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[1] Using 3 years worth of IASI (the Infrared Atmospheric
Sounder Interferometer aboard METOP‐A) measurements,
we have identified 24 major events of uplift and transport
of anthropogenic sulfur dioxide. These were all first
observed over East Asia, and could be traced for over
60 hours. On 7 November 2010 a sulfur dioxide plume
was observed over Northeast China and tracked for five
days to North America. We discuss this event in detail
with respect to build up; uplift and in‐plume chemistry.
We found a host of trace gas enhancements in the plume
(SO2, CO, PAN, CH3OH, HCOOH and C2H2) . A
reasonable to very good agreement was found with
MOZART‐4 modeled ambient columns for all species
except methanol, which was underestimated by the model
by an order of magnitude. We calculate correlations of
the different species and give observational evidence of
secondary in‐plume formation of methanol and PAN.
Citation: Clarisse, L., M. Fromm, Y. Ngadi, L. Emmons,
C. Clerbaux, D. Hurtmans, and P.‐F. Coheur (2011), Interconti-
nental transport of anthropogenic sulfur dioxide and other pollu-
tants: An infrared remote sensing case study, Geophys. Res.
Lett., 38, L19806, doi:10.1029/2011GL048976.

1. Introduction

[2] Transport of pollution has an impact on atmospheric
composition, chemistry and air quality across continents
from the boundary layer up to stratosphere. Its importance
has been established through a large number of model
studies and in situ measurements [see, e.g., Liang et al.,
2004; Heald et al., 2003; Talbot et al., 2003; Kritz et al.,
1990; Chin et al., 2007; Stohl, 2001; Fiedler et al., 2009;
Barrie, 1986; Law and Stohl, 2007; Jaffe et al., 1999].
Outflow from East Asia is largely controlled by monsoons
and throughout the year reaches North America either via
the North Pacific or via the Arctic (mostly in the winter)
[Stohl et al., 2002]. Uplift and export mechanisms have a
strong seasonal variability with spring being the most
favorable period for transpacific transport due to active
weather associated with frequent ascending air parcels and

fast moving westerly winds [Liu et al., 2003; Russo et al.,
2003].
[3] The IASI infrared sounder [Clerbaux et al., 2009]

aboard MetOp‐A has twice a day global coverage, which
allows detection and analysis of the evolution of atmospheric
plumes such as those arising from a volcanic eruption
[Clarisse et al., 2008] or biomass burning [Coheur et al.,
2009]. Here for the first time we use IASI to study trans-
port of anthropogenic pollution plumes and analyze a par-
ticular plume first spotted above East Asia on 7 November
2010. IASI has a good spectral resolution, which permits
measurement of a variety of trace gases [Clarisse et al.,
2011]. For this event we were able to measure plume
enhancements of carbon monoxide (CO), sulfur dioxide
(SO2), peroxyacetyl nitrate (PAN), formic acid (HCOOH),
acetylene (C2H2), methanol (CH3OH) and their evolution in
time as the plume diluted and underwent chemistry and
washout. It is the first study of this type as satellite studies of
Asian anthropogenic outflow have traditionally been
focused on CO [Turquety et al., 2008; Zhang et al., 2006]
and aerosols [Yu et al., 2008; Di Pierro et al., 2011].
Infrared sounders are generally not sensitive to anthropo-
genic SO2; and we therefore start section 2 by giving an
overview of the frequency and seasonality of such anthro-
pogenic SO2 observations, before describing the event
observed in November 2010. In section 3 we give a quan-
titative analysis of the event for the reported trace species
and briefly compare with outputs from the MOZART
model.

2. Anthropogenic SO2 and the November Event

[4] While UV‐vis instruments routinely measure anthro-
pogenic SO2 [Lee et al., 2011], this is not the case for
infrared instruments which have limited sensitivity to
boundary layer SO2. For the n3 absorption band of SO2

