Proof. We essentially reproduce here an argument given p. 36 of Revuz and Yor (1991).
Without loss of generality, let us assume that ∀u ∈ [0, 1], EZu = 0 and Zu ∈ [0, 1]. If the joint
measurability assumption holds, we can use Fubini’s theorem: for all t ∈ [0, 1],

E

[(∫ t

0
ZudΛ(u)

)2
]
= E

[∫

[0,t]2
ZuZvdΛ

⊗2(u, v)

]

=

∫

[0,t]2
E [ZuZv] dΛ

⊗2(u, v)

=

∫

[0,t]2
1{u = v}dΛ⊗2(u, v) = 0.

Therefore, for all t, a.s. in ω, we have
∫ t
0 Zu(ω)dΛ(u) = 0. Which implies (by separability

of [0, 1] and applying the Lebesgue differentiation theorem) that a.s. in (t, ω), Zt(ω) = 0. If
follows that

0 = E

[∫ 1

0
Z2
t dΛ(t)

]
=

∫ 1

0
Var(Zt)dΛ(t),

which contradicts that for all t, VarZt > 0.

The next lemma is a variation of Theorem 30 in Dellacherie and Meyer (1975).

Lemma A.2. Let H be metric σ-compact space, endowed with the Borel σ-field H and take
a real stochastic process Z = (Zh, h ∈ H) defined on (Ω,F,P) and satisfying

∀h0 ∈ H, Zh → Zh0 in probability when h→ h0. (28)

Then there exists a process Z ′ = (Z ′
h, h ∈ H) which is jointly measurable in (ω, h) and which

is a modification of Z = (Zh, h ∈ H), that is, such that for any h ∈ H, for P-almost every ω,
Zh(ω) = Z ′

h(ω).

Proof. Let assume first that the space H is compact. First, considering a metric of probability
convergence, the convergence (28) is uniform and thus ∀δ > 0, supd(h,h′)≤ε P(|Zh − Zh′ | >

δ)
ε→0
−−−→ 0. Thus there exists εn → 0 such that

sup
d(h,h′)≤εn

P(|Zh − Zh′ | > n−1) ≤ n−2.

Next, taking a finite partition {An
i }1≤i≤Nn such that An

i is measurable and the diameter of
each An

i is smaller than εn and fixing hni ∈ An
i for each i, we may define for each h ∈ H and

ω ∈ Ω,

Zn
h (ω) =

Nn∑

i=1

1{h ∈ An
i }Zhn

i
(ω).

Clearly, the function (ω, h) 7→ Zn
h (ω) is jointly measurable in (ω, h) for each n and we have

for each h ∈ H, ∑

n≥1

P(|Zh − Zn
h | > n−1) ≤

∑

n≥1

n−2 <∞.

Applying the Borel-Cantelli theorem, for all h ∈ H, for P-almost every ω ∈ Ω, Zn
h (ω) converges

to Zh(ω). Hence, Z ′
h(ω) = lim supn Z

n
h (ω) defines a jointly measurable modification of (Zh)h.

The extension to a σ-compact space H is straightforward, by considering H = ∪kHk with Hk

compact and (Hk)k nondecreasing.
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Lemma A.3. Let (Wg)g∈L2([0,1]) be the Gaussian white noise process. Consider K ∈ L2(R)
positive on [−1, 1] and zero elsewhere. Denote by Kt ∈ L2([0, 1]) the function Kt(s) = K((t−
s)/η), where 0 < η ≤ 1. Then there exists a modification of (WKt)t that is jointly measurable
in (ω, t).

Proof. To prove this, we apply Lemma A.2 and check that the process (WKt)t is continuous
in probability i.e. that for any t0 ∈ [0, 1], WKt converges to WKt0

in probability when t

converges to t0. We establish this by simply noting that E(WKtWKt0
) =

∫ 1
0 Kt(s)Kt0(s)ds

and E(W 2
Kt

) =
∫ 1
0 K

2
t (s)ds are continuous functions w.r.t. the variable t, because the map

t ∈ [0, 1] 7→ Kt ∈ L2([0, 1]) is continuous (this is classical and can be proved by using that the
continuous functions are dense in L2([0, 1])).

The following lemma establishes that the FDR of a step-up procedure does not change if
we consider a (measurable) modification of the p-value process.

Lemma A.4. Let us consider a p-value functional p : X → [0, 1]H and two observations
X ′ and X ′′ such that (ph(X

′(ω)))h,ω and (ph(X
′′(ω)))h,ω are (jointly) measurable and are

modification of each other, that is, for all h ∈ H, for P-almost every ω ∈ Ω, we have
ph(X

′(ω)) = ph(X
′′(ω)). Consider the two corresponding step-up procedures R(X ′) and

R(X ′′) defined by Definition 3.2, using the observations X ′ and X ′′, respectively. Then the
following holds:

• for P-almost every ω ∈ Ω, for Λ-almost every h, 1{h ∈ R(X ′(ω))} = 1{h ∈ R(X ′′(ω))};

• for P-almost every ω ∈ Ω, FDP(R(X ′(ω)), P ) = FDP(R(X ′′(ω)), P ) and therefore we
have FDR(R(X ′), P ) = FDR(R(X ′′), P ).

Proof. Let us first observe that by the joint measurability assumption, we may use Fubini’s
theorem to get

(Λ⊗ P)({(h, ω) : ph(X
′(ω)) 6= ph(X

′′(ω))}) = 0,

which implies that, for P-almost every ω ∈ Ω and for Λ-almost every h, for any r ≥ 0, we
have 1{ph(X

′(ω)) ≤ ∆(h, r)} = 1{ph(X
′′(ω)) ≤ ∆(h, r)} and thus r̂(X ′(ω)) = r̂(X ′′(ω)), as

defined in (9). This leads to the desired results.

As an illustration, if the p-value process is for the form ph(X) = fh(Xh) for some family
{fh(·)}h of measurable functions, (ph(X

′))h and (ph(X
′′))h are modifications of each other as

soon as X ′ is a modification of X ′′. As a consequence, Lemma A.4 applies for Examples 2.2
and 2.3 of Section 2.4, which shows that the resulting FDRs do not depend of the (measurable)
modification chosen.

B Finite approximation of step-up procedures

The result presented in this section is used to prove Theorem 4.1 (see Section 5.3) and to
establish measurability issues related to step-up procedures (see Section 5.2). We describe
here how to derive the continuous step-up procedure defined in Definition 3.2 from a limit
of finite step-up procedures. As usual, to lighten notation R, ph, L∆(r), r̂ denote the random
quantities R(X), ph(X), L∆(X, r), r̂(X). The following result holds:
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Lemma B.1. Consider the step-up procedure R = L∆(r̂) on H using Λ and with r̂ defined
in Definition 3.2. Then there exists a sequence of finitely supported measures Λn on H such
that, denoting

r̂n,k = max{r ≥ 0 : Λn(L∆(r))) ≥ r − k−1},

we have

r̂ = lim
k→∞

(
lim sup
n→∞

r̂n,k

)
= lim

k→∞

(
lim inf
n→∞

r̂n,k

)
almost surely.

Proof. We start with the following observation. Consider (Λn) some sequence of measures on
H such that Λn(H) ≡ M . For a fixed realization x ∈ X(Ω) of X, we consider f : r ∈ R+ 7→
Λ(L∆(x, r)) and fΛn : r ∈ R+ 7→ Λn(L∆(x, r))). Clearly, f and fΛn are nondecreasing right-
continuous functions. Using Lemma D.3, we conclude that the desired result holds provided
that, for P -almost all x ∈ X , fΛn converges uniformly to f over [0,M + 1]. It remains thus
to prove that there exists a sequence of finitely supported measures Λn on H such that for
P -almost all x ∈ X ,

lim sup
n→∞

{
sup

r∈[0,M+1]
|Λn(L∆(x, r))− Λ(L∆(x, r))|

}
= 0 . (29)

Denote Y the product space HN, endowed with the product sigma-algebra. For y := (hi)i≥1 ∈

Y some sequence of hypotheses, denote Λ
[y]
n = Mn−1

∑n
i=1 δhi

the suitably scaled uniform
atomic measure on (h1, . . . , hn).

Consider now Y := (Hi)i≥1 ∈ Y an i.i.d. sequence of hypotheses drawn independently of
X according to the probability distribution Λ/M on H. Observe that for any fixed x ∈ X(Ω),
L∆(x, r) = {h ∈ H : ph(x) ≤ απ(h)β(r)} = {h ∈ H : q(h, x) ≤ αβ(r)}, where

q(h, x) :=





ph(x)/π(h) if π(h) > 0;

0 if π(h) = 0 and ph(x) = 0;

αβ(M + 1) + 1 if π(h) = 0 and ph(x) > 0 .