(which is the strongest absorption band in the infrared) this
is due to competing, and dominating water vapor absorption
in the same spectral range. When SO2 is observed in this
band it must be present in a significant amount at altitudes
above the lower troposphere (5–7 km depending on the
water vapor profile and SO2 concentrations [Clarisse et al.,
2008]).
[5] We have analyzed SO2 retrievals for the complete

period October 2007–December 2010 in search of anthro-
pogenic emissions of SO2. Because of frequent volcanic
activity, especially in the Northern Hemisphere, the pro-
duced imagery was analyzed manually and cross checked
with volcanic activity reports from the USGS (http://www.
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volcano.si.edu/reports/usgs/). In total we identified 24 major
events where an apparent non‐volcanic SO2 plume was
observed with loadings above 5 km exceeding ∼5 1016

molecules/cm2 and which was visible for at least 5 con-
secutive IASI overpasses (2½ days). All these were first
observed over East Asia and Siberia; while transport was
mainly observed over the Russian Arctic, Japan, Sakhalin
and Kamchatka. There is a marked seasonality in the
events with 12 events observed in the fall, 9 in the winter
and 3 in the spring.
[6] A first prerequisite for such large events to happen and

for infrared sounders to see them, is the availability of large
concentrations of SO2. Note first that emissions of SO2 only
show a weak seasonal pattern [Streets et al., 2003]. In colder
periods, the lifetime of SO2 is however longer (a factor 2–3
in winter [Chin and Jacob, 1996; Lee et al., 2011]) because
of slower dry deposition and less availability of oxidants.
Furthermore, SO2 is half‐soluble and subject to wet scav-
enging. Over East Asia, precipitation has a marked sea-
sonality, with fall and winter being very dry and spring and
especially summer very wet. Enhanced with trapping of
boundary layer air due to inversion, fall and winter are
therefore favorable periods for the build up of large con-
centrations of SO2. The second prerequisite is an efficient
uplift mechanism to altitudes above 5 km. The occurrence of
midlatitude cyclones and the associated warm conveyor
belts are the main source of uplift to the mid‐upper tropo-
sphere and occur frequently in fall and winter (note that
these occur less frequent in the summer) [Stohl, 2001; Liang
et al., 2004; Yienger et al., 2000].
[7] This seasonality is very different as compared to CO,

which is known to exhibit most transpacific transport in the
spring (and to lesser extent in the summer). This can be seen
e.g. from looking at monthly averages of CO [Clerbaux
et al., 2009, Figure 5]. To understand this apparent contra-
diction, it is important to take into account the seasonality in

the number of uplift events, the availability of source mate-
rial and the altitude of transport. In the work of Liang
et al. [2004] it was shown that the number of uplift events
does not exhibit a strong seasonality (although the uplift
mechanism can be different, e.g. in summer convective
lifting is more important). However, in spring and summer,
the amount of CO that is lifted and transported is larger due
to larger source availability. Secondly, here we have only
taken into account SO2 transport events above 5 km, while
the well known seasonality of CO transport includes trans-
port at all altitude levels. Finally, the number of large uplift
events might not be a good indication of the total amount of
transported material, for which also a large number of
smaller events can contribute.
[8] On 7 November 2010, IASI observed a SO2 plume

covering almost the whole of Northeast China and subse-
quent overpasses show the plume moving over the Sea of
Japan, Northern Pacific, Gulf of Alaska and Canada. The
last observations was made 5 days later near Hudson bay
(see Figure S1 and Animation S1 in the auxiliary material).1

Fortuitous overpasses of the space‐borne lidar Calipso
[Winker et al., 2009] revealed coincident aerosol features
between 6 and 9 km which were identified as smoke and in
the later stages as sulfate. For all but the first overpass there
was part of the aerosol curtain which contained no detect-
able clouds, and these were selected for Figure S1 in the
auxiliary material.
[9] In terms of meteorology, the week prior the event was

characterized by low surface winds and a total absence of
rain. These stagnant conditions led to build up of pollutants
as reflected in the steady increase of the Daily Air Pollution
Index [Gao et al., 2011] of several megacities in Northeast
China during that week (see Figure 1, left). Weather maps of

Figure 1. (left) Daily Air Pollution Index from selected cities in China. The air quality decreases from 1 to 7 November
and is attributed to build‐up of pollution. On the 8th a drastic improvement is apparent, coincident with the IASI observation
of the SO2 plume shown on the right. (right) Location of selected cities (colored dots) and maximum observed SO2 columns
(in units 1016 molecules/cm2) for the period 7–11 November 2010.

1Auxiliary materials are available in the HTML. doi:10.1029/
2011GL048976.
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the 6th and the 7th November show an intensifying bar-
oclinic cyclone over Northeast China and Korea forming
thick clouds and accompanying rain further northeast of this
area. The associated warm conveyor belt is no doubt
responsible for the lofting and entraining of the local pol-
lutants picked up by IASI. Note that associated cloud for-
mation is important because of potential washout of
pollutants and the remote sensing challenge of dealing with
optical thick clouds. These can hamper the retrieval and, as
we will see further, bias it low.