Thus, applying the Glivenko-Cantelli theorem to the i.i.d. variables (q(Hi, x))i, we deduce

that for any x ∈ X (Ω), ζ(x, y) = lim supn→∞ supr∈[0,M+1]

∣∣∣Λ[y]
n (L∆(x, r))− Λ(L∆(x, r))

∣∣∣ = 0

for PY -almost all realizations y of Y . Observe furthermore that for any fixed r, the function

(ω, y) ∈ Ω×HN 7→ Λ[y]
n (L∆(X(ω), r)) =Mn−1

n∑

i=1

1{phi
(X(ω)) ≤ απ(hi)β(r)}

is a (jointly) measurable function of (ω, y) by assumption (A2). The inside supremum in
(29) can be restricted to rational numbers since the functions involved are right-continuous.
Therefore, (ω, y) 7→ ζ(X(ω), y) is a jointly measurable function in its variables. By Fubini’s
theorem, this implies that EX,Y [ζ(X,Y )] = 0; and thus also, for PY -almost all y ∈ Y,
ζ(x, y) = 0 for P -almost all x ∈ X . Since an event of probability 1 is non-empty, there exists
a fixed y ∈ Y such that ζ(x, y) = 0 for P -almost all x ∈ X , which gives rise to a sequence of
finitely supported measures Λn satisfying (29).
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C PRDS statements

Lemma C.1. The p-value process p(X) = {pt(X), t ∈ I} defined by (4) is finite dimensional
weak PRDS (on any subset).

Proof. Let us consider a finite subset (tj)0≤j≤N−1 of I and D a non-decreasing measurable
subset of [0, 1]N . Let us prove that the function u 7→ P [p(X) ∈ D | pt0(X) ≤ u] is non-
decreasing on {u ∈ [0, 1] : P(pt0(X) ≤ u) > 0}. If F (t0) ∈ {0, 1}, the result is trivial.
We thus assume that F (t0) ∈ (0, 1), so that Ut0 = {Gt0(k), k = m,m − 1, . . . , 0} contains
only increasing points of (0, 1]. Without loss of generality, we only have to prove the non-
decreasing property for u ∈ Ut0 . Since Gt0 is decreasing from {0, . . . ,m} to Ut0 , we have
pt0(X) ≤ Gt0(k) ⇐⇒ mFm(X, t0) ≥ k ⇐⇒ X(k) ≤ t0 (letting X(0) = −∞). We thus have to
prove that for any k, 1 ≤ k ≤ m,

P
[
(X(1), . . . , X(m)) ∈ D′ |X(k−1) ≤ t0

]
≥ P

[
(X(1), . . . , X(m)) ∈ D′ |X(k) ≤ t0

]
, (30)

where D′ = {x ∈ Rm : (ptj (x))0≤j≤N−1 ∈ D} is a nondecreasing subset of Rm (because p
is coordinate wise nondecreasing, i.e., x ≤ x′ ⇒ ∀t, pt(x) ≤ pt(x

′)). Using that the family of
order statistics {X(i)}i has positive regression dependency (see Lemma D.1), we derive that
the function f(a, b) = E

[
(X(1), . . . , X(m)) ∈ D′ |X(k−1) = a,X(k) = b

]
is nondecreasing in a

and b. Therefore, denoting γ = P
[
X(k) ≤ t0 |X(k−1) ≤ t0

]
, we get

P
[
(X(1), . . . , X(m)) ∈ D′ |X(k−1) ≤ t0

]
= γE

[
f(X(k−1), X(k)) |X(k−1) ≤ t0, X(k) ≤ t0

]

+ (1− γ)E
[
f(X(k−1), X(k)) |X(k−1) ≤ t0 < X(k)

]

≥ E
[
f(X(k−1), X(k)) |X(k−1) ≤ t0, X(k) ≤ t0

]
,

which provides (30) and concludes the proof.

Lemma C.2. The p-value process p(X) = {pt(X), t ∈ [0, 1]} defined by (5) is finite dimen-
sional strong PRDS (on any subset).

Proof. Let Mt = N(t+η)∧1 −N(t−η)∨0 for any t ∈ [0, 1]. Fix (tj)0≤j≤q−1 ∈ [0, 1]q and assume
t0 ∈ [η, 1− η] (the other case can be proved similarly). Take a nondecreasing measurable set
D ⊂ [0, 1]q and consider the set D′ = {(Mtj )0≤j≤q−1 ∈ Nq : (Gtj (Mtj ))0≤j≤q−1 ∈ D}, which
is nonincreasing on Nq and measurable. We thus aim to prove that for any n ≥ 0,

P
[
(Mtj )0≤j≤q−1 ∈ D′ |Mt0 = n+ 1

]
≤ P

[
(Mtj )0≤j≤q−1 ∈ D′ |Mt0 = n

]
. (31)

Denote by X1 < . . . < XkX , Y1 < . . . < YkY and Z1 < . . . < ZkZ the jump times of
the process (Nt)t∈[0,1] within the (disjoint) subsets [0, t0 − η), [t0 − η, t0 + η] and (t0 + η, 1],
respectively. Remark that kY =Mt0 with our notation. Since (Nt)t∈[0,1] is a Poisson process,
the family {(Xi, 1 ≤ i ≤ kX , kX), (Yi, 1 ≤ i ≤ kY , kY ), (Zi, 1 ≤ i ≤ kZ , kZ)}, contains
mutually independent elements. Furthermore, the distribution of (Y1, . . . , YkY ) conditionally
on kY = n is equal to the distribution of the order statistics of a sample (Y ′

1 , . . . , Y
′
n) of i.i.d.

random variables with common density t 7→ λ(t)/
∫
[t0−η,t0+η] λ(s)ds on [t0 − η, t0 + η] (w.r.t.

the Lebesgue measure). Next, denoting It = [(t− η)∨ 0, (t+ η)∧ 1], for any t ∈ [0, 1], we can
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write:

P
[
(Mtj )0≤j≤q−1 ∈ D′ |Mt0 = n+ 1

]

= P



(

kX∑

i=1

1{Xi ∈ Itj}+
n+1∑

i=1

1{Y ′
i ∈ Itj}+

kZ∑

i=1

1{Zi ∈ Itj}

)

0≤j≤q−1

∈ D′




= P



(

kX∑

i=1

1{Xi ∈ Itj}+
n∑

i=1

1{Y ′
i ∈ Itj}+

kZ∑

i=1

1{Zi ∈ Itj}

)

0≤j≤q−1

∈ D′ − (1{Y ′
n+1 ∈ Itj})j




≤ P



(

kX∑

i=1

1{Xi ∈ Itj}+
n∑

i=1

1{Y ′
i ∈ Itj}+

kZ∑

i=1

1{Zi ∈ Itj}

)

0≤j≤q−1

∈ D′




= P
[
(Mtj )0≤j≤q−1 ∈ D′ |Mt0 = n

]
,

the inequality coming from D′ − (1{Y ′
n+1 ∈ Itj})j ⊂ D′, because D′ is nonincreasing. This

proves (31) and concludes the proof.

D Technical lemmas

Lemma D.1. Let X1, . . . , Xm be a sequence of i.i.d. real random variables of common contin-
uous c.d.f. F . Then, the family of order statistics {X(i)}i has positive regression dependency,
that is, for any non-decreasing measurable set D ⊂ Rm, for any {i1, . . . , ij} ⊂ {1, . . . ,m},

P

[
(X(1), . . . , X(m)) ∈ D |X(i1) = x1, . . . , X(ij) = xj

]

is non-decreasing in (x1, . . . , xj).

Proof. From Proposition 3.2 of Hu et al. (2006) (for instance), it is sufficient to prove that
the family is multivariate total positive of order 2 (MTP2), that is, for every x, y ∈ Rm,

g(x)g(y) ≤ g(x ∨ y)g(x ∧ y),

where g is the density of {X(i)}i with respect to the m-dimensional Lebesgue measure of Rm,
and where the minimum and the maximum are evaluated coordinate-wise. We merely check
this condition: denoting E = {z ∈ Rm : z1 < z2 < . . . < zm}, and f = F ′,

g(x1, . . . , xn)g(y1, . . . , yn) = (m!)2
m∏

i=1

(
f(xi)f(yi)

)
1{x ∈ E}1{y ∈ E}

≤ (m!)2
m∏

i=1

(
f(xi ∨ yi)f(xi ∧ yi)

)
1{x ∨ y ∈ E}1{x ∧ y ∈ E}

= g(x ∨ y)g(x ∧ y).