3. Composition, Columns and Comparisons

[10] Comparison of SO2 data with near real time CO
retrievals [George et al., 2009] reveal coincident enhance-
ments. To assess enhancements of other species in the plume,
differences of averaged spectra inside the plume (using
spectra with SO2 columns above ∼5 1016 molecules/cm2) and
outside the plume (spectra with no detectable SO2) were
made. This technique allows detection of weak absorbers, as
it reduces noise and removes a large part of the spectral
signatures due to the strong absorbers (CO2, O3, H2O
[Karagulian et al., 2010]). Unambiguous identification of
CO (3 K), PAN (0.4 K), HCOOH (0.5 K), C2H2 (1 K),
CH3OH (0.4 K) was possible for each overpass. Here the
numbers in brackets are averaged observed signal strengths
and these emerge well above the IASI noise (∼0.2 K on an
individual spectrum).
[11] For all detected species, we have performed optimal

estimation retrievals using Atmosphit [Coheur et al., 2005,
2009], limiting the retrieval of the target species between 6
and 9 km (except for CO which was fitted from 0 to 15 km).
Cloudy scenes are problematic since clouds are not directly
taken into account by Atmosphit. Thin clouds or small cloud
fractions can be compensated by a correction in surface
temperature, but thick clouds distort the baseline shape and
lead to diverging fits. For this reason we have performed
optimal estimation retrievals only for spectra with a cloud
coverage below 10%. Unfortunately, especially for the first
overpasses, the cloud fraction was very high (73% clouds on
average for the first overpass, see Table 1), resulting in only
few retrievals, mostly on the plume edge (and thus missing
the highest loadings). Recently, Walker et al. [2011] intro-
duced a method of detecting weakly absorbing species
yielding an apparent column amount. For fixed atmospheric
conditions and far away from saturation, the apparent col-

umn is linearly related with the true column amount. We
have implemented the detection using the so‐called
ensemble method fromWalker et al. [2011] and confirmed a
strong linear correlation (between 0.75 and 0.95) between
apparent and observed columns. This was used to obtain
true column amounts for all pixels in and around the
observed SO2 plume. This method does not work for CO,
which is a strong absorber with a saturating spectral signa-
ture and omnipresent in the atmosphere.
[12] The retrievals obtained in this way are illustrated for

SO2, HCOOH, C2H2 and PAN in Figure 2 and summarized
in Table 1, which contains maximum measured columns
(mean of the largest ten observations). For CO, mean out‐
of‐plume columns were subtracted from the total columns
and as the other species were not detected outside the plume
we can interpret all columns as in‐plume enhancements. For
all species maximum loadings were detected on the third
overpass (evening overpass of the 8th), indicating under-
estimated loadings for the first two overpasses due to cloud
coverage.
[13] By inter‐comparing the different species, more can be

said on the in‐plume chemistry and lifetime. CO and C2H2

abundances are usually correlated in the atmosphere [Xiao
et al., 2007]. Because of difference in lifetime, the ratio
C2H2/CO or enhancement ratio DC2H2/DCO can be used as
a tracer of air mass age. We found an average correlation
coefficient of 0.59. The initial value for the enhancement
ratio was found to be 4.7 10−3, with the slope declining to
2.3 10−3 for the aged plume. These values were obtained
from linear regression of all measurements in the plume. The
initial value matches closely the reported emission average
of 4.8 10−3 [Xiao et al., 2007] for East Asia.
[14] The best correlation with CO was found with PAN

with an average correlation coefficient of 0.68. PAN pro-
duction peaks in the summer, however photochemical pro-
duction of PAN can also be elevated outside the summer and
thermal stability at lower temperatures can account for
increased concentrations [Brice et al., 1988; Tsalkani et al.,
1987]. Its enhancement ratio with CO was initially ∼3.7 10−3,
increased to ∼4.7 10−3 and then dropped the last day to
∼0.8 10−3. On the third overpass remarkably high columns
were measured (more than a factor two of what was observed
during the first overpass). This increase is much larger than
any of the other species, and therefore unlikely related to the
cloud retrieval problem. It is indicative of secondary for-
mation within the plume.