The next lemmas are elementary.
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Lemma D.2. Let f : R+ → R+ be a bounded, nondecreasing and right-continuous function
and let ρ := max{r ≥ 0 : f(r) ≥ r}. For any ε > 0, the quantities ρ, ρε := max{r ≥ 0 :
f(r) ≥ r − ε} and ρ′ε := sup{r ∈ Q+ : f(r) ≥ r − ε} are well-defined and we have

ρ = inf
ε>0

ρε = inf
ε>0,ε∈Q

ρ′ε.

Proof. Note that the sets entering in the definition of ρ, ρε, ρ
′
ε contain 0 and are upper bounded

by assumption on f . Therefore ρ′ε is well-defined. First defining ρ, ρε as respective suprema,
we have f(ρ) ≥ ρ and f(ρε) ≥ ρε − ε because f is nondecreasing, so that these suprema are
maxima. Also note that ρε ≥ ρ′ε and that these functions are nondecreasing in ε. We first
prove ρ ≤ infε>0,ε∈Q ρ

′
ε: fixing ε > 0, since f is right-continuous at ρ, there is a δ > 0, such

that f(ρ + δ) ≥ f(ρ) − ε/2. Moreover, we can suppose that δ < ε/2 and that ρ + δ ∈ Q

(because Q is dense in R). Therefore,

f(ρ+ δ) ≥ f(ρ)− ε/2 ≥ ρ− ε/2 ≥ (ρ+ δ)− ε,

so that ρ+ δ ≤ ρ′ε, by definition of ρ′ε, and because ρ+ δ ∈ Q. This proves

ρ ≤ inf
ε>0,ε∈Q

ρ′ε ≤ inf
ε>0,ε∈Q

ρε = inf
ε>0

ρε.

To conclude the proof, it is enough now to show that ρ ≥ infε>0 ρǫ. For this, observe that
ε 7→ ρε and ε 7→ f(ρε) are nondecreasing, so that their limits exist in 0. By letting ε converge
to 0 in expression ρε − ε ≤ f(ρε), we get

ρ0+ := lim
ε→0

ρε = lim
ε→0

{ρε − ε} ≤ lim
ε→0

f(ρε) = f(ρ0+),

the last equality coming because f is right-continuous By definition of ρ we deduce ρ ≥ ρ0+ =
infε>0 ρǫ.

Lemma D.3. Let f : R+ → R+ be a nondecreasing right-continuous function, with f ≤ c,
and let ρ = max{r ≥ 0 : f(r) ≥ r} = max{r ∈ [0, c] : f(r) ≥ r}. Suppose that there exists
fn : R+ → R+ a sequence of nondecreasing right-continuous functions, with fn ≤ c, which
converges uniformly to f on [0, c + 1]. By letting for any ε > 0 (ε < 1), ρn,ε = max{r ≥ 0 :
fn(r) ≥ r−ε} = max{r ∈ [0, c+1] : fn(r) ≥ r−ε}, ρ+ε = lim supn ρn,ε and ρ

−
ε = lim infn ρn,ε,

we have
ρ = lim

ε→0
ρ+ε = lim

ε→0
ρ−ε .

Proof. Fix ε > 0 and let us first prove ρ ≤ ρ−ε . Let ηn = supr∈[0,c+1] |fn(r) − f(r)|, so that
ηn → 0. Next, for n large enough, we have ε > ηn, and thus

fn(ρ) ≥ f(ρ)− ηn ≥ ρ− ε,

so that by definition of ρn,ε we get ρ ≤ ρn,ε. Hence ρ ≤ ρ−ε , and then ρ ≤ lim infε ρ
−
ε .

Conversely, let us now prove ρ ≥ lim supε ρ
+
ε , which will conclude the proof. For any n

and ε, we have f(ρn,ε) ≥ fn(ρn,ε)− ηn ≥ ρn,ε − ηn − ε. By taking in the latter expression the
supremum limit in n and then in ε, we derive

lim sup
ε→0

ρ+ε ≤ lim sup
ε→0

lim sup
n→∞

f(ρn,ε) ≤ lim sup
ε→0

f(ρ+ε ) ≤ f(lim sup
ε→0

ρ+ε ),

where we used in the two last inequalities that f is nondecreasing and right-continuous Finally,
by definition of ρ, we get ρ ≥ lim supε ρ

+
ε .
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