Table 1. Overview of the eventa

Day Clouds (%) Size (km2) CH3OH HCOOH CO SO2 PAN C2H2

07AM ‐ ‐ 0.30e16 0.55e16 2.00e18 5.00e16 (25) 0.40e16 (1.5) 0.75e16 (3.0)
07PM 73 0.6e6 3.17e16 1.00e16 1.65e18 5.93e16 (25) 0.75e16 (3.8) 1.00e16 (4.7)
08AM 61 1.0e6 3.91e16 1.25e16 1.80e18 6.27e16 (21) 1.04e16 (3.6) 1.05e16 (4.3)
08PM 47 1.4e6 4.04e16 1.55e16 2.01e18 6.46e16 (26) 1.69e16 (4.0) 1.12e16 (4.1)
09AM 34 1.6e6 3.42e16 1.26e16 1.58e18 5.42e16 (25) 1.13e16 (4.7) 0.82e16 (3.1)
09PM 36 1.1e6 3.16e16 1.20e16 1.58e18 5.17e16 (24) 1.05e16 (3.6) 0.80e16 (2.6)
10AM 36 1.1e6 3.20e16 1.03e16 1.21e18 4.87e16 (26) 0.81e16 (3.7) 0.64e16 (3.1)
10PM 17 0.7e6 2.84e16 0.99e16 1.23e18 4.55e16 (28) 0.63e16 (3.1) 0.72e16 (2.4)
11AM 7 0.4e6 2.74e16 0.94e16 0.70e18 4.00e16 (22) 0.48e16 (2.8) 0.57e16 (2.7)
11PM 8 0.3e6 2.69e16 0.76e16 0.92e18 3.59e16 (29) 0.38e16 (0.8) 0.49e16 (2.3)

aFirst column is the date (in November 2010); and the overpass (morning or evening). The second column is the average cloud coverage from the IASI
level 2 data. The third column is the size of the plume as estimated from the SO2 retrievals. The remaining columns are maximum observed column
enhancements (averaging the 10 highest observations) in molecules/cm2. For the species which correlate well with CO the enhancement ratio or slope
DX/DCO is shown in brackets in units of 10−3. The first line (07AM) represent maximum MOZART4 modeled columns below 800 hPa over the
likely source area prior to the event.
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[15] All four species: PAN, C2H2, CO and SO2 correlated
well with each other throughout the event, with correlation
coefficients above 0.5. Correlations with HCOOH and
CH3OH were lower (in the range 0.2–0.5). This is mostly
due to the larger noise of their retrievals (see Figure 2).
Formic acid and methanol are emitted biogenically, with
production peaking in the growing season, but also by fires,
combustion and other anthropogenic activities [Stavrakou
et al., 2011]. The main sink of formic acid is wet deposi-
tion, and concentrations are hence strongly linked with
rainfall [see, e.g., Zhang et al., 2011]. As there was no pre-
cipitation in the week building up to the event, it is not
surprising that this species was observed here. Of all the
observed species, methanol abundances have the slowest
decrease rate from the third to the last overpass, see Table 1
(slower than SO2 or the long‐lived CO). Since dispersion of
the plume is the same for all observed species, and since
dispersion is the main reason for the observed decrease in CO
abundances, the slower decrease of CH3OH is strongly
suggestive for in‐plume formation, probably related to the
oxidation of volatile organic compounds.
[16] We have also carried out a comparison of our mea-

sured columns with MOZART‐4, driven by NCEP/GFS
meteorology (see http://www.acd.ucar.edu/acresp/forecast/
for the figures), in order to see how a state of the art global
chemistry transport model deals with such an event of strong
uplift and long range transport. From the CO maps, outflow
to the Pacific is obvious on the 8th of November. Transport
is much slower though, as by the 11th the plume is still
modeled over the Western Pacific, because of an underes-
timation of uplift and altitude. This is not surprising as
modeling uplift and subsequent circulation through moist
adiabatic storms is highly non‐trivial. To assess the chem-
istry modeling of the build up, our measured columns have
been compared with maximum measured columns below
800 hPa in the morning of the 7th over the likely source
area. Modeled columns agree well for CO, C2H2 and SO2

but are underestimated for formic acid and PAN (almost a
factor two) and especially methanol (a factor ten). These
species are not surprisingly those which are least monitored

(e.g. to our knowledge there has not been a single recent in‐
situ campaign aimed at measuring wintertime PAN in North
East Asia).
[17] This study provides a detailed analysis of one of the

24 identified events of major uplift and transport of
anthropogenic sulfur dioxide. It is a first demonstration of
how IASI is able to monitor outflow and chemistry of a
range of primary and secondary pollutants. As retrieval
techniques and instrumental characteristics of infrared
sounders continue to improve, we expect it to be possible to
monitor outflow of Asian pollution of a series of trace gases
on a more regular basis, offering the modeling community
unprecedented validation opportunities.
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